
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS: Vot. 25, No. 4. AUGUSI" 1978

Numerical Comparison of Several
Variable-Metric Algorithms 1

D . F . S H A N N O 2 A N D K . H . P H U A 3

Communicated by H. Y. Huang

Abstract. The paper compares the numerical performances of the
LDL' decomposition of the BFGS variable-metric algorithm, the
Dennis-Mei dogleg algorithm on the BFGS update, and Davidon's
projections with the BFGS update with the straight BFGS update on a
number of standard test problems, Numerical results indicate that the
standard BFGS algorithm is superior to all of the more complex
strategies.

Key Words. Unconstrained optimization, LDL' decomposition,
Davidon projections, dogleg algorithm, BFGS algorithm.

1. Introduction

The B F G S algori thm for uncons t ra ined nonl inear opt imizat ion, due to
Broyden (Ref. 1), Fle tcher (Ref. 2), Go ld fa rb (Ref. 3), and Shanno (Ref.
4), genera tes a sequence of points Xk to the minimizer ~? of a funct ion f (x) ,
where x is an n -vec to r and f a real-valued nonl inear function, by

x k + l = x k - - , ~ k H k g k , (1)

H k + ~ = H k + (1 + y kHkYk/p kYk)(PkP k/p kYk)-- (Hkykp k + PkY kHk) /p kYk,

(2)
where

gk = Vf(xk), Yk =gk+~--gk, Pk =Xk+l--Xk,

and c~k is an appropr ia te ly chosen scalar.

1 ,
This research was supported by the National Science Foundation under Research Grant No.
MCS77-07327.

2 Professor, Department of Management Information Systems. College of Business and
Public Administration, University of Arizona, Tucson, Arizona.

3 Lecturer, Department of Computer Science, Nanyang University, Singapore, Malaysia.

507

0(122-3239/78/0800-0507505.00/0 (~) 1978 Plenum Publishing Corporation

508 JOTA: VOL. 25, NO. 4, AUGUST 1978

In a recent paper (Ref. 5), the authors examined the initial choice Ho
for an approximation to the inverse Hessian, and concluded that, for large
problems, initially Ho can be set to the identity matrix; but, after xl has
been chosen, but before H1 has been computed,/4o should be scaled by

H o = 3"Ho, 3 / = p 'oyo /y 'oHoYo, (3)

and/--/1 computed using (2) with/-t0 substituted for Ho.
In that paper, it was shown that, while this scaling was extremely

important to increased numerical efficiency on large problems, on small
problems (2-4 variables) it sometimes improved, sometimes hurt compu-
tational efficiency. A possible explanation for this is that, if 3' is small,
premultiplying/4o by 3' "has the effect of rotating the subsequent search
vector pl away from the negative gradient gl. As 3' was typically small on
those problems where performance deteriorated under scaling, it would
appear that a dogleg strategy, which rotates the search vector back toward
the gradient, might well improve numerical performance.

In an earlier paper, Shanno, Berg, and Cheston (Ref. 6) showed that,
if fairly accurate linear searches were used, the dogleg strategy never
improved the performance of the BFGS algorithm. However, using the
very inexact searches of the MINIO2 algorithm [Shanno and Phua, Ref. 7],
it appeared possible that a dogleg might prove useful.

To this end, we coded the dogleg introduced by Powell (Ref. 8) in the
form documented by Dennis and Mei (Ref. 9), but using the BFGS update,
rather than the PSB update of Powell (Ref. 8) or the update of Dennis and
Mei which incorporates Davidon (Ref. 10) projections. Unfortunately,
performance of the algorithm with the scaled BFGS update was uniformly
worse than the straightforward scaled BFGS, as the numerical results in
Section 3 demonstrate. Thus, we are forced to conclude that the variance in
efficiency of the scaled and unscaled BFGS on small problems is indeed
random, or at least beyond our power to explain.

Another current hypothesis is that updating an approximation Jk to
the Hessian, rather than the approximation Hk to the inverse Hessian,
could improve numerical stability and thus numerical efficiency if Jk were
updated in the factored LDL' form where L is lower triangular and D is
diagonal. To te~t this, we implemented the LDL' update algorithm of
Fletcher and Powell (Ref. 11), and tested it with the complementary BFGS
update defined by

Jk +1 = Jk + YkY 'k/p'gYk -- JkPkP'kJk /P 'JkPk , (4)

where again the algorithm was tested both unscaled and scaled, where the
initial scaling was

Jo = O/3')Jo. (5)

JOTA: VOL. 25, NO. 4, AUGUST 1978 509

Here, the scaled and unscaled LDL' algorithms were so similar to
the scaled and unscaled straightforward BFGS in performance that the
extra overhead required for the LDL' algorithm appears not to be
justified.

As a further note on this, both the Powell algorithm and the Dennis
and Mei algorithm require both Hk and Jk for their dogleg strategies. Our
implementation of the Dennis and Mei algorithm used the LDL' factoriza-
tion for Jk, and hence required only one matrix to be stored. In view of the
discouraging computer results we obtained, which are documented in
Section 3, it is doubtful whether a dogleg strategy should ever be
employed. If, however, one wishes to use this strategy, this appears to be
the most efficient means of implementing it.

Finally, we addressed the question of the numerical efficiency of the
update using projections introduced by Davidon (Ref. 10). As this
algorithm is fairly complex, and numerically very sensitive to the choice of
certain parameters, it is worthwhile to examine in more detail both our
implementation and computational experience. This we do in detail in
Section 2. We conclude this section by noting simply that, numerically, the
Davidon algorithm suffers in comparison to the BFGS algorithm, leading
to the conclusion that a straightforward BFGS implementation is both
more efficient and more robust than any other known variable-metric
algorithm.

2. On the Implementation of Davidon's Projections

In Ref. 10, Davidon introduced three new ideas for variable-metric
algorithms, the factored form of the update, the optimally conditioned
update, and the use of projections to update in a way that produces finite
termination on quadratic object functions. In Ref. 5 it is shown that, in
general, the BFGS update is superior to the optimally conditioned update
without projections. Turner (Ref. 12) has shown identical performance of
the factored and unfactored updates, at least on small problems. It appears
likely that this will remain true for large problems. Thus, unless algorithm
overhead for one is shown to be superior to the other, the choice of
factored versus unfactored for nonprojected algorithms seems open,
although preliminary investigation shows that the unfactored algorithm can
be implemented in about 3n 2 multiplications per step, and the factored in
4n 2.

Thus, the computational question of interest is the use of projections.
We address the problem in detail here.

510 JOTA: VOL. 25, NO. 4, AUGUST 1978

Basically, the Davidon algorithm computes at each iteration the pro-
jection operator P defined by

P = Y (Y ' H - 1 Y) - I Y ' H - ' , (6)

where Y is the n x 2 matrix defined by

Y = [p - H y , u], (7)

and

u * = v' yu - u' yv, uo = Hogo, v = p - H y ,

where we have dropped the subscript k and substituted the superscript *
for the subscript k + 1. Here, H -1 is the inverse of any positive-definite
update in the Broyden parametric family of updates, where H is the
approximation used for the inverse Hessian. The vectors z and 3' are then
computed by

z = P p , y = P ' y , (8)

and H is updated using z and 3' in place of p and y. In view of the
superiority of the BFGS update, we elected to use this in place of Davi-
don's optimally conditioned update. Thus, the update that we desire is
defined by

H * = H + (1 + 3 " H 3 " / z ' 7) (z z ' / z ' 3 ") - (H3"z' + z 3 / H) / z ' 3 , . (9)

It remains to demonstrate how to compute z and 3" in an efficient manner.
By introducing the factored form for H defined by

H = J J ' , (10)

with update formula

J* = [I + ~r/'lJ (11)

for appropriately chosen vectors ~, r/, Davidon was able to define vectors

13 = J - ' v , t~ = J - l u ; (12)

and, by setting

trivial computation yields

? = [/3, a],

? ' ? = Y 'H- ' Y. (13)

While use of this factorable form appears to be the most efficient
means of implementing this algorithm, a straightforward means of using

JOTA: VOL. 25, NO. 4, AUGUST 1978 511

the update (9) can also be devised at the cost of carrying another vector. To
see this, note that, as

we have

and that

We now define

p = - a H g ,

H - i v = H - ~ (p - H y) = - a g - y,

H o l u o = H o l H o g o = go.

S = H - l u ,

and consider the problem of calculating s*. As

j * = H *-1,

where J* is defined by (4), we have

S* = J ' u * = J * (v 'yu - u ' y v) = v' y J* u - u ' y J * v.

Now, applying (4), we get

J* u = Ju + (y ' u / y ' p) y - J p p ' J u / p ' J p

= s + (y ' u / y ' p) y - (p ' s / p ' g) g ,

and

J * v = Jv + (y ' v / y ' p) y - J p p ' J v / p ' J p

= - a g - y + (y ' v / y ' p) y - [p ' (- a g - y) / p ' g] g

= (y ' v / y ' p - 1)y - [a + p ' (- a g - y) / p ' g] g .

Thus, we have, from (16)-(18),

s* = v 'ys + [v ' y y ' u / y 'p - y 'u (y ' v / y 'p - 1)]y

+ { - u ' y [a + p ' (- a g - y) / p ' g] - v ' y (p ' s / p ' g) } g

= v ' ys + u ' y y + [(p 'yu 'y - v ' y p ' s) / p ' g] g .

Then, if we define

t = H - l v ,

we have

(y , H _ l y) = F v ' t v ' s]
[u ' t u ' s J '

(14)

(15)

(16)

(17)

(18)

(19)

(20)

512 JOTA: VOL. 25, NO. 4, AUGUST 1978

and

where

Now, we have

r u's -v's l (21) (Y'H-' y) - i _= (1 / d) [_ u , t v ' t l '

d = v' tu 's - v'su't. (22)

and

Then, since

(24) yields

Pp = y (y , H -1 y) -~ y , H - l p = - a y (y ' H -1 y) -~ y 'g ,

P 'y = H - 1 Y (Y ' H - ' y) l y , y .

Similarly,

H - ' Y = (t, s), = Y 'Y \ u ' y } '

s)[u's
y = P ' y = (1 / d) (t , L - u ' t

(23)

v ' t] \ u ' y]

= (1 /d)[(u ' sv ' y - v ' su 'y) t + (v ' tu 'y - u ' tv 'y)s].

f u's - v ' s I (v ' g~
z = Pp = - (~ / d) (v , u) [_ u , t v'tJ \ u ' #

= - (a / d) [(u ' s v ' g - v ' su 'g)v + (v ' tu 'g - u ' tv 'g)u] .

(24)

(25)

z = Pp = - (~ v ' g / v ' t) v

noted that a similar implementation can be derived for any member of the
Broyden family by using the proper update formula for J*.

(27)

(28)

y = P'y = (v 'y /v ' t) t . (29)

It is this algorithm which we implemented and tested. It should be

and

so we have

p = v (v , H - l v) - l v ' H -1,

Also, in the event that u and v are colinear (which always happens on the
last step for quadratic functions), P is simply defined by

(26)

JOTA: VOL, 25, NO. 4, AUGUST 1978 513

Several further points on this algorithm are worthy of discussion. As
mentioned previously, we have found the algorithm highly sensitive to
numerical problems caused by roundoff. Specifically, if p 'y is small, pro-
jecting p and y leads to serious stability problems. This was also noted by
Turner. Thus, we include a parameter e in our algorithm, and test if

p 'y < E.

If so, we update without projecting and reset

u ~ - H g .

Also, Davidon noted that, if z'y is small, it is safer not to use z and %
but rather to use p and y. Thus, if

Z '~ < E,

we update using p and y and reset

u = H g .

Again, u can become very small at a point well away from the
minimizer 2; so, if

U 'bt < E,

we reset u to Hg before projecting. This also was suggested by Davidon.
He also suggested skipping updating altogether if

vtH-lv <e,

and we include this in our algorithm.
Finally, his test on whether to do a rank-one or rank-two projection

depends on how close d is to zero. He suggests using a rank-two update
unless

Because

d ~ 1061u't - v's!. (30)

Utt = bt'S

with exact arithmetic, this requires d to be very smalk
Davidon tested only problems of dimension four or less in his paper;

and, for these problems, this test is satisfactory. However, for larger
problems, this rapidly becomes very unsatisfactory, leading to infinitesi-
mally small search directions well away from the minimum. Consequently,
we have incorporated the rule that a rank-two projection is done unless

d-<e 2, (31)

at which point a rank one is done.

514 JOTA: VOL. 25, NO. 4, AUGUST 1978

We have exper imented with various values of e; and, using double-
precision arithmetic on the D E C 10 computer , have found e = 10 -~° to be
most satisfactory, although no e-value proved ideal. This will be discussed
in more detail in the next section.

3. Numerical Results

Seven algorithms were coded and tested. Six used the MINIO2
algorithm for steplength determinat ion [see Shanno and Phua, Ref. 7].
These were the BFGS, LDL' , and projected BFGS (PBFGS) update
algorithms, each done with and without initial scaling of the matrix Ho. The
dogleg algorithm was implemented exactly as described by Dennis and Mei
(Ref. 9), with the aforement ioned differences that the BFGS update in
LDL ' form was used.

The six test functions used are documented in Ref. 5. Briefly, they are
the extended Rosenbrock function for n = 2 and n = 20, Wood ' s function,
the Weibull function, Oren 's power function with n = 20, the extended
Powell function with n = 4 and n = 36, and the Mancino function with
n = 10, 20, and 30.

In all cases, convergence was determined when each element of the
gradient vector was less than 10 -5. In the tables, I T E R is the number of
matrix updates performed, while IFUN is the number of function and
gradient calls. One reason for the larger number of function calls per
iteration on average for PBFGS is that, whenever an update is skipped, we
do not count this as a major iteration. Whether this is the best accounting
possible is debatable; but, if the update overhead is considered significant,
which it is on all of these functions except the Weibull and Mancino
functions, it appears to be the fairest measure of performances.

Also, in all cases, the initial estimates to Xo are included in the tables,
with the exception of the Mancino function. Those initial estimates are
documented in Ref. 5.

In Tables 1-2, the asterisk indicates that the method had failed to
converge in the indicated number of iterations. The (1) for the dogleg
strategy on the Weibull function results from the algorithm determining
that each initia~l estimate was a minimum, where indeed one is a maximum
and others have bad numerical gradient problems. This can be overcome
by forcing the method to search the initial vector more carefully. However ,
comparison of the results with the pure scaled BFGS make it dubious that
the strategy should be pursued further.

To indicate the e-sensitivity of PBFGS, as previously indicated, all of
these results use

e = 10 -1°.

T
ab

le

1.

N
u

m
er

ic
al

re

su
lt

s.

F
un

ct
io

n
L

D
L

'
L

D
L

'
un

sc
al

ed

se
al

ed

In
it

ia
l

po
in

t
IT

E
R

IF

U
N

IT

E
R

IF

U
N

D
og

le
g

P
B

F
G

S

P
B

F
G

S

B
F

G
S

B

F
G

S

sc
al

ed

un
sc

al
ed

sc

al
ed

un

sc
al

ed

sc
al

ed

IT
E

R

IF
U

N

IT
E

R

IF
U

N

IT
E

R

IF
U

N

IT
E

R

1F
U

N

IT
E

R

IF
U

N

R
os

en
br

oc
k

2
(-

1
.2

,1
)

35

42

35

42

(2
,-

2
)

12

14

38

47

(-
3

.6
3

5
,5

.6
2

1
)

47

59

49

61

(6
.3

9
,-

0
.2

2
1

)
54

64

29

34

(1

.4
8

9
,-

2
.5

4
7

)
22

25

29

35

R

os
en

br
oc

k
20

(-

1
.2

,1
)

14
6

19
1

35

42

(2
,-

2
)

38

46

38

47

(-
3

.6
3

5
,5

.6
2

1
)

16
2

18
9

49

61

(6
.3

9
,-

0
.2

2
1

)
18

2
20

2
29

34

(1

.4
8

9
,-

2
.5

4
7

)
62

78

29

35

W

o
o

d

(-
3

,-
1

,-
3

,-
1

)
80

94

38

42

(-

3
,1

,-
3

,
i)

84

10

3
93

11

3
(-

1
.2

,
1

,-
1

.2
,

1)

60

77

82

10
4

(-
1

.2
,1

,1
.2

,1
)

36

45

44

51

53

69

29

36

35

42

35

42

35

42

31

44

17

19

39

49

16

18

38

47

50

61

47

61

47

58

46

55

50

62

50

59

47

59

24

28

54

64

29

34

36

49

21

25

30

39

21

24

29

35

57

71

12
6

30
1"

37

44

12

9
17

3
35

42

31

44

26

35

37

48

34

42

38

47

50

61

16

2
30

1"

78

30
1"

15

5
17

5
50

62

50

59

11

3
30

1"

23

26

12
2

13
7

29

34

36

49

51

73

28

26

85

10
0

29

35

46

55

73

98

28

36

79

98

38

42

41

50

89

1
1

l
71

13

4
79

10

2
95

11

2
27

20

0*

68

91

74

11
4

69

89

85

Il
l

5l

69

37

47

42

51

36

48

44

51

> < ©

t~

L
/I

Z

©

4
~

©

*
M

et
h

o
d

 f
ai

le
d

to
 c

on
ve

rg
e

in
 t

he
 i

nd
ic

at
ed

 n
u

m
b

er
 o

f
it

er
at

io
ns

.

T
ab

le

2.

N
u

m
er

ic
al

re

su
lt

s.

7,

F
un

ct
io

n
L

D
L

'
L

D
L

'
D

og
le

g
P

B
F

G
S

P

I3
F

G
S

B

F
G

S

B
F

G
S

un

sc
al

ed

sc
al

ed

sc
al

ed

un
sc

al
ed

sc

al
ed

un

sc
al

ed

sc
al

ed

In
it

ia
l

po
in

t
IT

E
R

IF

U
N

IT

E
R

IF

U
N

IT

E
R

IF

U
N

IT

E
R

IF

U
N

IT

E
R

IF

U
N

IT

E
R

IF

U
N

IT

E
R

IF

U
N

,...
]

W
ei

bu
ll

"~

"
(5

,
0.

15
,

2.
5)

38

43

49

60

1

(1
)

28

40

46

52

37

54

49

57

(2
50

,
0.

3,
 5

)
45

61

59

75

1

(1
)

41

55

57

78

39

56

57

77

r"

(1
00

,
3,

 1
2.

5)

30

50

45

57

1
(1

)
40

56

41

52

42

49

45

57

O

re
n

 2
0

t~

(1
,

1
,.

..
,

1)

16
0

17
3

19
3

20
3

18
8

20
0

11
7

30
1"

11

6
30

1"

96

10
0

23
2

23
4

P
ow

el
l

4
(-

3
,

-1
,

O
,

1)

41

43

59

61

54

63

30

34

33

20
1"

37

39

59

61

4~

P
ow

el
13

6
-

(-
3,

-1

,
O

,
1 .

..
.

)
83

87

59

61

54

63

55

79

39

41

87

89

59

61

M

an
ci

no

M
an

ci
no

 1
0

(
..

..
..

)

22

28

8
10

7

1-
9

19

34

4
8

18

28

5
8

,~

.-a

M
an

ci
no

 2
0

(
..

..
..

)

35

47

8
10

8

18

29

56

7
10

35

47

8

10

M
an

ci
no

 3
0

(
..

..
..

)

52

69

8
10

7

16

29

62

8
12

52

69

8

10

*
M

et
ho

d
fa

il
ed

 t
o

co
nv

er
ge

 i
n

th
e

in
di

ca
te

d
n

u
m

b
er

 o
f

it
er

at
io

ns
.

JOTA: VOL. 25, NO. 4, AUGUST 1978 517

Table 3

n ITER

4 4
6 7
8 11

10 13
20 22
40 33

However, when e is changed to 10 -z°, while most results get worse,
convergence occurs on the four-dimensional Powetl function in 37 itera-
tions and 39 function and gradient evaluations. Also, finite termination on
a quadratic function is also e-sensitive. We tested PBFGS scaled on

with initial estimates

i = l

X i : 1~

and obtained the number of iterations necessary for convergence with
e = 10 -~° as shown in Table 3, These results change with e but demonstrate
that, even for a very well-conditioned quadratic function, the method is
highly e-sensitive.

While the results of these tests make it dubious that the extra over-
head of calculating the projections is worthwhile, in view of performance,
more testing may show classes of functions where the method is useful. In
this event, on all large problems, we strongly recommend initial scaling, as
the extended Powell, extended Rosenbrock, and Mancino results clearly
demonstrate.

References

1. BROYDEN, C. G., The Convergence of a Class of Double Rank ?vIinimization
Algorithms 2, the New Algorithm, Journal of the Institute of Mathematics and
Applications, Vol. 6, pp. 222-231, 1970.

2. FLETCHER, R , A New Approach to Variable Metric Algorithms, Computer
Journal, Vol. 13, pp. 317-322, 1970.

518 JOTA: VOL. 25, NO. 4, AUGUST 1978

3. GOLDFARB, D., A Family of Variable Metric Algorithms Derived by Varia-
tional Means, Mathematics of Computation, Vol. 24, pp. 23-26, 1970.

4. SHANNO, D. F., Conditioning of Quasi-Newton Methods for Function Mini-
mization, Mathematics of Computation, Vol. 24, pp. 647-656, 1970.

5. SHANNO, D. F., and PHUA, K. H., Matrix Conditioning and Nonlinear Opti-
mization, Mathematical Programming, Vol. 14, pp. 149-160, 1978.

6. SHANNO, D. F., BERG, A., and CHESTON, G., Restarts and Rotations of
Quasi-Newton Methods, Information Processing 74, Edited by J. L. Rosenfeld,
North-Holland Publishing Company, Amsterdam, Holland, 1974.

7. SHANNO, D. F., and PHUA, K. H., Minimization of Unconstrained Multi-
variate Functions, ACM Transactions on Mathematical Software, Vol. 2, pp.
87-94, 1976.

8. POWELL, M. J. D., A New Algorithm for Unconstrained Optimization,
Nonlinear Programming, Edited by J. B. Rosen, O. C. Mangasarian, and K.
Ritter, Academic Press, New York, New York, 1970.

9. DENNIS, J. E., and MEI, H. H. W., An Unconstrained Optimization Algorithm
Which Uses Function and Gradient Values, Cornell University, Computer
Science Department, Technical Report No. 75-246, 1975.

10. DAVIDON, W. C., Optimally Conditioned Optimization Algorithms Without
Line Searches, Mathematical Programming, Vol. 9, pp. 1-30, 1975.

11. FLETCHER, R., and POWELL, M. J. D., On the Modification of LDL'
Factorizations, Atomic Energy Research Establishment, Harwell, England,
Report No. HL73/6036, 1973.

12. TURNER, P. R., The Use of Projections and Factorization in Optimization
Algorithms, University of Lancaster, Lancaster, England, Department of
Mathematics, Working Paper, 1977.

