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Numerical Comparison of Several 
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Abstract. The paper compares the numerical performances of the 
LDL' decomposition of the BFGS variable-metric algorithm, the 
Dennis-Mei dogleg algorithm on the BFGS update, and Davidon's 
projections with the BFGS update with the straight BFGS update on a 
number of standard test problems, Numerical results indicate that the 
standard BFGS algorithm is superior to all of the more complex 
strategies. 
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1. Introduction 

The  B F G S  algori thm for uncons t ra ined  nonl inear  opt imizat ion,  due to 
Broyden  (Ref. 1), Fle tcher  (Ref. 2), Go ld fa rb  (Ref. 3), and Shanno  (Ref. 
4), genera tes  a sequence  of  points  Xk to  the minimizer  ~? of  a funct ion f (x) ,  
where  x is an n -vec to r  and f a real-valued nonl inear  function,  by 

x k + l  = x k  - - , ~ k H k g k ,  (1) 

H k  + ~ = H k  . . . . . . .  + (1 + y kHkYk/p kYk )(PkP k/p kYk)-- (Hkykp k + PkY kHk ) /p  kYk, 

(2) 
where 

gk = Vf(xk), Yk =gk+~--gk, Pk =Xk+l--Xk, 

and c~k is an appropr ia te ly  chosen scalar. 
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In a recent paper (Ref. 5), the authors examined the initial choice Ho 
for an approximation to the inverse Hessian, and concluded that, for large 
problems, initially Ho can be set to the identity matrix; but, after xl has 
been chosen, but before H1 has been computed,/4o should be scaled by 

H o  = 3"Ho, 3 / = p 'oyo /y 'oHoYo,  (3) 

and/--/1 computed using (2) with/-t0 substituted for Ho. 
In that paper, it was shown that, while this scaling was extremely 

important to increased numerical efficiency on large problems, on small 
problems (2-4 variables) it sometimes improved, sometimes hurt compu- 
tational efficiency. A possible explanation for this is that, if 3' is small, 
premultiplying/4o by 3' "has the effect of rotating the subsequent search 
vector pl away from the negative gradient gl. As 3' was typically small on 
those problems where performance deteriorated under scaling, it would 
appear that a dogleg strategy, which rotates the search vector back toward 
the gradient, might well improve numerical performance. 

In an earlier paper, Shanno, Berg, and Cheston (Ref. 6) showed that, 
if fairly accurate linear searches were used, the dogleg strategy never 
improved the performance of the BFGS algorithm. However, using the 
very inexact searches of the MINIO2 algorithm [Shanno and Phua, Ref. 7], 
it appeared possible that a dogleg might prove useful. 

To this end, we coded the dogleg introduced by Powell (Ref. 8) in the 
form documented by Dennis and Mei (Ref. 9), but using the BFGS update, 
rather than the PSB update of Powell (Ref. 8) or the update of Dennis and 
Mei which incorporates Davidon (Ref. 10) projections. Unfortunately, 
performance of the algorithm with the scaled BFGS update was uniformly 
worse than the straightforward scaled BFGS, as the numerical results in 
Section 3 demonstrate. Thus, we are forced to conclude that the variance in 
efficiency of the scaled and unscaled BFGS on small problems is indeed 
random, or at least beyond our power to explain. 

Another current hypothesis is that updating an approximation Jk to 
the Hessian, rather than the approximation Hk to the inverse Hessian, 
could improve numerical stability and thus numerical efficiency if Jk were 
updated in the factored LDL' form where L is lower triangular and D is 
diagonal. To te~t this, we implemented the LDL' update algorithm of 
Fletcher and Powell (Ref. 11), and tested it with the complementary BFGS 
update defined by 

Jk +1 = Jk + YkY 'k/p'gYk -- JkPkP'kJk /P 'JkPk ,  (4) 

where again the algorithm was tested both unscaled and scaled, where the 
initial scaling was 

Jo = O/3')Jo. (5) 
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Here, the scaled and unscaled LDL' algorithms were so similar to 
the scaled and unscaled straightforward BFGS in performance that the 
extra overhead required for the LDL' algorithm appears not to be 
justified. 

As a further note on this, both the Powell algorithm and the Dennis 
and Mei algorithm require both Hk and Jk for their dogleg strategies. Our 
implementation of the Dennis and Mei algorithm used the LDL' factoriza- 
tion for Jk, and hence required only one matrix to be stored. In view of the 
discouraging computer results we obtained, which are documented in 
Section 3, it is doubtful whether a dogleg strategy should ever be 
employed. If, however, one wishes to use this strategy, this appears to be 
the most efficient means of implementing it. 

Finally, we addressed the question of the numerical efficiency of the 
update using projections introduced by Davidon (Ref. 10). As this 
algorithm is fairly complex, and numerically very sensitive to the choice of 
certain parameters, it is worthwhile to examine in more detail both our 
implementation and computational experience. This we do in detail in 
Section 2. We conclude this section by noting simply that, numerically, the 
Davidon algorithm suffers in comparison to the BFGS algorithm, leading 
to the conclusion that a straightforward BFGS implementation is both 
more efficient and more robust than any other known variable-metric 
algorithm. 

2. On the Implementation of Davidon's Projections 

In Ref. 10, Davidon introduced three new ideas for variable-metric 
algorithms, the factored form of the update, the optimally conditioned 
update, and the use of projections to update in a way that produces finite 
termination on quadratic object functions. In Ref. 5 it is shown that, in 
general, the BFGS update is superior to the optimally conditioned update 
without projections. Turner (Ref. 12) has shown identical performance of 
the factored and unfactored updates, at least on small problems. It appears 
likely that this will remain true for large problems. Thus, unless algorithm 
overhead for one is shown to be superior to the other, the choice of 
factored versus unfactored for nonprojected algorithms seems open, 
although preliminary investigation shows that the unfactored algorithm can 
be implemented in about 3n 2 multiplications per step, and the factored in 
4n 2. 

Thus, the computational question of interest is the use of projections. 
We address the problem in detail here. 
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Basically, the Davidon algorithm computes at each iteration the pro- 
jection operator  P defined by 

P = Y ( Y ' H  - 1 Y ) - I  Y ' H - ' ,  (6) 

where Y is the n x 2 matrix defined by 

Y = [p - H y ,  u], (7) 

and 

u * = v'  yu  - u' yv, uo = Hogo,  v = p - H y ,  

where we have dropped the subscript k and substituted the superscript * 
for the subscript k + 1. Here,  H -1 is the inverse of any positive-definite 
update in the Broyden parametric family of updates, where H is the 
approximation used for the inverse Hessian. The vectors z and 3' are then 
computed by 

z = P p ,  y = P ' y ,  (8) 

and H is updated using z and 3' in place of p and y. In view of the 
superiority of the BFGS update, we elected to use this in place of Davi- 
don's optimally conditioned update. Thus, the update that we desire is 
defined by 

H *  = H + (1 + 3 " H 3 " / z ' 7 ) ( z z ' / z ' 3 " ) -  (H3"z' + z 3 / H ) / z ' 3 , .  (9) 

It remains to demonstrate how to compute z and 3" in an efficient manner. 
By introducing the factored form for H defined by 

H = J J ' ,  (10) 

with update formula 

J*  = [I + ~r/'lJ (11) 

for appropriately chosen vectors ~, r/, Davidon was able to define vectors 

13 = J - ' v ,  t~ = J - l u ;  (12) 

and, by setting 

trivial computation yields 

? = [/3, a], 

? ' ?  = Y 'H- '  Y. (13) 

While use of this factorable form appears to be the most efficient 
means of implementing this algorithm, a straightforward means of using 
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the update (9) can also be devised at the cost of carrying another  vector. To 
see this, note that, as 

we have 

and that 

We now define 

p = - a H g ,  

H - i v  = H - ~  (p  - H y  ) = - a g  - y, 

H o l u o  = H o l H o g o  = go. 

S = H - l u ,  

and consider the problem of calculating s*. As 

j *  = H *-1, 

where J*  is defined by (4), we have 

S* = J ' u *  = J * ( v  'yu - u ' y v  ) = v' y J*  u - u ' y J *  v. 

Now, applying (4), we get 

J*  u = Ju  + ( y ' u / y ' p ) y  - J p p ' J u / p ' J p  

= s + ( y ' u / y ' p ) y  - ( p ' s / p ' g ) g ,  

and 

J * v  = Jv  + ( y ' v / y ' p ) y  - J p p ' J v / p ' J p  

= - a g  - y + ( y ' v / y ' p ) y  - [ p ' ( - a g  - y ) / p ' g ] g  

= ( y ' v / y ' p  - 1)y - [a + p ' ( - a g  - y ) / p ' g ] g .  

Thus, we have, from (16)-(18), 

s* = v 'ys  + [ v ' y y ' u /  y 'p - y 'u ( y ' v /  y 'p  - 1)]y 

+ { - u ' y  [a + p ' ( - a g  - y ) / p ' g ]  - v ' y  ( p ' s / p ' g ) } g  

= v ' ys  + u ' y y  + [(p 'yu 'y  - v ' y p ' s ) / p ' g ] g .  

Then, if we define 

t = H - l v ,  

we have 

( y , H _ l y ) = F v ' t  v ' s ]  
[ u ' t  u ' s J '  

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 
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and 

where 

Now, we have 

r u's -v's  l (21) (Y'H-' y ) - i  _= ( 1 / d ) [ _ u , t  v ' t l '  

d = v' tu 's  - v'su't.  (22) 

and 

Then, since 

(24) yields 

Pp = y ( y , H  -1 y ) -~  y , H - l p  = - a y ( y ' H  -1 y ) -~  y 'g ,  

P 'y  = H - 1 Y ( Y ' H - '  y )  l y , y .  

Similarly, 

H - '  Y = (t, s), = Y 'Y  \ u ' y } '  

s)[ u's 
y = P ' y = ( 1 / d ) ( t ,  L - u ' t  

(23) 

v ' t ]  \ u ' y ]  

= (1 /d )[ (u ' sv ' y  - v ' su 'y ) t  + (v ' tu 'y  - u ' tv 'y)s].  

f u's - v ' s  I ( v ' g~  
z = Pp = - ( ~ / d ) ( v ,  u ) [ _ u ,  t v'tJ \ u ' #  

= - ( a / d ) [ ( u ' s v ' g  - v ' su 'g)v  + (v ' tu 'g - u ' tv 'g)u] .  

(24) 

(25) 

z = Pp = - ( ~ v ' g / v ' t ) v  

noted that a similar implementation can be derived for any member of the 
Broyden family by using the proper update formula for J*. 

(27) 

(28) 

y = P'y  = (v 'y /v ' t ) t .  (29) 

It is this algorithm which we implemented and tested. It should be 

and 

so we have 

p = v ( v , H - l v ) - l v ' H  -1, 

Also, in the event that u and v are colinear (which always happens on the 
last step for quadratic functions), P is simply defined by 

(26) 
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Several further points on this algorithm are worthy of discussion. As 
mentioned previously, we have found the algorithm highly sensitive to 
numerical problems caused by roundoff. Specifically, if p 'y  is small, pro- 
jecting p and y leads to serious stability problems. This was also noted by 
Turner. Thus, we include a parameter  e in our algorithm, and test if 

p 'y < E. 

If so, we update without projecting and reset 

u ~ - H g .  

Also, Davidon noted that, if z'y is small, it is safer not to use z and % 
but rather to use p and y. Thus, if 

Z '~  < E, 

we update using p and y and reset 

u = H g .  

Again, u can become very small at a point well away from the 
minimizer 2; so, if 

U 'bt < E, 

we reset u to Hg before projecting. This also was suggested by Davidon. 
He also suggested skipping updating altogether if 

vtH-lv <e, 

and we include this in our algorithm. 
Finally, his test on whether to do a rank-one or rank-two projection 

depends on how close d is to zero. He suggests using a rank-two update 
unless 

Because 

d ~ 1061u't - v's!. (30)  

Utt = bt'S 

with exact arithmetic, this requires d to be very smalk 
Davidon tested only problems of dimension four or less in his paper; 

and, for these problems, this test is satisfactory. However,  for larger 
problems, this rapidly becomes very unsatisfactory, leading to infinitesi- 
mally small search directions well away from the minimum. Consequently, 
we have incorporated the rule that a rank-two projection is done unless 

d-<e 2, (31) 

at which point a rank one is done. 
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We have exper imented with various values of e; and, using double- 
precision arithmetic on the D E C  10 computer ,  have found e = 10 -~° to be 
most satisfactory, although no e-value proved ideal. This will be discussed 
in more detail in the next section. 

3. Numerical Results 

Seven algorithms were coded and tested. Six used the MINIO2  
algorithm for steplength determinat ion [see Shanno and Phua, Ref. 7]. 
These were the BFGS, LDL' ,  and projected BFGS (PBFGS) update 
algorithms, each done with and without initial scaling of the matrix Ho. The 
dogleg algorithm was implemented exactly as described by Dennis and Mei 
(Ref. 9), with the aforement ioned differences that the BFGS update in 
LDL '  form was used. 

The six test functions used are documented  in Ref. 5. Briefly, they are 
the extended Rosenbrock function for n = 2 and n = 20, Wood ' s  function, 
the Weibull function, Oren 's  power function with n = 20, the extended 
Powell function with n = 4 and n = 36, and the Mancino function with 
n = 10, 20, and 30. 

In all cases, convergence was determined when each element of the 
gradient vector was less than 10 -5. In the tables, I T E R  is the number  of 
matrix updates performed,  while IFUN is the number  of function and 
gradient calls. One reason for the larger number  of function calls per 
iteration on average for PBFGS is that, whenever  an update  is skipped, we 
do not count this as a major  iteration. Whether  this is the best accounting 
possible is debatable;  but, if the update overhead is considered significant, 
which it is on all of these functions except the Weibull and Mancino 
functions, it appears  to be the fairest measure of performances.  

Also, in all cases, the initial estimates to Xo are included in the tables, 
with the exception of the Mancino function. Those initial estimates are 
documented  in Ref. 5. 

In Tables 1-2, the asterisk indicates that the method had failed to 
converge in the indicated number  of iterations. The (1) for the dogleg 
strategy on the Weibull function results from the algorithm determining 
that each initia~l estimate was a minimum, where indeed one is a maximum 
and others have bad numerical gradient problems. This can be overcome 
by forcing the method to search the initial vector more  carefully. However ,  
comparison of the results with the pure scaled BFGS make  it dubious that 
the strategy should be pursued further. 

To indicate the e-sensitivity of PBFGS,  as previously indicated, all of 
these results use 

e = 10 -1°. 
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Table 3 

n ITER 

4 4 
6 7 
8 11 

10 13 
20 22 
40 33 

However, when e is changed to 10 -z°, while most results get worse, 
convergence occurs on the four-dimensional Powetl function in 37 itera- 
tions and 39 function and gradient evaluations. Also, finite termination on 
a quadratic function is also e-sensitive. We tested PBFGS scaled on 

with initial estimates 

i = l  

X i : 1~ 

and obtained the number of iterations necessary for convergence with 
e = 10 -~° as shown in Table 3, These results change with e but demonstrate 
that, even for a very well-conditioned quadratic function, the method is 
highly e-sensitive. 

While the results of these tests make it dubious that the extra over- 
head of calculating the projections is worthwhile, in view of performance, 
more testing may show classes of functions where the method is useful. In 
this event, on all large problems, we strongly recommend initial scaling, as 
the extended Powell, extended Rosenbrock, and Mancino results clearly 
demonstrate. 
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