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Control of Linear Processes with Distributed Lags 
Using Dynamic Programming from First Principles I 

W .  B .  A R T H U R  2 

Communicated by S. E. Dreyfus 

Abstract. A simple dynamic programming argument is presented for 
the quadratic-cost controller synthesis problem for discrete-time linear 
processes with delay. Distributed delays are allowed in both state and 
control. The solution obtained has a discrete-time Riccati difference 
structure closely analogous to the Riccati differential structure 
associated with delay problems in continuous time. Extensions are 
provided for the cases of varying lag-limits, performance criterion 
dependent on past variables, and the time-invariant regulator problem. 
A feedback solution is also obtained for a continuous-time problem with 
distributed delays in the control, by passage to limit from the discrete 
results. 

Key Words. Dynamic programming, linear-quadratic control theory, 
feedback controller synthesis, time-delay problem, retarded controls, 
distributed lags. 

1. Introduction 

In this paper, we consider the quadratic-criterion, controller-synthesis 
problem for linear processes with distributed delays in the state and control 
variables. Problems are discussed in both discrete and continuous time. 

In discrete time, we examine processes of the type 

k( i )  h( i )  

Xi+l "= Aixi + Y~ Bi, oxi-o + Ciu~ + ~ Di.~,ug_¢,, (1) 
i = 1  i = 1  

with initial data given. It has been known for some time that optimal controls 
can be obtained for such problems by lengthening or augmenting the state 
vector to include the delayed variables, thereby transforming the problem 
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into a large, but standard, nondelayed problem. Known results may then be 
applied. While this approach is expedient, it relies on large, sparse matrices 
and offers little insight into the special structure of the time-lag problem and 
its solution. This paper presents a direct technique, one that does not appeal 
to the nonlag theory, based on dynamic programming from first principles 
and a partitioning of the optimal value matrix. Besides offering a direct 
argument, the technique has these advantages: 

(i) Results are expressed in a concise form; the gain matrix 
algorithm avoids iteration with sparse matrices. 

(ii) The discrete-time results emerge in a form whose structure 
corresponds closely to that of the known continuous-time results (see~ for 
example, Refs. 1-4); that is, the feedback law depends on the solution of a 
matrix-Riccati difference system analogous to the matrix-Riccati differen- 
tial system of the continuous-time problems. The connection between 
continuous and discrete problems becomes apparent. 

(iii) Results for various forms of the continuous-time problem can be 
generated by passage to the limit as the time increment becomes small. This 
offers a simple technique for solution of lagged problems in continuous time. 

We exploit this last point by using the limiting argument to provide 
controller synthesis results for the unsolved continuous-time problem with 
distributed delays in the control. This problem has dynamics 

h 

~(t)=A(t)x(t)+C(t)u(t)+ Do(t)u(t-h)+ fo Dl(t,s)u(t-s)ds. (2) 

Under conventional techniques, for example Carathrodory and maximum- 
principle-Fredholm approaches, feedback policies are difficult to obtain 
when the control is retarded. Koivo and Lee (Ref. 5) and Sendaula (Ref. 4) 
did manage to obtain a feedback solution for the fixed lag case (Do ~ 0). But 
the distributed lag problem (DI~a0) has been solved thus far only in 
open-loop form (Refs. 6-7). Control delays pose no extra difficulties to the 
passage-to-limit argument proposed here: Section 5 solves the feedback 
problem under (2) with the addition of distributed and fixed lags in the state. 

The results obtained in this paper (optimal feedback policies under 
state and control distributed lags in both discrete and continuous time) are 
useful in problems that arise in the control and regulation of engineering 
transport processes, macroeconomic planning models, and biological and 
demographic age-dependent regenerative processes (see Ref. 8). The 
discrete-time results also provide an alternative technique for the numerical 
solution of continuous-time problems. The latter may be discretized at the 
outset and the discrete-time results applied. 



JOTA: VOL. 23, NO. 3, NOVEMBER 1977 431 

2. Notation 

We introduce a concise notation to simplify later manipulations. 
(i) X ,  and U,--1 denote  the nk(i)-dimensional and mh(i)- 

dimensional vectors of past states and past controls: 

I Xi-1 ] 
Xi-2 

Xi-1 = " , Ui-1 = 

[_ Xi-k(i) J 
The values (xi, Xi-1, U~-I) will be called the history of the system at t ime i. 

(ii) It  will be convenient to index certain matrices that occur later in 
blocks of side-dimension n or m (to correspond with the dimensions of x and 
u). Block indices run f rom 1 to k(i) or h(i). Thus, K(1,  1) refers to the top 
left-hand block in matrix K, K(1,  2) to the next block to the right, and so on. 
K(1, • ) denotes the top band of K, of width n or m as clear from the context. 

(iii) f is a matrix whose below-diagonal blocks are n x n or m x m 
identity matrices, other blocks zero. The column of blocks e has top block an 
identity matrix, others zero. The dimensions of f and e are assumed clear 
f rom the context. 

(iv) A dot indicates the time derivative, a prime the transpose, and J 
the identity matrix proper.  

3. Discrete-Time Problem 

We start with the case where the dynamic matrices A, Bo, C, D~ are 
t ime-invariant  and k and h are constant. Rewrite  (1) as 

xi+l = Axl + BXi-1 + Cui + DUi-1, (3) 

with initial data Xo, X - l ,  U-1 given, where A is n x n, B is n x nk, C is n x m, 
and D is n x mh. The matrix Bo in (1) now appears  as block B(O) in (3). We 
wish to select controls 

{ui}, i = 0 . . . . .  N -  1, 

to minimize the per formance  criterion 

N - - 1  

J = 2 (x~Oxi + u~Rui)+Xl(rPXN, 
i = 1  
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where O and P are positive semidefinite (p.s.d., or ->0) n x n matrices, and R 
is a positive definite (p.d., or >0) m x m matrix. Without loss of generality, 
O, R, and P are taken to be symmetric. 

Denoting S~ as the minimum attainable cost from time i to the end, we 
make the following assumption. 

Assumption 3.1. Si exists as a function of the history (xi, X~-I, Ui-1) 
given by the positive-semidefinite quadratic form 

kl Si = [x~, g~- l ,  g ~ - l ] . F i  - 1  • 

Lu,-1] 
This assumption will be verified later. 

The principle of optimality may be stated as 

Si(xi, Xi-1, Ui-i) = min[x~Oxi + u~Rui + Si+i(xi+l, Xi, Ui)]. (4) 
ui 

If Assumption 3.1 is true, S;+1 can be written as 

Si+l=[X~+l'X~' U~]F/+I l Xij "vi (5) 

In the argument below, we shall use the principle of optimality and two 
successive linear transformations to link F~ with F~+l; this will give a 
recursive method of computing F~ and the optimal control coefficients. 

First, partition Fi+x so that 

i Fx + l 
S~+~=[x~+~IX~IU~] LK~-I - - ~ - 1  K7~ -[- -K~- ! _ K:A l ~ i , ~  (6) 

where, for the K-matrices, the time subscript i + 1 is understood. The 
submatrices of F~+l are of dimensions corresponding to 

Xi+l] 

and Ko, K2, and K5 are square and symmetric, by Assumption 3.1. By 
modifying Fi+i, we can express the optimality equation in the same form. 
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Let 

where 

g2(1, 1)=K2(1, 1)+ O, 

and otherwise 

g~=K2, 

FKo__LK1 ] K4-] 

gs(1, 1)= Ks(l, 1)+R, 

Rs=Ks. 

(7) 

The optimality equation (4) then becomes 

t / ~ | 
&(x~, X~-I, U~-I) = min[x~+l, X,, U~]F~+I | X~ | .  (8) 

ui  

L giJ 
Use the dynamics equation (3) to make the linear transformation 

= o [ (9) 

L21j' 
where the new partitioned matrix is called G. Equation (8) now becomes 

S i  _ ~  • ¢ t ¢ t t ~ - - 1  mm[xi, Xi-1, ul, Ui-t]G Fi+IG . (10) 

Ui-1 

Multiplying out G'~+IG and using symmetry, the quadratic form to be 
minimized contains the following terms in ug: 

2x;(A'goC + A'g4(1)+ Ki(1)c + g3(1, 1))ul 

+ 2X~-I(B'KoC + B'K4(1) + ['g'~ C + P K 3 ( .  , 1))u~ 

+ u~(C'KoC+ C'K4(1)+K'4(1)C+Rs(1, 1))u, 

+ 2 U~-I(D'KoC + D'K4(1) + [ ' K I C  + f 'gs(  •, 1))u~. 
(11) 

We differentiate the above expression with respect to u~, and equate the 
result to zero to obtain the optimal control u* as 

u* =-TV, I[V~x, + WiXi_ 1 q- Yigi-1], (12) 
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assuming that T~ is invertible, where 

T~ = C'KoC + Ks(1, 1)+R + C'K4(1)+ K~(1)C, 

V~ = C'KoA +K~(1)A + C'K,(1)+K'3(1, 1), 

W~ = C'KoB +K~(1)B + C'K>[+ K'3(1, " )[, 
, + Y, = C'KoD + K'4(1)D + C K4I /£5(1, • )/. 

(13) 

(14) 

(15) 
(16) 

The optimal control is, therefore, a linear function of the history of the 
system. 

The optimal control provides a second linear transformation 

I 

-T71  _T?I y/ -_1 . 

t LU,-d 

(17) 

The new matrix is called Hi. & can now be written as 

Si(X,, gi-1,  Ui-1) = [x~, Xi-1,  U~_~]H~G F~+IGH~ _~ , 
kv,-d 

so that, finally, F~ and F~+a are connected by 

(18) 

F~ = H~G'Pi+IGt-I,.. (19) 

Equation (19) may be used to recursively compute F,: by partitioning it 
similarly to F~+~ and multiplying out HIG'~+~ GH~. Matching submatrices, 
and recognizing that L where it occurs, merely shifts the block index by one, 
yields the matrix Riccati difference system, for i = 0 . . . . .  N -  1, 

Ko, = A 'Ko,+IA + A 'Kl,+l(1) 

+K~,+I(1)A + K2,+1(1, 1)+ O -  V~T71 V~, 

KI~(O) = A'Ko,+IB(O)+ A'KI,+I(O + 1)+ K'~,+I(1)B(O) 

+K2,+,(1, O+ l ) -  V~771W~(O), 0 = 1  . . . . .  k, 

K2,(O, O) = B'(O)Ko,+~B(& )+ B'(O)KI,+~(¢ + 1)+g~,+,(O + 1)B(¢) 

+K2,+~(O + 1, & + 1 ) -  W~(O)T[ ~ W~(¢), 

(20-1) 

(20-2) 

O,~b-- 1 . . . . .  k, 

(20-3) 
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K3,(0, ¢ )  = B'(O)Ko,+,D(¢)+B'(O)K4,+,(¢ + 1)+ Ki,+l(0 + 1)D(¢) 

+K3,+I(O+I,¢+I)-WI(O)T[*Y~(¢), 0 = 1  . . . . .  k, 

¢ = 1 , . . . , h ,  

(20-4) 

u*=-TT* V~xi+ Y, Wi(O)x~-o+ Y~(O)u,-e, (21) 
0=1  0=1  

where 

T~ = C'Ko,+,C+Ks,+,(1, 1 ) + R  +C'Ka,+,(1)+K'4,+l(1)C, (22-1) 

V , -  ' + ' ' + ' - CKo,+IA K4,+~(1)A + CKI,+I(1) K3,+1(1, 1), (22-2) 

W~(O) --- C'Ko,+,B(O)+ KI,+,(1)B(O)+ C'K,,+I(O + 1) 

K3,+~(1, 0 + 1), 0 = 1, k, (22-3) 

Y~(O) = C'Ko,+~D(O)+K'4,+I(1)D(O)+C'K,,,+,(O + 1) 

+Ks~+l(1, 0 +  1), 0 = 1 . . . . .  h. (22-4) 

These equations may be computed recursively backward from stage N. At  
stage i, all K~+~ are known, and T~, V~, W~, Y~ are computed from (22). Then, 
from (20), Ki may be obtained. 

If desired, all K~, T~, V¢, W~, and Y/may be computed beforehand, so 
that only the optimal control rule (21) need be stored in the system. The 
history is then fed back at each stage i to determine the optimal control u~*. 

In practice, many of the terms in (20) and (22) would be zero. In 
particular, when there are no control lags, the matrices //'3, K4, /£5 are 
identically zero; when there are no state lags, K~, K2, K3 are identically 
zero. 

K4,(O ) = A'Ko,+~D(O)+ A'K4~÷~(O + 1)+ K'~+~(1)D(O) 

+K3,+I(1,0+I)-VITT1yi(o), 0 = 1  . . . . .  h, (20-5) 

Ksi(O, ¢)= D'(O)Ko,+ID(¢)+D'(O)K4~.~(¢ + 1) + K~,+~(0 + 1)D(¢) 

+Ks,+~(O+l,¢+l)-Y~(O)T71Y~(¢), 0 , ¢ = 1  . . . . .  h. 
(20-6) 

In this case, where k and h are constant, K(k + 1), K(h + 1) are not defined 
and are taken to be zero. End conditions apply at time N, 

K0,, =PN; 
all other matrices KN are zero. 

The optimal controls are given by 
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4. Extensions and Remarks for the Discrete-Time Problem 

Remark 4.1. When the problem is time-varying, the results remain 
unchanged, except that A, B, C, D, Q, R, and G must be subscripted by time 
i as they appear in the above derivation and in (20) and (22). 

Remark 4.2. Where the duration of the lags varies with time, the 
derivation and results carry over if k and h are taken to be the maximum 
values of 

k(i),h(i), i = 0  . . . . .  N - 1 .  

If lags vary, but never lengthen by more than one unit at a time, i.e., if 

k(i+l)<-k(i)+l,  h(i+l)<-h(i)+l,  

all i, the limits in (20), (21), (22) may be replaced by k(i), h(i). In (20) and 
(22), if Ki+I(O + 1) is not defined, it is taken as zero. 

Remark 4.3. In the case of a lagged quadratic criterion, that is, 
N - - 1  

J = ~ (X~QX~ + U~RU~)+X~PXN, (23) 
i = 1  

where Q and P are now of dimension nk, R of dimension mh, all p.s.d., with 
R(1, 1)>0,  only K2, K5 need be modified in the derivation. The systems 
(20) and (22) are modified accordingly. 

Remark 4.4. In many regulator applications, the control interval N is 
infinite, the dynamics matrices k and h are time-invariant, and P is zero. 
Providing the system has the controllability property that the history can be 
returned to the zero vector in a finite number of stages, the results again 
apply. In this case, an argument similar to that of Ref. 9 shows that the 

A A 

matrices Ko,, . . . ,  Ks, become time-invariant, K0 . . . . .  Ks. These matrices 
can be solved for by starting with arbitrary K0,, and computing (20) and (22) 
recursively backward indefinitely. As i approaches -oo, Ko,,... ,Ks, 
approach/~0, • • •,/£s. Other methods for finding limiting matrices are given 
in Ref. 9. 

Remark 4.5. We now prove Assumption 3.1 and the invertibility of 
T~, given the conditions that Q, P are p.s.d, and that R is p.d. 

At the endpoint, SN exists as a quadratic form in (xN, XN-1, UN-1), with 

KoN = P, 

other submatrices zero, and FN p.s.d. Assume that, at stage i + 1, Si+l exists 
as a quadratic form in (xi+l, Xi, Ui) with Fi+l p.s.d. Then, from the pro- 
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perties of O and R, Fi+l is also p.s.d. Furthermore, G'Fi+IG and its 
submatrices on the diagonal are p.s.d.; in particular, the submatrix 

(C'KoC + Ks(1, 1)+ C'K4(1)+ K'4(1)C) 

is p.s.d. Adding R > 0 to this submatrix yields Ti, so that Ti is p.d. and, 
therefore, invertible. Since G'~+IG is p.s.d., and Ti is invertible, a unique 
minimum of the right-hand side of (4) exists; furthermore, Hi is well 
defined, and the operation of transforming the right-hand side of (4) into a 
quadratic form in (xi, Xi-~, Ui-1), with 

F~ = H~G'Pi+ I GHi >- O, 

is possible. Assumption 3.1 follows, as does the invertibility of T~ for all i. 
A similar argument shows that the above conditions could be replaced 

by Q, P being p.d. and R being p.s.d., providing C is of full rank. 

5. Continuous-Time Distributed-Lag Problem 

We now use the discrete-time results to solve a continuous-time 
problem with distributed lags in the control. For symmetry and complete- 
ness of the problem, we add distributed tags in the state and fixed lags in both 
state and control. 

The process is specified by 

P k 

2(t) = Ax(t)+ Box( t -  k )+ Ja Bl(s)x(t - s) ds + Cu(t)+ Dou(t h) 

+ Dl(s)u( t -s)  ds, (24) 

with given continuous initial functions 

x ( t )=  ~(t) on [ to-  k, to], 

u( t )=  n(t)  on [to-h, to). 

It is assumed that the admissible control functions u(t) belong to Lz[to, h], 
the space of square-integrable functions, and that x(t) is an n-vector, u(t) 
an m-vector as before. B~(s), Dl(s) are n x n, n × m matrices, continuous 
in s, and are nonzero almost everywhere: A and B0 are n x n; C and Do 
are n x m. These matrices are later allowed to vary with time. We wish to 
choose an admissible u (t) to minimize 

£,1 
J =  [x'(t)Ox(t)+ u'(t)Ru(t)] clt + x'(tl)Px(tl), (25) 

o 

where, as before, O, P are p.s.d, and R is p.d. 
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To obtain optimal feedback policies for this continuous-time problem, 
we approximate it by the corresponding discrete-time problem, invoke the 
discrete solution, and pass to the limit as the stepsize becomes zero. The 
process is sketched briefly as follows. 

Approximate the problem (24)-(25) by the corresponding discrete 
problem with stepsize A, where A divides h, k and h - to exactly. The time t is 
taken in discrete integral steps of k. The discrete-time version becomes: 
choose 

to minimize 

{ui}, t = to, to + A, to + 2A . . . .  , h - A ,  

tl.--A 
J =  Y~ (x~Ox,+u',Ru,)+x',lPx, t, (26) 

t=to  

subject to 

x,+a = (I + ~ i  + A2B1 (O))xt + AB2Xt-a + (A C + Az/~I (0))U/ "~ ADz Ut-a, 

(27) 

with initial data Xo, X-a, U-a given. The notation Xt-a and Ut-a denotes the 
vectors 

~ x t - a q  ~u~-a 

lX,-aal ]u,-2a 

LX,-~ J LU,-. 

B2 is the n x (nklA) matrix 

(aBl(a), aBl(2a) . . . .  , aBl(k - a), aBe(k) + B0), 
and D2 is the n × (mh/A) matrix 

(AD~ (A), aD~(2a) . . . . .  aD1 (h - A), AD~(h) + Do). 

As before, matrices will be block-indexed by 0 and ~b in discrete integral 
steps of A. Normalize the problem by rewriting the K-matrices as 

Eo(t) = Ko,, E,(t,  O) = (1/A)KI,(O), 

E=(t, O, dp) = (1/Ae)K2,(O, q~), Ea(t, O, &) = (I/A2)K3,(O, &), 

E4(t, O) = (1/A)K,,(8),  Es(t, O, &) = (1/AU)Ks,(O, &). 

Note that E0, E2, and E5 are symmetric. 
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Using the discrete-time results from Section 3, the optimal controls for 
this problem may be written as 

u* = -T[, I[ V, xt + W,X,_a + g,g,-a], (28) 
where 

Tt= R A  + O(A) z, (29-1) 

V, = zXC'Eo(t + A )+ AE'4(t + A, A)+ O(A2), (29-2) 

Wt(O) = AaC'EI(t + 4, 0 + A)+ A2E'3(t + A, A, 0 + 4)+ O(A3), 

0 = 4 . . . . .  k - A, (29-3) 

W,(k) = 42C'Eo(t + 4)Bo + 42E~(t + 4, A)Bo + O(43), (29-4) 

and so on. Now, using the system (20), the submatrix relations for this 
problem may be written as 

Eo(t) = Eo(t + 4) + 4A 'Eo( t  + 4) + 4Eo(t  + A)A + 4E1 (t + A, 4) 

+ 4E'~(t + 4, A) + Q 4 -  4Eo(t  + 4)CR-1C'Eo(t + 4) 

- AE4(t + A, 4)R-IE'4(t  + 4, 4)  

- AEo(t + 4)CR-IE'4(t + A, A) 

- AE4(t + A, 4)R-1C'Eo(t + 4) + 0 (A2), (30-1) 

AEI(t, 0) = AEI(t + A, O + A)+ AZEo(t + A)BI(O)+ A2A'E,(t + 4, 0 + A) 

+ AZEz(t + 4, A 0 + A) -  42Eo(t + 4)CR -1C'EI(t + A, 0 + 4) 

- A2Eo(t + A)CR-1E'3(t + A, A, 0 + 4) 

-- AzE4(t + 4, A)R-1C'EI(t  + A, 0 + 4) 

- A2E4(t + 4, 4 )R -1E'3(t + 4, 4, 0 + h) + O(43), 

0 = A . . . .  , k - 4, (30-2) 

4El(t, k) = 4E0(t + 4)Bo + 0(42) ,  (30-3) 

and so on. Finally, expand the E-matrices, with arguments t + 4 ,  0 + 4 ,  
& + A, by Taylor series to first order, and let A approach zero. In the limit, t, 
0, and ¢ become continuous, and the E-matrices become functions defined 
over t, 0, and ¢, where t e [to, h] and 0, ¢ e [0, h] or [0, k]. The system (30) 
becomes the following set of generalized Riccati partial differential equa- 
tions, for t e  [to, h]: 

0 = OEo/Ot + A'Eo(t) + Eo(t)A + El(t, O) + El(t, O) + O 

- (Eo(t)C + E,(t, O))R-l(C'Eo(t) + E'4(t, 0)), (31-1) 
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0 = OEffOt + OEffO0 + A'E~(t, O) + Eo(t)Ba(O) + Ez(t, O, O) 

-(Eo(t)C+E4(t, O))R-~(C'Ea(t, O)+E;(t, O, 0)), 0el0 ,  k), 

0 = OE2/Ot +OE2/O0 +OEz/Oq5 +B~(O)EI(t, (~)+E'x(t, O)B~(¢) 

-(E~(t, O)C + E3(t, O, O))R-I(c'EI(t, & )+ E~(t, O, ¢)), 

(31-2) 

o,¢e[o,  k), 

(31-3) 

0 = aE3/Ot + OE3/OO +OE3/O& +B'~(O)E4(t, &) +E~(t, O)D~(¢) 

-(E~(t, O)C+E3(t, O, O))R-a(C'E4(t, & )+Es(t, O, & )), 

O~[O,k),¢e[O,h),  

0 = OE4/Ot + c)E4/O0 + Eo(t)D~(O) + A 'E4(t, O) + E3(t, O, O) 

-(Eo(t)C+E4(t, O))R-I(C'L~4(t, 0)+Es( t ,  0, 0)), 0 E [0, h), 

0 = OEs/Ot + OEs/OO + OEs/O¢ + D i(O)E4(t, qb) + E'4(t, O)D~(¢) 

-(E'4(t, O)C + Es(t, O, O))R-x(C'E4(t, ¢ )+ Es(t, O, ¢)), 

(31-4) 

(31-5) 

0,¢e[0, h), 

(31-6) 
with boundary conditions 

El(t, k) = Eo(t)Bo, (32-1) 

E2(t, O, k) = E'a(t, O)Bo, 0 e [0, k], (32-2) 

E3(t, k, ¢ )= B~E4(t, ¢), & e [0, h], (32-3) 

E3(t, O, h) = E~(t, O)Do, 0 e [0, k], (32-4) 

E4(/, h)  = Eo(t)Do, (32-5) 

Es(t, O, h) = E~(t, O)Do, 0 ~ [0, h], (32-6) 

with E a , . . . ,  Es zero at t = h, 

Eo(h) = P, 

and Eo, E2, E5 symmetric. 
Providing the above conditions for the E-matrices are satisfied almost 

everywhere, the optimal control u*(t) is given by the functional 

u* (t) = -R-I{[C'Eo(t) + E](t, O)]x (t) 
k 

+Jo [C'Ex(t, O)+ E~(t, O, O)]x(t-O) dO 

h 

+ [ [C'E4(t, O)+Es(t, O, O)]u(t- O) dO}. (33) 
~o 
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Also, in the limit, St becomes the optimal value functional given by 

k t ~  

s(t) = x'(t)Eo(t)x(t)+ 2x'(t) Jo El(t, O)x(t-  o) dO 

k k 

+ Io 
k h 

+2 fo fo x'(t-O)E3(t, O,~)u(t-d))dggdO 
t *  h 

+2x'(t) Jo E4(/, O ) u ( t -  O) dO 
h h 

+fo I~ u'(t-O)Es(t,O,&)u(t-qS)d4)dO. (34) 

Note that, where no state lags are present, the matrices E~, E2, E3 disappear; 
and, where no control lags are present, E3, E4, Es disappear. In versions of 
the problem with k, h constant, for the case of state lags, the results 
specialize to those of Refs. 1-3; and, for a fixed control lag, the results 
specialize to those of Ref. 4. 

6. Remarks for the Continuous-Time Case 

Remark 6.1. The results are once again easily extended to the time- 
varying case where A, Bo, B~, C, Do, D1, O, and R are continuous functions 
of time, by indexing these matrices with respect to the time t, as they appear 
in the above system. 

Remark 6.2. For infinite-horizon, time-invariant problems, assuming 
that the system history is controllable to the zero function, the E-matrices 
reach a limit independent of the time t, as in the discrete case. The time 
subscript can then be dropped in (31) along with dE/dt terms. 

Remark 6.3. With finite horizon, a special caveat is in order. 
Although, when t is in the end region (tl- k, h], Eq. (31-2)for the matrix 
El(t, 0) holds in the two separate regions 

{t, olte ( t l - k ,  tx], 0 e ( k - ( h - t ) ,  k]} 
and 

{t, Olt ~ ( t l -  k,/1], 0 E [0, ]¢-  ( t l -  t))}, 



442 JOTA: VOL. 23, NO. 3, NOVEMBER 1977 

it is not defined at their boundary, where a discontinuity in El(t, O) occurs. 
Similar remarks extend to the other E-matrices. In the special case where B1 
and O1 are zero, 

( k - ( t l - t ) ,  k), ( h - ( t l - t ) ,  h) 

may replace 

[0, k), [0, h) 

in (31) when t is in the end regions 

( h  - k, tl] or  ( h  - h, tl].  

Terms in E(t, 0) may then be dropped, since they are undefined. Outside the 
end regions, (31) applies as written. 

7.  C o n c l u s i o n s  

A simple dynamic programming argument was presented for the 
discrete-time linear-quadratic problem with distributed delays in both state 
and control. The technique relies on a partitioning of the optimal value 
matrix to correspond with the state-control lag structure of the dynamics. 
For problems with dynamics structured differently, other partitionings 
might be more effective. 

The Riccati system for the discrete-time problem is similar to that for 
continuous-time problems, but, as in the nonlag case, contains more terms. 
The discrete-time results were used to solve, by a limiting process, a 
continuous-time problem with the novelty of distributed lags in the control. 
The discrete delay process is general enough to approximate many forms of 
continuous-time process (e.g., integral-equation dynamics), so that feed- 
back solutions for other continuous-time processes could be obtained in the 
same way. 
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