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A Conjugate Direction Algorithm 
Without Line Searches 1'2 
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Communicated by H. Y. Huang 

Abstract. We develop an algorithm which generates conjugate search 
directions and maintains finite termination, when applied to quadratic 
functions, without requiring that line searches be exact. The technique 
requires O (n) storage, where n is the dimension of the problem. Results 
when the algorithm is applied to a number of standard test problems are 
included. 
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1. Introduction 

When selecting an algorithm for minimizing an unconstrained function 
on a computer,  a factor that often plays a decisive role is the demand that the 
algorithm places on computer  resources. Conjugate-gradient algorithms, 
first developed by Hestenes and Stiefel (Ref. 1), and then applied to the 
minimization of functions by Fletcher and Reeves (Ref. 2), have proven to 
be popular, since they are economical in their usage of computer  storage and 
in their operation count, and since their convergence rate has been found to 
be satisfactory. 

Conjugate-gradient methods minimize a function F(x) of n variables, 
starting from initial point xl, by searching in sequence along direc- 
tions dl, d2 . . . .  , dj . . . .  and obtaining successive approximations 
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X1, X2 . . . . .  X b . . .  to the minimum. They are described by the relations 

dl = - g l  

dr = -gr  + flflr-1, (1) 

x i+l=x~+Af lr ,  A i ¢ O ,  

where gs is the gradient of F ( x  ) at x i, 3r is a scalar most commonly given by 
T T 3r = gr gr/gj- lgr-1,  (2) 

and Ar # 0 is a scalar chosen so that xr+~ minimizes F ( x )  along dr, i.e., 

dfVF%÷ ) = o. (3) 

Among the properties of such methods when applied to a quadratic 
function 

O(x)  = a + b  rx  + ½ x r A x ,  

where A is an n x n positive-definite, symmetric matrix are the following: 
(a) Generation of conjugate directions, i.e., directions satisfying the 

relation 

d T A 4  = O, V i ¢  L 

(b) Orthogonality of gradients at different iterates. 
(c) Finite termination, in at most n steps. 

However, in order for these properties to hold, it is necessary that relation 
(3) be satisfied exactly at each step, i.e., that Ai be chosen so that the line 
search is exact. 

Many variants of the basic method have been proposed. Fletcher (Ref. 
3) suggests 

T T 
[3 r = y i_Igr/ y j_ldr_l, 

where 

(4) 

(5) yr-l  =- g i - g i - 1 .  

The suggestion has the merit that 

dTyr-1 = 0, 

even for nonquadratic functions and inexact line searches. This relation 
implies that dr and dr-1 are conjugate for quadratic functions. 

The Polyak-Polak-Ribiere suggestion (Ref. 4) is 
T T 

[3~ = Yr-lgr/gr-lgr-1.  (6) 

It follows from properties (a) and (b) above that, for quadratic functions and 
exact line searches, the alternative choices for 3r are equivalent; but, for 
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nonquadratic functions or inexact line searches, each choice leads to a 
distinct algorithm. 

In this paper, a method is proposed that resembles the conjugate- 
gradient method, but has the property that it maintains mutual conjugacy of 
all search directions over a quadratic, even when relation (4) is not satisfied, 
i.e., even when the line searches are not exact. 

The recurrence relations for developing successive search directions are 
a particular expression of the three-term recurrence for a self-adjoint 
operator in an inner product space and are given by 

d l =  -g~, 
d] T T T T 

= --Yi + (Y i - lY i /Y i - ld~- l )d i -1  + (Yi YJ/Yi dj)d~, (7) 

where 

fo  X 0. 

This recurrence relation is derived in Section 2. Next, we prove two 
simple iemmas which indicate why it may be worthwhile to maintain 
conjugacy of the search directions; these lemmas form the basis of a 
technique for retaining quadratic termination without requiring the storage 
of n vectors. The algorithm and some details of implementation are outlined 
in the next section; finally, Section 4 sets out the results when the method is 
applied to several standard test problems. 

2. Basic Relation 

In deriving the basic relation, three conditions are imposed. 
(a) For /" = 1, 2 . . . . .  n -  1, we require that each computed search 

direction, typically dj+l, lie in the subspace spanned by the gradients, say 
{gl, g2 . . . . .  gi+1}, at all iterates, say {xl, x2 . . . . .  xi+~}, which have been 
generated so far. 

(b) We require that the search directions be conjugate, i.e., 

dWAd~ = O, Vi  # j .  

(c) We assume that we are working with a quadratic function 

O ( x ) = a  + b  rx + ½ x r a x ,  

where A is a positive-definite symmetric matrix. 
Defining 

Yi = gj+ l - gi, 
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we see that condition (a) above implies that 

J 
di+l = -Yi  + ~ rijdi, rii E R. (8) 

i = l  

From conjugacy, we have 

y~di+l=O, l <-k <-j. 

Thus, from (8), 

rkj=y[ys/y[dk,  l <-k<-j. (9) 

Also, since Yk is in the space spanned by dl, . . . ,  dk+l, we have 

y[y~=O, l < - k < - j - 2 ,  

again using the conjugacy of search d~ections. Thus, 
+ T T d~+l = -Y i  (YJ-lYi/Yi-ldJ-1)di-1 + (Y~YJ/Yrdj)di. (10) 

Analogously to the conjuga*,e-gradient method, a number of alternative 
expansions for the relation (10) may be derived and are equivalent for 
quadratic functions, e.g., 

+(yi_ly j /y i_ idi_l )di_l+(l  +yTgi+l/yfdj)di.  (11) d/+l = -Yi T T 

In (10) and (11), we use the convention 

do=-O, d z = - g x ,  and 1<-]<-n-1 .  

If some gj+~ becomes linearly dependent upon gl . . . . .  gj., with 
g l , . . . ,  gi being linearly independent, it is not difficult to show that the 
minimum point Xmin of a quadratic must lie in the affine space V defined by 
x~ and the ] mutually conjugate directions dx . . . . .  dr, i.e., 

V =  z : z tkdk , tk ~ ~. (12) 
= 

However, we do not incorporate this feature directly into our algorithm, 
since, for arbitrary functions, the recognition of linear dependence of gra- 
dients would require O(n 2) storage. 

With the conjugate-gradient algorithm, we observe that, when line 
searches are not exact, the directions generated for a quadratic are no longer 
conjugate. However, directions generated by (10)or (11)remain conjugate 
even with inexact line searches, i.e., when the relation 

0 

is not satisfied. We utilize this property and the results of the next two 
lemmas to develop a technique for retaining finite quadratic termination 
without having to store n search directions. 
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Lemma 2.1. Suppose that d~ . . . . .  dn are a given set of n linearly 
independent directions. Let x~,x2 . . . . .  X,+l be the sequence of points 
generated by searching along each of these directions in turn over the 
quadratic O(x), starting from a given point Xl, i.e., 

Xi+l = Xi + A i d i .  

Also, let 2~, 2 2 , . . . ,  2~+1 be the sequence of points generated by exact 
searches along d~ . . . . .  dn, starting from xl with 

i.e., 

Finally, suppose that 

where Ai is chosen so that 

X1 : X l ,  

X i + l = 2 i { - ~ i d l .  

X i + l = X i + ~ i d i ,  

tP(xi +~tidi) << - O(xi + p.di), 

for all / , .  Define e /and  ei by 

ei = .~1 -- Xi, Ei = ~[i --  )ti" 

Then, 

Proof. 

Similarly, 

Thus, 

Since 

therefore 

and 

e~+~ = e~- (d~4eJdY, A&)d ,  + e~di. (13) 

Since the gradient at 2~+~ is orthogonal to d~, this implies that 

)t~ = - d T ( A 2 i  + b )/ dWAd~. 

Ai = -dT(Ax~ + b )/ dMd~.  

~+1 - 2,+1 = ei - ( dMeJdr ,  Ad~)di. 

Xi+l -- Xi+l ~ Eidi, 

e i+l  ~ X i + l  - Xi+l  = ei - (dTAei/  drAdi )d i  + eidi  

e l=0 .  

(14) 

Note, finally, that ei is in the space spanned by dl, d2 . . . . .  di-1. [] 
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Corollary 2.1. If the directions dl . . . . .  dn are mutually conjugate, 
then 

i 
ei+l = E e,di. (15) 

i=1 

ProoL This follows directly from (14) and mutual conjugacy. Observe 
also that Ile.+lll2 is then also the distance of x,+x from the minimum of O(x) .  

[] 

The following lemma is almost obvious. 

Lemma 2.2. For a quadratic function O(x), given any iterate xi and a 
search direction di, let 

for some step A~ # 0 and 

where ~,,. is chosen so that 

x~+l = xi  + Aidi, 

Xi+l=Xi+~idi, 

d ~ O ( X , + l ) = O .  

•i ~- ~i - -Ai  T T = hi(-gi+ldi /y i  di). 

Then, 

(16) 

Proof. 

Since 

then 

Thus, 

For a quadratic, 

yi ~ gi+l - gi = Aimdi. 

A~ = - g r  d i /  d f A d  ~ = --AigT di /  y r  di. 

Ei = ~i - Ai r r = - A i ( g i + l d i / y i  di). [] 

When applied to O(x) ,  successive directions dl . . . . .  dn generated by (7) 
are conjugate, i.e., 

D r A D  = a ~ diag(al . . . . .  an), 

where 

D = (d l  . . . . .  dn),  a,  = dWAdi  = dWyJA, .  
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In order to retain quadratic terminations, the straightforward approach 
would be to take an additional Newton step to the minimum Xmin given by 

Xmin = Xn+l -- A --lgn+l = Xn+l -- ( D o l - l D  r)gn+ 1. (17) 

This indeed is the approach taken by the projection method of Hestenes 
(Ref. 5); see also Powell (Ref. 6); and it requires retention of n directions. 

Using the results of Lemmas 2.1 and 2.2, however, we see that a 
correction term 

J 
~idi 

may be accumulated in a single n-vector, with E~ defined by (16). Thus, a final 
correction term 

ffidi 
i=1 

may be applied to xn+l. Hence, finite quadratic termination is retained, since 
2,+1 is the minimum point of O(x), a consequence of the fact that it is 
obtained by exact line searches along the n conjugate directions dl. This 
device is included in our algorithm and has proven satisfactory in practice 
when the algorithm is applied to more general functions. Note that there is 
no justification for applying a correction of the form (13) for the conjugate- 
gradient method when line searches are inexact, since the directions gener- 
ated are not then conjugate and 2n+1 obtained by exact line searches 
along nonconjugate directions is not the minimum point of ~(x). Of course, 
for a quadratic, the minimum point and the gradient at this point when 
searching along any direction dl can be deduced directly from a knowledge 
of the gradients at any two distinct points along di, and this point may be 
taken as the new current iterate along d~; but it is difficult to imagine an 
algorithm applicable to arbitrary functions which uses such an estimated 
gradient at an iterate to determine subsequent search directions, rather than 
a computed gradient and function value. 

3. Implementation 

The basic steps of our algorithm may be summarized as follows. 

Step 1. The current iterate is taken to be the initial point supplied. 

Step 2. Set iteration count J to 1. Initialize correction vector C to 
zero. 
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Step 3. Set the current search direction to the negative gradient at the 
current iterate. 

Step 4. 
Step 11. 

Step 5. 

Step 6. 
The condition 

If the directional derivative at the current iterate is ->0, go to 

Determine the initial stepsize. 

Develop the next iterate along the current search direction dj. 

yTd~>O 

must be satisfied, but the line search need not be exact. 

Step 7. Test for convergence. 

Step 8. Develop the correction term ej given by (16), and update the 
correction vector by 

C~-C+Eidj. 

J<--J+l. I fJ>n,  then go to Step 11. 

Update the search direction using relations (10) or (11). Go 

Step 9. 

Step 10. 
to Step 4. 

Step 11. Develop the next iterate along search direction given by C, 
with the initial step along this direction being unity. If the convergence test 
fails, then go to Step 2. 

Remark 3.1. The direction dj developed when the algorithm is 
applied to a quadratic function is the projected gradient conjugate to 
dl . . . . .  d~.-1; thus it is orthogonal to Yl . . . . .  Yi-1. If gi is linearly dependent 
upon previous gradients (and, thus, upon Yl . . . . .  yj-1), then dj vanishes. 
This is detected at Step 4, in which case the correction accumulated so far is 
applied at Step 11 giving quadratic termination. 

Our primary aim in the computational study was to investigate the 
characteristics of our method. Therefore, in carrying out a comparison with 
the conjugate-gradient method, identical techniques for initial step length 
selection, line search, and convergence criteria are employed. The 
implementations of the two algorithms differ essentially in the way search 
directions are developed and in the use of the correction vector. The 
conjugate-gradient method used was that of Fletcher (Ref. 3) in a somewhat 
reformulated version made available to the author by K. E. Hillstrom. 

Thus, in Step 6, we have used the cubic interpolation and extrapolation 
technique of Fletcher-Reeves as employed in Fletcher (Ref. 3). The method 
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seeks a new iterate xj+l along d r such that 

tgT+ldj]/IgT di] <- P < 1, 

where P is some fixed parameter. For the conjugate-gradient method, the 
value 

P = 0 . 1  

has been found in practice to be best, whereas, for variable-metric methods 
using this search strategy, the common setting is 

P =  0.9. 

The tables in the next section show the results of running our algorithm and 
the Fletcher-Reeves conjugate-gradient algorithm for various settings of P. 

In Step 5, again in our algorithm we have used Fletcher's choice of the 
initial steplength given by 

a = 2 ( F ( x i ) - F ( x i _ l ) ) / g f d i .  

Finally, the convergence criterion used by Fletcher accepts an iterate 
such that 

IIx +l-xjll  Ace, 

where ACC is user supplied. We have found that, on rare occasions, this 
results in false convergence to a nonminimum point. Therefore, we have 
included in both the conjugate-gradient method and our method an addi- 
tional check on the gradient norm; prior to exit, if this test fails, the 
algorithms are restarted. 

4. Results 

The results for a number of text functions are tabulated in Tables 1-8. 
Our algorithm is denoted by EQR (standing for explicit QR method) and the 
conjugate-gradient method is denoted CG. For each value of P (the line 
search accuracy parameter discussed in the previous section), we tabulate 
for both algorithms the final function values obtained (Function value), the 
total number of iterations (Iterations), and the total number of calls to the 
function subroutine (Function calls), each consisting of one function and one 
gradient evaluation. In addition, following a suggestion of Davidon (Ref. 7), 
for each P we broke down Iterations and Function calls into three subsets 
corresponding to the number of iterations and function calls needed to 
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Table 1. Quadratic function, N = 9. 

Function value Iterations Function cells 

P EQR CG EQR CG EQR CG 

0.1 0.649D-29 0.924D-24 10 10 26 27 
0.2 0.649D-29 0.778D-32 10 10 26 26 
0.3 0.649D-29 0.778D-32 10 10 26 26 
0.4 0.138D-27 0.752D-36 11 20 25 44 
0.5 0.870D-25 0.394D-12 11 26 24 52 
0.6 0.870D-25 0.293D-13 11 27 24 54 
0.7 0.562D-20 0.155D-12 11 35 23 65 
0.8 0.219D-19 0.731D-12 11 40 22 69 
0.9 0.727D-19 0.200D-11 11 64 21 93 
0.95 0.545D-17 0.12ID-08 11 64 20 89 

reduce  the func t ion  va lue  be low  3.0, to r educe  it f rom 3.0 to 0.05, and finally 

to r educe  it f rom 0.05 to the final value.  These  are not  given here ,  since they 

wou ld  expand  the  tables  to an unaccep tab le  length.  Also ,  xo is the s tar t ing 

vector .  

The  funct ions  tes ted  were  as follows. 

4.1. Q u a d r a t i c  funct ion:  

Xo = (1, 2, 3 . . . . .  9). 

9 
F ( x )  = ~ kx2k, 

k=l 

Table 2. Powell's quartic function, N = 4. 

Function value Iterations Function calls 

P EQR CG EQR CG EQR CG 

0.1 0.137D-06 0.999D-07 26 70 67 174 
0.2 0.502D-07 0.922D-07 76 74 180 161 
0.3 0.290D-07 0.382D-07 47 79 105 178 
0.4 0.207D-06 0.163D-06 32 93 68 184 
0.5 0.144D-06 0.131D-06 69 119 145 225 
0.6 0.728D-07 0.107D-06 65 129 118 227 
0.7 0.993D-08 0.633D-06 86 179 158 285 
0.8 0.731D-07 0.108D-05 81 272 141 414 
0.9 0.746D-07 0.122D-04 42 250 67 354 
0.95 0.109D-07 0.461D-05 45 487 70 640 
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Table 3. Box's exponential function, N = 3. 

Function value Iterations Function calls 

P EQR CG EQR CG EQR CG 

0.1 0.149D-13 0.720D-15 35 28 95 79 
0.2 0. t24D-19 0.981D-11 32 33 76 87 
0.3 0.436D-15 0.164D-17 32 69 75 163 
0.4 0.I34D-20 0.112D-12 21 69 58 t43 
0.5 0.428D-08 0.173D-08 32 25 67 61 
0.6 0,147D-10 0.586D-08 49 69 105 138 
0.7 0.236D-17 0.163D-09 42 209 86 381 
0.8 0.112D-14 0.201D-08 37 200 71 351 
0.9 0.868D-12 0.509D-06 50 640 86 >1000 
0.95 0.771D-15 0.239D-05 50 667 88 >1000 

4.2 .  Powell 's quartic function: 

f(x) = ( x l  + 1 0 x 2 )  2 -}- 5 ( x  3 - x 4 )  2 -}- ( x  2 - 2X3) 4 + 1 0 ( X t  - -  X4)4, 

x0 = (3, - 1 ,  0, 1). 

4,3 .  Box ' s  exponential function: 

10 
F(x) = Y. {exp(-xd/10)- exp(-x2 j /10)-  x3[exp ( - j /10)-  exp(-/)]}2, 

i= l  

Xo = (0, 20, 1). 

Table  4. Helical  funct ion,  N = 3. 

Function value Iterations Function calls 

P EQR CG EQR CG EQR CG 

0.1 0.455D-19 0.184D-12 30 36 85 83 
0.2 0,487D-18 0.145D-15 31 36 87 84 
0.3 0.989D-14 0.319D-13 29 40 67 83 
0.4 0.185D-15 0.636D-16 35 44 80 94 
0.5 0.495D-12 0.663D-09 35 48 81 92 
0.6 0.159D-10 0.215D-12 32 53 67 97 
0.7 0.114D-07 0.598D-09 33 126 64 204 
0.8 0.119D-12 0.105D-07 43 126 82 205 
0.9 0.738D-10 0.821D-07 28 311 58 432 
0.95 0.798D-12 0.182D-07 32 377 54 509 
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Tab le  5. W o o d ' s  quar t ic  funct ion,  N =  4. 

P 

Function value Iterations Function calls 

EQR CG EQR CG EQR CG 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
0.95 

0.799D-10 0.510D-09 186 132 
0.386D-12 0.119D-10 186 156 
0.635D-09 0.279D-16 173 180 
0.102D-10 0. t73D-14 169 186 
0.788D-09 0.126D-09 186 191 
0.900D-10 0.346D-09 188 299 
0.958D-13 0.396D-07 179 341 
0.139D-13 0.288D-04 180 635 
0.620D-08 0.771D-01 185 664 
0.444D-17 0.707D-01 191 739 

511 
467 
418 
401 
405 
369 
316 
319 
299 
289 

317 
363 
400 
384 
378 
558 
590 

>1000 
>1000 
>1000 

4.4. Fletcher 's  helical function: 

F ( x ) =  100[(x3-  lO0)2+(R(Xl, x 2 ) -  1)2] + x  2, 

I tan-l(x2/xl) /2~ ", Xl > O, 

0 = 40.75, xl  = 0, 
! 

[tan-l(x2/xl) /27r+0.5,  x l < 0 ,  

Ix2 + X 2~1/2 R(xl ,  x2)=t  I 2) , 

x0 = ( -1 ,  0, 0). 

Table  6. Powel l ' s  2nd  funct ion,  N = 3. 

P 

Function value Iterations Function calls 

EQR CG EQR CG EQR CG 

0.1 
0.2 
0,3 
0,4 
0.5 
0.6 
0.7 
0.8 
0.9 
0.95 

0.599D-10 0.258D-12 7 9 
0.352D-11 0,101D-11 10 7 
0,352D-1t 0,106D-11 10 7 
0.0 0.436D-11 17 15 
0.0 0,139D-16 14 11 
0.0 0.397D-11 14 15 
0.404D-11 0.187D-13 14 11 
0.365D-07 0.187D-13 11 11 
0.365D-07 0.187D-13 11 11 
0.365D-07 0.155D-12 11 27 

18 21 
32 19 
32 I8 
62 29 
60 24 
60 29 
40 21 
19 21 
19 2l  
19 42 
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Table 7. Beale ' s  function, N = 2. 

Function value Iterations Function calls 

P EQR CG EQR CG EQR CG 

0,1 0,179D-16 0.136D-15 50 24 185 
0,2 0,933D-1t 0,288D-16 55 36 200 
0.3 0,412D-12 0.642D-10 47 31 154 
0,4 0,586D-13 0.623D-11 45 33 142 
0.5 0,415D-22 0.372D-20 48 42 142 
0,6 0,127D-10 0.117D-09 48 34 125 
0.7 0,137D-19 0.270D-09 26 58 56 
0,8 0,841D-22 0,187D-20 29 54 65 
0,9 0,670D-I5 0.147D-09 28 125 60 
0,95 0,111D-17 0.403D-09 61 193 125 

82 
102 
90 
94 

t05 
83 

123 
102 
205 
285 

4 .5 .  W o o d ' s  q u a r t i c  f u n c t i o n :  

F(x) = 100(x2 - x ~ )  2 + (x~ - 1) 2 + 9 0 ( x 4 - x 2 )  2 + (x3 - 1) 2 

+ 1 0 . 1 ( ( x 2 - 1 ) 2 +  ( x 4 -  1)2)+  1 9 . 8 ( x 2 - 1 ) ( x 4 - 1 ) ,  

xo = ( - 3 ,  - 1 ,  - 3 ,  - 1 ) .  

4 .6 .  P o w e l l ' s  2 n d  f u n c t i o n :  

F(x) = 3 - 1 / [ 1  - (xl  - x 2 )  2] - s i n ( z r x 2 x 3 / 2 )  

- e x p { -  [(xl  + x2)/x2- 212}. 

x0 = (0, 1, 2). 

Table  8. Rosenbrock 's  function, N = 2. 

Function value Iterations Function calls 

EQR CG EQR CG EQR CG 

0,1 
0,2 
0.3 
0.4 
0,5 
0,6 
0.7 
0.8 
0,9 
0.95 

0,238D-16 0,270D-11 44 28 130 66 
0,109D-12 0.384D-I0 44 23 122 54 
0,203D-15 0.118D-09 44 28 120 66 
0.718D-10 0.119D-10 49 30 130 69 
0.468D-18 0,112D-09 51 28 127 65 
0,435D-08 0,112D-09 52 28 128 65 
0.508D-17 0.216D-22 49 66 82 128 
0,268D-11 0,455D-07 43 62 70 130 
0.296D-11 0.427D-07 45 141 75 272 
0,t66D-19 0.256D-08 53 283 83 499 
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4.7. Beale's function: 

3 

F ( x ) =  5~ [ci -x i (1-x~)]  2, 
i = 1  

cl = 1.5, C2 = 2.25, c3 = 2.625, 

Xo = (10, 10). 

4.8. Rosenbrock's valley function: 

F(x) = 100(x2 - x~) 2 + (xl - 1) 2, 

xo = ( - 1 . 2 ,  1). 

5. Conclusions 

For more accurate line searches, the correction vector does very little; 
in fact, sometimes it has a detrimental effect. However, as the search 
becomes progressively less accurate, it plays an important role. We have 
considered here an implementation that employs the correction vector in 
one of many possible ways and experimentation will no doubt yield better 
implementations. 

The projection method of Hestenes (Ref. 5) is an alternative expression 
of the three basic relations underlying an algorithm; if the initial step is along 
the gradient direction, it must develop identical directions to our method for 
a quadratic. Also for a quadratic, when line searches are exact, gradients at 
different iterates are orthogonal, and our method may be shown to reduce to 
the conjugate-gradient method. Since the relations (10) or (11) are indepen- 
dent of Ai, it is clear that both methods generate identical search directions. 

For quadratic functions, our method stands in relation to projection 
methods (Refs. 5, 8-9) in much the same way as the conjugate-gradient 
method stands in relation to variable-metric methods (Refs. 10-13). For a 
more detailed discussion of this, see Ref. 14. 

The three conjugate-gradient methods discussed in the introduction, 
when applied to nonquadratic functions and reset every n iterations, can be 
shown to have n-step quadratic convergence. This result holds for inexact 
line searches, though the proof requires that the searches become progres- 
sively more accurate. It is a reasonable conjecture that our method also has 
n-step quadratic convergence; and, using the device of the correction vector, 
it may be possible to achieve this without progressively more exact searches. 
This and the numerical properties of our method are currently under study. 
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