
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS: Voi. 26, No. 2, OCTOBER 1978

Current State of the Art of Algorithms
and Computer Software

for Geometric Programming 1'2

R. S. D E M B O 3

Communicated by M. Avriel

Abstract. This paper attempts to consolidate over 15 years of attempts
at designing algorithms for geometric programming (GP) and its exten-
sions. The pitfalls encountered when solving GP problems and some
proposed remedies are discussed in detail. A comprehensive summary
of published software for the solution of GP problems is included. Also
included is a numerical comparison of some of the more promising
recently developed computer codes for geometric programming on a
specially chosen set of GP test problems. The relative performance of
these codes is measured in terms of their robustness as well as speed of
computation. The performance of some general nonlinear programming
(NLP) codes on the same set of test problems is also given and compared
with the results for the GP codes. The paper concludes with some
suggestions for future research.

Key Words. Geometric programming, state of the art, signomial
programhing, nonlinear programming, software.

1. Introduction

Ever since its incept ion, geometr ic p ro g r a mmi ng (GP) has been
somewhat of an outcast in the m a i n s t r e a m of mathemat ica l p r o g r a m m i n g

l An earlier version of this paper was presented at the ORSA/TIMS Conference, Chicago,
1975.

z This work was supported in part by the National Research Council of Canada, Grant No.
A-3552, Canada Council Grant No. $74-0418, and a research grant from the School of
Organization and Management, Yale University. The author wishes to thank D. Himmelblau,
T. Jefferson, M. Rijckaert, X. M. Martens, A. Templeman, J. J. Dinkel, G. Kochenberger, M.
Ratner, L. Lasdon, and A. Jain for their cooperation in making the comparative study
possible.

3 Assistant Professor of Operations Research, School of Organization and Management, Yale
University, New Haven, Connecticut.

149

0022-3239/78/1000-0149505.00/0 © 1978 Plenum Publishing Corporation

150 JOTA: VOL. 26, NO. 2, O C T O B E R 1978

literature. Indeed, to this very day many prominent members of the
mathematical programming community regard GP as a highly specialized
curiosity and a "dead" area for research. The reason for this is twofold.
Firstly, the historical development of computational procedures and duality
theory in GP has, for the most part, taken place outside of the accepted
state-of-the-art procedures in nonlinear programming (NLP). Secondly,
there has been a failure on the part of many mathematical programmers to
realize that a wide variety of important practical problems (for example,
optimal engineering design problems) may be effectively modelled using
geometric programming.

It is precisely because of its applicability to optimal engineering design
that GP has been enthusiastically accepted by the engineering community.
In fact, engineers have had almost an exclusive hand in the development of
GP software. To some extent, which has been detrimental to GP in terms of
improving its image in mathematical programming circles, mainly because
GP software development has, as a result, lagged far behind general NLP
software development. This is particularly true with regard to software for
solving the linearly constrained dual GP. To be more precise, apart from
work currently in progress (Ref. 1), to this author's knowledge there is no
published algorithm for the linearly constrained dual that implements some
specialized version of one of the latest numerically stable techniques for
linearly constrained nonlinear programming, as discussed in Gill and Mur-
ray (Ref. 2). Matrix factorization is virtually unheard of in GP circles.

There has been, however, one fortunate byproduct of the above
phenomenon. Since GP software developers were to a large extent not
prejudiced by mathematical programming folklore, the implementation and
testing of many algorithms that would otherwise have been shunned by
"respectable" mathematical programmers has been carried out by GP
researchers. A good example of this is Kelley's cutting-plane algorithm for
convex programs. The method is purported to be at best geometrically
convergent (see Wolfe, Ref. 3), numerically unstable, and definitely not an
algorithm to be recommended for the solution of convex programming
problems. Though theoretically there is definitely justification for the above
hypothesis, there is no computational evidence to show that Kelley's
algorithm does in fact perform worse (or better) than existing algorithms for
convex programming.

It is shown in Section 5 and confirmed by Rijckaert and Martens (Ref.
4) that one of the most efficient 4 and robust 5 software packages currently

4 In terms of standardized C P U time.
5 By robust, we m e a n that the code will succeed in solving the majority of problems for which it

was designed, to within prescribed tolerance limits.

JOTA: VOL. 26, NO. 2, OCTOBER 1978 151

available for solving GP's is a simple application of Kelley's cutting-plane
algorithm. Furthermore, the algorithm has proved to be so successful that
there are at least four known software packages based on it (Refs. 5-8) and
in each case the respective authors have claimed excellent results.

The purpose of this paper is not only to summarize the current
state-of-the-art of GP software but to identify the main sources of difficulty
in designing such software and to point to directions for future research. To
this end, we will discuss the following topics: solving GP's using general-
purpose NLP software (Section 2); factors influencing the choice between
primal-based and dual-based algorithms (Section 3); published extensions
to signomial programming (Section 4); computational comparison of some
of the above software (Section 5) and analysis of the results (Section 6); and
conclusions and suggestions for future research (Section 7)°

2. Solving GP's Using General-Purpose NLP Software

Contrary to popular belief, one cannot in general simply solve
geometric programming problems Using general NLP software without
taking certain necessary precautions. To show this, we consider the primal
and dual programs separately.

2.1 .

gram (PGP) may be defined
problem:

(POP) minimize g0(x) = ~ cj [~ x~"~,
x j ~ J o i=1

Solving Primal Geometric Programs. A primal geometric pro-
as the following nonlinear programming

subject to gk(x)= ~. cj ~] x] 'j <- l,
J E J k i = I

k = l , 2 ,p,

x~>0, i = 1 , 2 m,

(2)
(3)

where (i) the sets Jk, k = (0, 1, 2 p), number terms in the objective
function Jo and the constraints Jk, k = 1, 2 p, and (ii) the parameters ci
and a~j are real constants with the restriction that c i > 0 for

jE 0
k=0

The PGP has a number of special features that are important from the
point of view of algorithmic design. They are the following.

(a) Derivatives of the objective and constraint functions of any order

152 JOTA: VOL. 26, NO. 2, OCTOBER 1978

are available explicitly. Furthermore, they are relatively cheap to compute
once function evaluations have been made. For example, in a posynomial
with q terms, only q multiplications and q divisions are required to compute
the first derivative of the function with respect to some variable, once the
values of these terms are known.

(b) The problem is convex in the variables log x, and thus may be
solved by any convex programming algorithms that account for feature (c)
below.

(c) Observe that the primal variables x,, i = 1, 2 , . . . m, are con-
strained to be strictly positive. Thus, the feasible region of PGP may not be
compact and strictly speaking we should write "seek the infimum of" in place
of "minimize" in the above programming problem. When a primal variable
goes to zero or to some negative value, some of the terms in one or more
posynomial functions might become undefined (for example, terms that
contain the variable raised to a negative power).

The above characteristics of the primal indicate that any general NLP
software may be used to solve GP problems provided that care is taken to
avoid negative and, in some cases, zero values of the primal variables. One
simple way of accomplishing this is to bound these variables from below
using some small positive value. However, this approach may run into
difficulty in cases where the GP is degenerate (see Duffin, Peterson, and
Zener, Ref. 9) and some terms do go to zero in the optimal solution.

Since analytical derivatives are available and are relatively cheap to
compute, it seems reasonable to expect gradient-based methods to be
suitable for specialization to solving PGP problems. It is also not difficult to
write a suitable front-end to any general gradient-based code that will read
the term coefficients c ~ , j = l , 2 ,n, the exponent matrix a~j,i=
1, 2 , . . . , m and j = 1, 2 , . . . , n, and numbers defining the sets Jk, k =
0, 1 p, and from this data compute function and gradient values.
Furthermore, since under a simple transformation the primal is convex, the
above discussion applies to convex programming software as well.

Geometric programming is also amenable to solution via separable
programming techniques. The separable primal geometric program (SPGP)
is given below.

(SPGP) minimize Y~ c/exp(yi), (4)
y;z j~Yo

subject to Y. c/exp(yj)- < 1, k = 1, 2 , . . . , p (5)

Yi - ~ a#zi = O, j = 1, 2 , n. (6)
i=t

JOTA: VOL. 26, NO. 2, O C T O B E R 1978 15.3

Equivalence of this separable formulation of the primal to the primal
program PGP is easily recognized if we let

zi = log xi, i = 1, 2 m,

and define the constants c i and aq and the sets Jk, k = O, 1, 2 p, as in
PGP.

The SPGP formulation of the primal is a problem in n + m variables as
opposed to the m-variable formulation PGP. However, the addition of these
variables results in a problem with a very special structure that may be
exploited by special-purpose algorithms. Also, the above formulation would
allow the solution of GP problems by widely available mathematical pro-
gramming software systems such as MPSX (Ref. 10).

To this author's knowledge, there have only been two attempts at
devising special-purpose algorithms for the solution of SPGP, namely Codes
1 and 3 (Appendix). Computational experience with these codes, both of
which are based on linearization methods, is not encouraging. However, this
should not be taken as conclusive evidence that solving SPGP is a poor way
to approach the solution of GP problems. An algorithm more in keeping
with the state-of-the-art in NLP would be to use a Newton-type method
with an active constraint set strategy for maintaining feasibility of the
nonlinear inequality constraints (5) and a projection method for handling
the linear equality constraints. What makes this approach so attractive is the
fact that the Hessian of a Lagrangian involving the constraints (5) would be a
positive definite diagonal matrix, a fact that could surely be exploited
computationally.

Another approach that is also in keeping with current practice in NLP
would be to incorporate the nonlinear constraints (5) into an augmented
Lagrangian and minimize this Lagrangian with respect to the linear equality
constraints (6).

2.2. Solving Dual Geometric Programs. The dual geometric program
(DGP) as defined by Duffin, Peterson, and Zener (Ref. 9) is the following
linearly constrained nonlinear programming problem:

(DGP) maximize v(6)= fi (cH3j) ~j fi *~ /~k, (7)
/=1 k:=l

subject to Z 3i=1, (8)
j~Jo

p
~. 2 aq3j=0, i= 1,2 m, (9)

k = 1 j E J k

,~j>- 0, j = 1, 2 n, (10)

154 J O T A : VOL. 26, NO. 2, O C T O B E R 1978

where /~k = ~ 3j, k = l , 2 p. (11)
J~Jk

A subtle but important point is that the Ak's are not treated as
independent variables in the problem and the relationships in (11) are not
treated as constraints, but rather as definitions. Whereas from a theoretical
viewpoint this distinction might appear to be a case of semantics, it is
extremely bad practice computationally. In fact, it is the view of this author
that the explicit elimination of the A variables and the explicit formation of the
reduced dual problem have been the singular most important factors in the
failure to design efficient and numerically stable software for the dual problem.
These statements will be justified in the discussion below.

The reduced dual geometric program (RDGP) is obtained by eliminat-
ing m + 1 basic variables from the program DGP and expressing them in
terms of d = n - (m + 1) nonbasic variables. 6 This results in the following
dual program in the variables ri, i = 1, 2 , . . . , d:

(RDGP) maxirriize
t"

subject to

d

6i(r)=b}°~+ Y~ rib}°>-O, j = l , 2 , . . . , n , (13)
i = l

where

Ak(r)~ 2 b ° ri b} ° , k= 1,2 p, (14)
k j 6 J k A i = 1 j

Ki ~ I I bq, --- c j , , i = 0, 1 , . . . , d. (15)
j = l

The reduced dual was strongly emphasized in Duffin, Peterson, and
Zener (Ref. 9) as being a computationally useful formulation of the dual GP.
Unfortunately, the theoretical exposition in Ref. 9 was taken far too literally
by researchers who were attempting to design algorithms for the dual.
Without exception, every dual-based code known to this author (see
Appendix) explicitly computes and stores the basis vectors b (°, i=
0, 1 , . . . , m, using Gaussian elimination or some related technique. This is
completely contrary to accepted practice in nonlinear programming (Ref. 2,
Chapter 2). A far more stable approach numerically would be to carry out

6 The quanti ty d is somet imes referred to as the degree of difficulty of a GP.

JOTA: VOL. 26, NO. 2, OCTOBER t978 155

the reduction procedure implicitly by storing a matrix Z whose columns
span the null space of the equality constraint coefficient matrix of D G P
(Refs. 2-2). The matrix Z can be computed and stored explicitly or in
product form by performing an orthogonal triangulation of the coefficient
matrix. Incidentally, this same factorization can be used efficiently to find a
stable least-square solution to the primal-dual optimality relationships (Ref.
t l) in order to recover the optimal primal variables. For details on this
approach the reader should consult (Refs. 1-2).

We feet that algorithms for the dual should be based on the following
separable dual geometric program (SDGP), that is equivalent to DGP:

(SDGP) maximize
&A

subject to

V(6, A)= ~, 6 j log(q/Si)+ ~ XklOg)tk, (16)
j = l k = l

a o 3 = 1, (17)

A 3 = O , (18)

B3 - A = 0, (19)

--- o. (20)

The constraints (17)--(19) are a matrix representation of (9)-(11). Here,

dim(A0) = i x n, dim(A) = m x n,

dim(B) = p x n,

where n = number of primal terms, m = number of primal variables, and
p = number of primal constraints.

Notice that the above dual program has n + p variables as opposed to n
variables in the formulation given in (8)-(11). Also, the above formulation is
a convex program whereas the original is not.

At first, it might seem ridiculous to increase both the number of
variables and the number of constraints. However, this results in a problem
with a very special structure. Firstly, the objective function is separable, and
hence has a diagonal Hess ian which can be utilized efficiently in a Newton-
type algorithm for the dual problem (Ref. 1). The additional constraints
should cause no consternation either. It is easy to construct algorithms which
take implicit account of them. In fact, in Ref. i it is shown how the above
problem may be solved by an algorithm in which the major computational
effort involves either recurring an m x m or an (n - m - 1)x (n - m - 1)
matrix at each iteration, depending on which is smaller.

The programs DGP, RDGP, and SDGP have a number of important
characteristics, some of which preclude the direct application of NLP
software for finding a numerical solution.

156 J O T A : VOL. 26, NO. 2, O C T O B E R 1978

A major source of difficulty is the fact that the dual objective function is
not differentiable with respect to the dual variables at points where they take
on the value zero. To see this, for example, note that

0 V/08 i = log(cj/Sj)- 1, (21)

which is undefined at 6j = 0. This fact (combined with the fact that, at an
optimal solution, if for any j ~ Jk, 8-*., = 0, then 8* = 0 for all j ~ Jk) will cause
general NLP software to fail if applied directly to these dual programs.

There are simple-minded remedies to the nondifferentiability problem,
some of which are given below.

(a) Bound the variables such that 8 i--. E > 0, j = 1, 2 n. This
overcomes the differentiability problem, but causes other numerical prob-
lems such as an ill-conditioned Hessian at points near the solution. Also,
most algorithms will tend to z ig-zag between the constraints 8 i >-E, j ~ J~,
until they have convinced themselves that 6" = e for all j ~ Jk.

More important is that simply zeroing all 8* = e to 8* = 0, as is done in a
large number of dual codes (see Appendix), will result in infeasibilities in the
dual equality constraints (8) and (9). This could cause poor estimates of the
primal variables to be computed using the primal-dual optimality conditions
(Ref. 43). This author has long felt that this is precisely why it is often stated
(see, for example, Ref. 12) that highly accurate dual solutions are required to
obtain an even moderately accurate primal optimal solution. Thus, if the
8 - e bounds are used, one must ensure that feasibility of the dual con-
straints is restored when the appropriate dual variables are zeroed.

The choice of an E is also difficult. For example, in Problem 1 (Ref. 5)
there are a substantial number of dual variables whose optimal value is less
than 10 -8 .

(b) A better approach than the one above is to approximate the jth
term in the dual objective function by a quadratic 7 at points for which 8 i <- e.
This is done as follows:

where

6j log(cj/6j) = aS~. +/36j, 0 -< 8 -< E, (22)

a = - l / e , (23)

/3 = log(ci/e) + 1. (24)

The advantage of the above approximation is that the objective function
V(6, ,~) so defined will be continuous and differentiable, since ce and/3 are
chosen so that the derivatives and function values of 6j log(cj/6i) and

7 The quadratic approximation presented here arose out of a series of discussions the author
had with L. Lasdon and M. Saunders in an a t tempt to apply their general-purpose codes to the

dual G P

JOTA: VOL 26, NO. 2, OCTOBER t978 157

a6~ +fl6j are equal at 6 j= E. Also, the two functions are equal at 6 j = 0 ;
however, their gradients differ at this point. The quadratic approximation
has a gradient of /3 at 6; = 0, whereas as 6j tends to zero the gradient of
6j log(cj/6j) tends to infinity.

Here, the choice of e is not as difficult to make as in the bounding
method discussed above. A balance must be struck between making e too
small, in which case the Hessian matrix will become ill-conditioned (since
the contribution of this term will be the diagonal element - 2 / e) , and making
e too large, in which case the gradient at 6;-= 0 [namely, fl = log(cj/E)+ 1],
will be too small to approximate the true behavior of the objective function
at 3i = 0. A limited amount of experimentation with the method has shown
that a value of e = 10 -5 seems to suMce.

It should be noted that the value of e could be chosen dynamically by
the algorithm under consideration. For example, in a Newton-type
algorithm, e could be set to its minimum value such that the condition
number of the Hessian of the objective function V(6, A) would not be much
larger than if this particular variable were not present. Since the Hessian is
diagonal with elements - 6 -1 and ~-1 (Ref. 13), the above criterion would
result in an e value that is not "very much" smaller than the smallest 6j.

For algorithms based on an active constraint set strategy, the above
quadratic approximation is only needed for variables that are exactly zero,
as a means of providing the algorithm with approximate curvature informa-
tion so that it can decide whether or not the active constraint 6j = 0 should be
dropped from the basis at a particular iteration. Since

3 = iog(cd) + 1

will be positive for any e < cie , if for example we choose e such that

e = min{0.gcie , 10-5}, (25)

we are always assured that the gradient of the approximating quadratic will
have the correct sign. Furthermore, this method will not be subject to the
zeroing problem alluded to in (a) above.

We will not deal with the important topic of converting an optimal dual
solution into an optimal primal solution, since this is covered in detail in
Dembo (Ref. 11). It will suffice to say that the results of Ref. 11 indicate that
any algorithm for the dual should compute the optimal Lagrange multi-
pliers, w*, i =0 , 1, 2 m, corresponding to the normality and ortho-
gonality constraints (8) and (9), since they are related to the optimal primal
variables x* and optimal dual objective function V* by

o2* = log x*, i = 1, 2 m (26)

 oo* = t - v * . (27)

158 JOTA: VOL. 26, NO. 2, OCTOBER 1978

Thus, an optimal solution of the primal can be computed to the same
degree of accuracy as the optimal dual multipliers. As is mentioned in
Dembo (Ref. i 1), (27) provides us with a useful check on the accuracy of the
multipliers since V* and w* may be computed independently. Also, a dual
algorithm is not complete unless it provides for the case where the multi-
pliers oJi are not unique and a subsidiary problem (Ref. 11)might have to be
solved in order to recover an optimal solution of the primal problem. Only
one of the dual-based codes in the Appendix, namely CSGP, provides for
such an eventuality.

3. Factors Influencing the Choice between Primal-Based and Dual-Based
Algorithms

The question is often raised as to whether geometric programs should
be solved using algorithms based on the dual program or by direct solution of
the primal program. To ask whether the primal problem or the dual problem
should be solved is an oversimplification. It would probably be more correct
to ask when should the primal problem be solved as opposed to the dual, and
vice versa. There are obvious cases where the dual program is a very much
simpler problem than the corresponding primal (for example, a geometric
program with zero degrees of difficulty). Similarly, it is easy to construct
geometric programs where the primal problem may be very much easier to
solve than the dual (for example, consider the minimization of a posynomial
function of one variable with a large number of terms).

It is well known that linear programming (LP) is a special case of GP
(see, for example, Duffin, Peterson, and Zener, Ref. 9). Therefore, as
Templeman (Ref. 14) quite rightly points out, a special case of the above
dilemma occurs in LP when one has to decide whether to solve a problem
using primal-based or dual-based methods. For LP, the problem is much
simpler and one can easily identify cases where a primal approach would be
advantageous, and vice versa. Also, the same algorithm, namely the simplex
method, may be applied to both the primal program and the dual.

In geometric programming, the decision as to whether to solve the dual
program or the primal is a far less obvious one. For the general case, there
seems to be no way out other than to draw on empirical evidence generated
by computational comparisons such as the one described in Section 6 and
also in Rijckaert and Martens (Ref. 4). There is however one special case of
GP, other than LP, for which the same algorithm may be applied to both
the primal and dual problems; hence, an a priori estimate of which of
the two problems is easier to solve can be made with a fair degree of
certainty.

JOTA: VOL 26, NO. 2, OCTOBER I978 159

Consider a pair of primal-dual GP problems in the case where there are
no posynomial inequality constraints in the primal problem (this is often
referred to as an unconstrained GP). Here, the primal program (UPGP) and
dual program (UDGP) may both be written as convex, separable linearly
constrained nonlinear programming problems:

(UPGP) minimize log ~ cj exp(yj), (28)
y,w j = l

subject to y - A rw = 0; (29)

(UDGP) maximize i 3j Iog(cJ3j), (30)
/ = 1

subject to ~ 3 i = 1, (31)
j = l

A 6 = O, (32)

3>-0. (33)

Since the cost of function and derivative evaluations is roughly the same
for UPGP and UDGP, the difference in computational effort required to
solve them will be a function of the relative sizes (number of variables and
constraints) of these dual programs, if the same algorithm is applied to both.
In both cases, the equality constraints may be handled implicitly using
projection matrices; however, the primal problem (UPGP) does have a
slight edge over the dual, in that it does not possess inequality constraints.
Also, the primal objective function is differentiable at all points in the primal
feasible region, whereas the dual is not.

For constrained GP problems, the tables are turned. The primal
problem (SPGP) is subject to the nonlinear inequality constraints (5),
whereas the dual (SDGP) remains a linear constrained problem. The
author's feeling is that, with few exceptions, the nonlinear inequality con-
straints of the primal problem make the dual (SDGP) a more attractive
problem to solve, even when the degree o f difficulty (n - m - 1) is very large.
The reason for this is twofold. Firstly, nonlinear constraints are at least an
order of magnitude more diffficult to deal with than are linear constraints.
Secondly, and this is what most researchers in the area of GP seem to be
unaware of, the dual problem (SDGP) may be solved by a Newton-type
algorithm where at each iteration the main amount of work involved lies in
solving a square system of equations, whose dimension is either equal to the
degree of difficulty of the problem (n - m - 1) or to the number of primal
variables (m), depending on which of these two quantities is smaller. Details
of such an algorithm are given in Dembo (Ref. 1).

160 JOTA: VOL. 26, NO. 2, OC TOB ER 1978

4. Extensions to Signomial Programming

A signomial programming (SP) problem is a program of the form given
in (1)-(3), (namely, PGP), in which the term coefficients may take on any real
value. This type of programming problem is sometimes referred to as an
algebraic program.

In general, SP problems are nonconvex, and the elegant duality theory
associated with posynomial programs does not carry over to signomial
programs. Attempts have been made at defining pseudo-dual problems (see
Ref. 15 and Ref. 16, Chapter 5); however, the use of a pseudo-dual program
as a vehicle for computing an optimal solution to a primal program PSP (that
is, PGP where some cj <0) is not to be recommended unless certain
safeguards are incorporated into the algorithm. This is because a local
maximum of the pseudo-dual program might correspond to a local maxi-
mum of the primal (recall that PSP is a nonconvex minimization problem).
Thus, if a dual approach is used to solve PSP, the algorithm must contain a
built-in checking procedure to ascertain whether or not the computed
stationary point of the primal problem is in fact a local minimum. If it is not,
then the algorithm should invoke an alternative procedure until con-
vergence to a local minimum is achieved. To the author's knowledge, none
of the existing codes that solve SP problems via a pseudo-dual approach (see
dual Codes 2 and 11 in the Appendix) have built-in safeguards.

Apart from the pseudo-dual approach, there are essentially three
different ways in which algorithms for SP problems have been designed.
These are discussed below.

4.1. Complementary Algorithm of Avriel and Williams. (Ref. 17). This
algorithm solves an SP problem by solving a sequence of GP approxima-
tions. Each GP approximation is computed using posynomial condensation
(Ref. 17). It was noted by Dembo (Ref. 17, also reported in Ref. 18) that the
complementary algorithm may be accelerated if an exterior method s is used
to solve the approximating GP primal.

The codes GGP, QUADGP, SIGNOPT, GEOEPS, and GEOLP (see
Appendix) all use this approach to solving SP problems. Unfortunately, a
feasible point is required to initiate the algorithm, and this in general means
that a Phase 1 routine has to be incorporated into the code (Ref. 20).

4,2. Harmonic Method of Duflin and Peterson. (Ref. 20). Here too,
the SP problem is solved by solving a sequence of approximating GP

8 By exterior method, we mean that the sequence of points converging to an optimal solution
remains infeasible until the solution is reached.

JOTA: VOL. 26, NO. 2, OCTOBER 1978 16t

problems. Each harmonic approximation of Duffin and Peterson can be
shown to be weaker than the complementary approximation (see, for
example, Ref. I6) and in general results in an approximate GP problem
whose dual has a larger degree of difficulty than in the complementary
approximation. The harmonic approach, however, does have one important
property that, to the author's knowledge, has never been exploited compu-
tationally. That is, the exponent matrix remains constant for every GP
problem in the approximating sequence, which is not the case in the
complementary algorithm. Without making specific use of this property, any
algorithm based on the harmonic method will be dominated by one based on
the condensation method, other things being equal. Jefferson's code
GPROG (see Appendix) uses the harmonic approach. Bradley's code
QUADGP (see Appendix) has an option to use either the harmonic
algorithm or the complementary algorithm. In both these codes, the invari-
ance of the exponent matrix is not used. Bradley (Ref. 21) demonstrates the
obvious superiority of the condensation procedure on a number of test
problems.

The same remarks in Section 4.2 regarding feasible starting points
apply here also.

4.3. Direct Solution of the Signomial Programming Problem. To
date there has only been one code developed to solve the SP problem
directly. Rijckaert and Martens (Ref. 22) solve the nonlinear equations
corresponding to the Kuhn-Tucker first-order necessary conditions for
optimality of the primal SP problem (PSP). However, they do not indicate
whether they have built in safeguards to ensure that they compute a local
minimum of PSP and not a stationary point or a local maximum.

4.4. Convergence of the Complementary and Harmonic Algorithms.
Unfortunately, it has been this author's experience that the complementary
(and hence the harmonic) algorithm tends to converge linearly for most
problems. 9 Thi~ makes it a poor method to use in a GP code, especially for
problems with relatively few negative terms (see Test Problem 4A, Ref. 23).
It is for this reason that the author feels that the best way to solve signomial
problems in general is by a direct attack on the primal program written in
separable form (that is, SPGP where the coefficients c i are not all positive).
This will surely be more efficient than solving a sequence of similar-sized GP
problems. Some justification for this statement is given in the next section.

9 A computational comparison of these algorithms is given in Ref. 24.

162 JOTA: VOL. 26, NO. 2, OCTOBER 1978

5. Numerical Comparison of Some GP Codes

This section summarizes the results of a Colville-type study (Ref. 25)
that was undertaken by this author in the period from June 1974 to July
1976, The ambitious aims of the study were: (i) to identify which available
GP codes were obviously superior to other in terms of computational
efficiency; (ii) to test the robustness of various approaches; (iii) to isolate a
good set of problems that would test various critical aspects of GP
algorithms; and (iv) to answer the embarrassing question: are specialized GP
codes more efficient in the solution of GP problems than good general-
purpose NLP codes?

Only one of the above aims was achieved to any degree of satisfaction,
namely, the study did produce a good set of test problems (Ref. 23). Our
justification for this conclusion comes from the feedback from people who
have actually at tempted to solve these problems.l° Their general conclusion
is that the problem set contains a good mix of well-scaled, badly-scaled,
easy, and difficult problems and also captures the inadequacies of various
algorithmic approaches to GP. We will discuss the particular nature of each
of the problems later, when the computational results are analyzed.

There is one major drawback, however, to conducting a comparative
study based on a hand-picked sample of test problems. That is, very little in
the way of inferences can be made as to the relative performance of the
codes in question on a different set of problems (Ref. 27). It is precisely this
sort of inference that one wishes to make; namely, since code X did bet ter
than code Y on the test problems, this will be true for a larger class of
problems. Unfortunately, the methodology for designing comparative stu-
dies in mathematical programming is primitive, to say the least, and has only
recently been considered as a serious topic for research.

The study reported here was conducted in the following wayJ I An
attempt was made to obtain the participation of all authors of GP software
that were known to the author at the time the study was conducted. Each
participant was informed that the problems would be run at the particular
author's home institution, on the computer for which the code was originally
developed. In addition, Colville's standard timer (Re[. 25) was supplied in
an attempt to standardize the CPU timing results and stopping criteria and

io The names and addresses of people other than those mentioned in this study who have solved
the problems in (Ref. 23) is available on request from the author.

i ~ As is mentioned in the text, the author is fully aware of the drawbacks of such a study (see
Refs. 27-28) and cautions the reader to be war3," of any conclusions drawn on the basis of the
results presented here. In particular, the use of a standardized timing routine may in extreme
cases make timing results meaningless.

JOTA: VOL. 26, NO. 2, OCTOBER 1978 t63

tolerances were specified as reported in (Ref. 23). Where possible, an
attempt was made to standardize the use of compilers. For example,
participants using IBM machines were requested to use the FORTG
compiler when compiling the timing program. In some cases, participants
did not adhere strictly to the rules, and this has added some additional noise
to the results.

To some extent, the experimental design did allow the participants to
tune their codes to the set of problems in Ref. 23, and so the timing results in
Table 4 represent the best results of each code on this set of problems,
without a major alteration to the code design itself. Actually, in two cases
(Refs. 8, 29) the participants redesigned the Phase I section of their codes as
a result of repeated failures on some of the test problems.

An attempt was also made to include CPU timing results for some
recently developed general-purpose NLP codes in order to compare with
GP codes tested. Table 1 summarizes the characteristics of the general
purpose NLP codes that participated in the study.

The GP codes that participated were SIGNOPT, GEOEPS-GEO-
GRAD, GEOLP, GPKTC, GPROG, and GGP. A summary of their main
features is given in the Appendix. Details of the computer configuration and
other aspects of the timing runs for the GP participants are given in Table 2.

Important characteristics of the test problems are summarized in
Table 3.

The standardized times (actual CPU time divided by Colville standard
time) for all participating codes on all test problems are given in Table 4.
Blank entries in the table indicate that the code did not converge to a
solution. The participants were all asked to solve the problems to within the
convergence and constraint tolerance criteria specified in Table 3 (see
Dembo, Ref. 23). Whereas most participants met the crucial primal feasi-
bility criterion, stopping criteria and other internal tolerances were not
equivalent from one code to the next. This does add an additional degree of
uncertainty in interpreting the results. Only one of the GP codes, namely
GPROG, did not solve problems to the required feasibility tolerances. The
results in Table 4 for GPROG refer to a primal feasibility tolerance of 0.01,
whereas the required feasibility tolerances specified in Ref. 23 range from
10 -4 tO 10 -6.

In an attempt to measure the sensitivity of various codes to achieve
different degrees of primal feasibility, two levels of feasibility tolerances
were specified in Dembo (Ref. 23). Since only a few of the participants
responded to a request for runs at both tolerance levels, these results are
not reported here. They are reported, however, for the code GGP in
Ref. 23.

T
ab

le
 1

.
C

h
ar

ac
te

ri
st

ic
s

of
 g

en
er

al
-p

u
rp

o
se

 N
L

P
 c

o
d

es
 t

es
te

d
.

C
om

pu
te

r
C

ol
vi

ll
e

C
od

e
A

lg
or

it
hm

L

an
gu

ag
e

C
om

pi
le

r
P

ar
ti

ci
pa

nt
s*

In

st
it

ut
io

n
co

nf
ig

ur
at

io
n

st
an

da
rd

 t
im

e

G
R

G

G
en

er
al

iz
ed

F

O
R

T
R

A
N

W

A
T

F
IV

L

as
do

n
S

ta
nf

or
d

IB
M

16

.8
3

se
c

us
in

g
re

du
ce

d
gr

ad
ie

nt

(N
O

C
H

E
C

K
)

R
at

ne
r

U
ni

ve
rs

it
y

37
0/

16
8

W
A

T
F

IV

(R
ef

.
30

)
Ja

in

(c
ur

re
nt

ly
 a

t
(N

O
C

H
E

C
K

)
C

as
e

W
es

te
rn

R

es
er

ve

U
ni

ve
rs

it
y)

< ©

C
O

M
E

T

P
en

al
ty

F

O
R

T
R

A
N

R

U
N

H

im
m

el
bl

au

U
ni

ve
rs

it
y

C
D

C

20
 s

ec
s

fu
nc

ti
on

 m
et

ho
d

of
 T

ex
as

66

00

at
 A

us
ti

n

t~

Z

G
R

E
G

G

en
er

al
iz

ed

F
O

R
T

R
A

N

R
U

N

H
im

m
el

bl
au

U

ni
ve

rs
it

y
C

D
C

20

 s
ec

s
re

du
ce

d
gr

ad
ie

nt

(A
ba

di
e/

G
ui

go
u)

of

 T
ex

as

66
00

(R

ef
.

31
)

at
 A

us
ti

n
©

©

G
P

M
/

E
xt

en
de

d
gr

ad
ie

nt

F
O

R
T

R
A

N

R
U

N

H
im

m
el

bl
au

U

ni
ve

rs
it

y
C

D
C

20

 s
ec

s
G

P
M

N
L

C

pr
oj

ec
ti

on
 m

et
ho

d
(K

re
us

er
/R

os
en

)
of

 T
ex

as

66
00

(R

ef
.

32
)

at
 A

us
ti

n

7~

o
o

G
A

P
F

-Q
L

P

en
al

ty
 f

un
ct

io
n

F
O

R
T

R
A

N

R
U

N

H
im

m
el

bl
au

U

ni
ve

rs
it

y
C

D
C

20

 s
ec

s
m

et
ho

d
(N

ew
el

l)

of
 T

ex
as

66

00

m
od

if
ie

d
to

 a
vo

id

at
 A

us
ti

n
il

l-
co

nd
it

io
ni

ng

of
 H

es
si

an

*
N

am
es

 i
n

pa
re

nt
he

se
s

re
fe

r
to

 o
ri

gi
na

l
au

th
or

s
of

 t
he

 c
od

e.

T
ab

le
 2

.
C

h
ar

ac
te

ri
st

ic
s

of
 G

P
 c

o
d

es
 p

ar
ti

ci
p

at
in

g
 i

n
st

ud
y.

C
od

e
L

an
gu

ag
e

C
om

pi
le

r
P

ar
ti

ci
pa

nt
s

In
st

it
ut

io
n

C
om

pu
te

r
co

nf
ig

ur
at

io
n

C
ol

vi
ll

e
st

an
da

rd
 t

im
e

S
IG

N
O

P
T

F

O
R

T
R

A
N

N

ot
 s

pe
ci

fi
ed

T

em
pl

em
an

U

ni
ve

rs
it

y
IC

L
 1

90
6A

of

 L
iv

er
po

ol

C
D

6
76

00

co
m

bi
na

ti
on

2.
22

 s
ee

s

< ©

G
E

O
P

S
/G

E
O

G
R

A
D

F

O
R

T
R

A
N

G
E

O
L

P

F
O

R
T

R
A

N

F
O

R
T

H

D
in

ke
l

P
en

ns
yl

va
ni

a
S

ta
te

 U
ni

ve
rs

it
y

(O
P

T
 =

 2
)

K
oc

he
nb

er
ge

r

[B
M

3
7

0
/1

6
8

8.

75
 s

ee
s

(F
O

R
T

G
)

b
~

:Z

.a

G
P

K
T

C

F
O

R
T

R
A

N

F
O

R
T

H

R
ij

ck
ae

rt

K
at

ho
li

ek
e

(O
P

T
 =

 2
)

M
ar

te
ns

U

ni
ve

rs
it

ei
t

L
eu

ve
n

IB
M

3
7

0
/1

5
8

27

.7
3

se
es

(F

O
R

T
G

)
©

 g
G

P
R

O
G

F

O
R

T
R

A
N

an

d
C

O
M

P
A

S
S

N
ot

 s
pe

ci
fi

ed

Je
ff

er
so

n
U

ni
ve

rs
it

y
of

N

ew
 S

ou
th

 W
al

es

A
us

tr
al

ia

C
Y

B
E

R
 7

2
30

 s
ee

s
(a

pp
ro

x.
)

--
3

G
G

P

F
O

R
T

R
A

N

F
O

R
T

H

D
em

bo

U
ni

ve
rs

it
y

(O
P

T
 =

 2
)

of
 W

at
er

lo
o

(c
ur

re
nt

ly
 a

t
Y

al
e

U
ni

ve
rs

it
y)

IB
M

3
7

0
/1

5
8

25

.3
0

se
es

(F

O
R

T
G

)

tm

166 JOTA: VOL. 26, NO. 2, OCTOBER 1978

Table 3. Test problem characteristics (Ref. 23).

Problem Type

Required tolerances

Variables Constraints* Terms* EPSCONt EPSCGP$

1A GP 12 3 31 10 - 6 10 - 4

1B GP 12 3 31 10 . 6 10 - 4

2 SP 5 6 32 10 - 5 1 0 . 4

3 SP 7 14 58 10 -5 10 - 4

4A SP 8 4 16 10 -s 10 -4
4B SP 8 4 16 10 -s 10 -3
4C GP 9 5 15 10 -5 10 -4

5 SP 8 6 19 10 .5 10 .4
6 SP 13 13 53 10 -6 10 .4
7 SP 16 19 85 10 -5 10 .3
8A GP 7 4 18 10 -6 10 .4
8B GP 7 4 18 10 .6 10 -4
8C GP 7 4 18 10 .6 10 .4

* Does not include simple bounds on variables.
t If gk(x) < - 1 +EPSCON, k = 1, 2 p, then the constraints are considered to be satisfied.

Convergence tolerance, see Footnote 12.

6. Analysis ot Comparative Study Results

We will ana lyze the results p re sen ted in Tab le 4 in terms of the original

aims of the study. First, results for G P codes are analyzed. Later , these are
compared with the results for NLP codes.

6.1. Results for GP Codes
(a) Ef f ic iency . By glancing at the b racke ted n u m b e r s in Table 4, we

see immedia te ly that the G P codes G P K T C and G G P stand out a mong the
rest in terms of the speed with which the p rob lems were solved. The code
G P K T C was within 10% of the fastest s tandardized t ime for 7 of the 13 test
problems, whereas G G P was wi thin 10% of the fastest t ime in 8 of 13 cases.
A closer scrut iny reveals that G G P seemed to do be t te r on the larger
p rob lems and on p rob lems with m a n y simple b o u n d i n g constraints . This is

ent i re ly cons is tent with the findings in Ref. 16.
A n in teres t ing result shown in Table 4 is that G G P consis tent ly

domina tes G E O L P in terms of s tandard ized times. This result is in te res t ing
because these two codes are based on the ident ical m a t h e m a t i c a l a lgor i thm.

T
ab

le

4.

S
ta

n
d

ar
d

iz
ed

ti

m
es

 f
o

r
te

st
 p

ro
b

le
m

s.

St
ar

tin
g

G
PM

/
G

EO
PS

p

o
in

t
S

IG
N

O
P

T

G
R

G

C
O

M
E

T

G
R

E
G

G

P
M

N
L

O

G
A

PF
-Q

L

G
E

O
G

R
A

D

G
E

O
L

P

G
P

K
T

C

G
P

R
O

G

G
G

P
Pr

ob
le

m

T
yp

e
(p

ri
m

al
)

(G
P)

(N

LP
)

(N
LP

)
(N

LP
)

(N
LP

)
(N

LP
)

(G
P)

(G

P)

(G
P)

(G

P)

(G
P)

IA

G
P

N

F

4.
65

1
0.

56
48

1.

11
66

[0

.0
58

4]

0.
12

76

0.
27

4
1B

G

P

N
F

[0

.0
56

]
1.

52
62

0.

11
97

0.

51
55

0.

56
48

1.

11
66

[0

.0
55

4]

0.
27

1
2

S
P

F

2.
62

59

0.
01

0
0,

24
44

0.

13
49

"
0.

44
2*

0.

04
05

0.

03
25

0.

04
54

0.

19
37

[0

.0
02

]
3

S
P

F

0.
74

97

0.
11

65

0.
58

20

0.
29

92

[0
.0

86
8]

[0

.0
82

]
4

A

S
P

N

F

1.
15

24

0.
03

8
0.

05
44

0.

05
(1

3
0.

11
93

"
0.

03
22

1.

77
21

[0

.0
18

6]

0.
77

30

0.
28

0
4B

S

P

N
F

1.

15
24

0.

03
4

N
R

N

R

N
R

0.

03
29

N

R

[0
.(

/1
83

]
0.

13
2

4C

G
P

N

F

(t
.1

65
(t

(/

.0
52

0.

07
95

0.

08
18

0.

09
58

0.

04
04

0.

05
37

0.

08
43

0.

02
44

[0

.0
21

]

,-q

> < ©
 F Z

5
S

P

N
F

1.

43
30

0.

04
9

0
.1

3
0

1
'

0.
07

09

0.
54

04

1.
02

47

0.
50

57

0.
28

17

[0
.0

32
3]

1.

62
21

1
0.

12
5

6
S

P

N
F

0.

57
47

0.

53
90

[1

.3
54

51

[0
.3

27
]

7
S

P

N
F

2.

44
54

t)

.4
58

1
0.

68
64

[0

.2
40

1
8

A

O
P

N

F

3.
89

43

0.
28

2
>

3

(1
.4

47
9

0.
16

84

[0
.0

87
7]

0.

16
95

0.

21
55

[0

.0
95

1
81

3
G

P

N
F

6.

05
76

0.

19
4

1.
87

36

0.
28

64

0.
29

42

(/
.1

40
6

0.
15

59

0
.1

8
6

t
[0

.0
95

1
8C

G

P

N
F

31

.7
82

0.

44
3

0.
90

45

0.
30

43

0.
25

77

0.
17

31

(t
. 1

27
4

0.
14

05

[0
.0

79
1

©

©

©

P
ro

bl
em

 t
yp

e:
 G

P
 =

 P
os

yn
or

ni
al

 p
ro

gr
am

,
S

P
 =

 S
ig

no
m

ia
l

pr
og

ra
m

.
S

ta
rt

in
g

P
oi

nt
:

N
F

 =
 N

ot
 f

ea
si

bl
e,

 F
 =

 F
ea

si
bl

e.

B
ra

ck
et

ed
 n

u
m

b
er

s
in

di
ca

te
 s

ta
nd

ar
di

ze
d

ti
m

es
 t

ha
t

ar
c

w
it

hi
n

10
%

 o
f

th
e

be
st

 t
im

e.
 B

la
nk

 e
nt

ri
es

 i
nd

ic
at

e
th

at
 t

he
 c

od
e

w
as

 u
na

bl
e

to
 s

ol
ve

 t
he

pa

rt
ic

ul
ar

 p
ro

bl
em

.
A

st
er

is
k

in
di

ca
te

s
th

at
 t

he
 e

rr
or

 i
n

th
e

co
m

p
u

te
d

 v
al

ue
 o

f
an

 o
pt

im
al

 s
ol

ut
io

n
w

as
 b

et
w

ee
n

5%
 a

nd
 1

(I
°/

,,.

N
R

 =
 N

ot
 r

ep
or

te
d.

Z
;

-M

168 JOTA: VOL. 26, NO. 2, O C T O B E R 1978

This underscores the fact that what we are testing in this study is the
performance of codes and not algorithms.

The results, however, do shed some light on the underlying algorithms.
Consider for example Problems 4A, 4B, and 4C. Problems 4A and 4B are
both signomiat problems in 8 variables, 4 signomial constraints, and 7
degrees of difficulty. The sole difference between these problems is that
Problem 4A has a tighter convergence tolerance (EPSCGP = i0 -4) than
Problem 4B (EPSCGP = 10-3). a2 In Ref. 26 and Table 3, it is shown that
GGP requires more than twice as much CPU time for Probtem 4A as for
Problem 4B. This is indicative of the sensitivity of the Avriel-Williams (Ref.
17) algorithm to this commonly used termination tolerance criterion. The
code GPKTC solves signomial problems directly, and Table 4 shows that the
algorithm used is not at all sensitive to such a criterion; that is, GPKTC
requires roughly the same amount of CPU time to achieve optimality in
Problems 4A and 4B.

An even more dramatic indication of how inefficient the Avriel-
Williams procedure (Ref. 17) can be is found by examining the relative
performance of GGP and GPKTC on Problems 4A and 4C. Problem 4A as
mentioned above is a signomial problem. However, what was not mentioned
was that only two of 16 terms in the problem have negative coefficients. Thus,
Problem 4A is almo~tposynomial. Problem 4C is a GP approximation of 4A,
which is obtained by condensing-out these two negative terms (Ref. 19).
Therefore, Problem 4C is constructed to be a very similar-sized and similar-
structured problem to Problem 4A but without any negative terms. For this
problem (and using the same tolerance criteria as for Problem 4A) GGP is
I4 times faster than for Problem 4A and is slightly faster than GPKTC. Note
also that GPKTC needs approximately the same amount of CPU time for all
three problems and, not unexpectedly, all the GP codes using the Avriel-
Williams algorithm (namely, SIGNOPT and GEOLP) exhibit the same type
of behavior as GGP on these three problems.

It is difficult to compare GEOEPS/GEOGRAD, GPROG, and
SIGNOPT, since they have few data points in common. Very roughly
speaking, GEOEPS/GEOGRAD seems to be faster than GPROG and
SIGNOPT; when it converges, it is fairly competitive with GPKTC and
GGP. The standardized times for SIGNOPT show that it can exhibit
extremely slow convergence (see Problem 2, for example). The reader is

~2 The tolerance EPSCGP is defined in Ref. 23 by

I[g0(x')- go(X'- l)] / go(Xi-l)] <- EPSCGP,

where go(X i) is the objective function value at the / th E-feasible point x ~ and x ~, i = I, 2 is
the sequence of points that converge to a m i n i m u m of the s ignomia| problem. That is, if the
above inequality is satisfied, then x i is assumed to be in the vicinity of a stationary point.

JOTA: VOL. 26, NO. 2, OCTOBER 1978 !69

asked to interpret this with caution, since it is this author's feeling that the
inaccuracies introduced by using standardized timers penalize participants
with very fast computers. The above tests using SIGNOPT were run on a
CDC 7600 with a standardized time of 2.2 seconds. This is by far the fastest
computer in the study. Fortunately, this effect is not present when compar-
ing GGP and GPKTC, since IBM 370/158 computers were used in both
cases.

(b) Robustness. The number of blank entries in Table 4 shows that,
despite the tuning effect mentioned in Section 5, many codes were simply
unable to solve certain problems. The most difficult problems (in terms of
the number of codes that failed to solve them) were Problems 1A, 6, and 7.
Problems 6 and 7 were the largest in the study.

Among the GP codes, GEOLP, GPKTC, and GGP stand out as being
very robust on this set of test problems, since they never failed to converge to
a solution. This is confirmed once again by the independently conducted
study in Ref. 4. The codes GEOEPS/GEOGRAD and SIGNOPT each
failed to converge for 5 of the 13 problems, and GPROG was the least
robust, with only 4 successes out of a total of 13 problems.

6.2. Results for General NLP Codes
(a) Efficiency. Of the NLP codes tested, GRG ranks as the most

efficient in terms of standardized CPU time and appears to do consistently
better than GREG. This result is misleading and would probably be reversed
if the timing runs for GRG were to be carried out using the FORTH
(OPT = 2) compiler. The reason for this statement is graphically illustrated
in Ref. 55. In Ref. 55, Problems 4C and 5 were solved by GRG using the
FORTH (OPT = 2) compiler. The Colville timer, also run using FORTH
(OPT= 2), yielded a standard time of 3.91 seconds for the IBM 370/168
[as compared with 16.83 using WATFIV (NOCHECK)]. The standardized
times thus computed for Problems 4C and 5 were 0.109 and 0.069, as
opposed to 0.052 and 0.049 using WATFIV (NOCHECK)!

The NLP codes all seemed to do badly on the most difficult problems in
the set namely, Problems 1A, 6, and 7. The only NLP method that was
able to solve the badly-scaled chemical equilibrium problem (Ref. 23)
was the penalty method GAPF-QL. This is probably because care was taken
in the coding of GAPF-QL to account for ill-conditioning (see Appendix).
The only NLP code to solve Problem 6 was Abadie and Guigou's reduced
gradient code GREG (Ref. 28). Since the majority of the effort in Problem 6
lies in finding a feasible solution (Phase 1), this might indicate that, among
the general NLP codes tested, GREG has the best Phase 1 component.

On first attempt, the NLP code GAPF-QL converged only on Problems
3, 4, and 7 (Ref. 33). The values given in Table 4 therefore in some sense

I70 JOTA: VOL. 26, NO. 2, OCTOBER 1978

show the best results that could be attained by G A P F - Q L on these problems
and are a result of a number of trial runs.

The code G P M / G P M N L C seemed to produce the most inaccurate
results; for the 3 of 7 problems solved, there was more than a 5% error in the
optimal solution value computed. The fact that errors of this size appear in
the results for COMET, G P M / G P M N L C , and G A P F - Q L leads the author
to suspect that the constraint tolerances specified in Dembo (Ref. 23) were
not strictly adhered to when these solutions were computed. However,
without direct information to the contrary, the author will assume that the
values in the table are CPU times computed with the specified tolerances.

(b) Robustness. Among the general NLP codes, the two generalized
reduced gradient codes that were tested, namely G R G and G R E G , proved
to be the most robust. The code G R G failed on 3 of 13 problems, whereas
G R E G only failed on 2 of the problems. The codes C O M E T and G A P F - Q L
each failed on 4 problems, and G P M / G P M N L C was the worst, with 5
failures and a record of inaccurate solutions for the problems that it did
solve.

6.3. Performance of G P Codes versus General N L P Codes
(a) Efficiency, In order to demonstrate the relative efficiencies of the

two sets of codes, standard times for the best two GP codes (GPKTC and
GGP) are compared with the best time computed by any one of the 5 general
NLP codes. This comparison is given in Table 5.

Table 5. Standardized times of general NLP codes versus GP codes.*

Problem
Nonlinear Best NLP Best NLP Best NLP

Type Variables constraints GPKTC GGP Best GP

1A GP 12 3 79.6 17.0 79.6
1B GP 12 3 1.0 [0.2] 1.0
2 SP 5 6 [0.2] 5.0 5.0
3 SP 7 14 1.3 t.4 1.4
4A SP 8 4 1.7 [0.1] 1.7
4B SP 8 4 1.8 [0.2] 1.8
4C GP 9 5 1.7 1.9 1.9
5 SP 8 6 1.5 [0.41 1.5
6 SP 13 13 1.6 1.8 1.8
7 SP 16 I9 1.4 4.0 4.0
8A GP 7 4 [0.8] 1.8 t.8
8B GP 7 4 1.0 2.0 2.0
8C GP 7 4 1.8 3.3 3.3

* Bracketed numbers refer to problems where the best standardized NLP time was better than
the standardized GP time in question.

JOTA: VOL. 26, NO. 2, OCTOBER I978 i71

An interesting observation is that the best GP time is always better than
the best general NLP time. Also, each of the GP codes G P K T C and G G P
outperform the best NLP result for the vast majority of the test problems. As
expected, the standardized times for G G P on Problems 4A and 4B are
considerably worse than those for the best NLP time, since these problems
were specifically designed to demonstrate the worst features of the Avriel-
Williams algorithm used in GGP.

(b) Robustness. The best GP codes were very much more robust on
these problems than their NLP counterparts. There were, however, GP
codes that did not perform as well as most of the NLP codes.

7. Conclusions and Suggestions for Future Research

Despite the drawbacks associated with the comparative study in Section
6, it is possible to draw some inferences regarding the behavior of the various
codes. These inferences hold with some (imprecise) degree of certainty for
the particular problem set tested. It is encouraging to note that all the
conclusions drawn in this section are supported by the results of an
independent comparative study (Ref. 4), done in a more controlled setting
and using a different set of problems. In the Rijckaert-Martens study (Ref.
4), the two best GP codes (in terms of computational efficiency and robust-
ness) were found to be G G P and GPKTC. 13 The same conclusion is evident
in the results of Section 6.

Two of the general NLP codes in this study, namely G R G and G R E G ,
are known to be among the best available general-purpose NLP codes. In
the Cotville study (Ref. 25) for example, Abadie and Guigou's G R E G
proved to be one of the most efficient and robust codes tested. Whereas
these NLP codes appeared to be fairly efficient in solving our GP test
problems, neither of them converged on the badly-scaled Problem IA or the
largest problem in the study, Problem 7. Also, their combined best time was
equal to the best GP time for Problem 1B and was between 1.4 and 5 times
slower for the remaining problems that they managed to solve.

The above result is an indication to this author that there is a need for
specialized GP codes, if not for any other reason but robustness alone. This
author comes to this conclusion despite the fact that he feels that even the
best GP codes available (GPKTC and GGP) are in many ways primitive and
lag far behind what could be achieved by specilizing current NLP technology
to GP.

t3 It should be noted that the version of GGP referred to in Ref. 4 is an earlier and less efficient
version than the one used here.

172 JOTA: VOL. 26, NO. 2, OC'TOBER 1978

The GP problems SPGP and SDGP have a structure that makes them
amenable to large-scale geometric programming (Ref. 1). As in LP, one can
precisely define what is meant by a large sparse GP. Sparsity in the general
NLP case is not easily defined.

In the summary, the conclusions are as follows. 14
(i) Specialized GP codes do appear to offer improvement in compu-

tation times and to be more robust than general NLP codes, on GP
problems.

(ii) Algorithms for the linearly constrained dual GP do not make use
of the latest available technology that has been developed for linearly-
constrained NLP.

(iii) Primal-based GP codes seem to dominate the field. The author
feels that this is a reflection of (ii) above and not because of some inherent
difficulty in the dual GP.

(iv) The Avriel-Williams (Ref. 17) and Duffin-Peterson (Ref. 34)
algorithms for solving signomial programs are often extremely inefficient
(refer to Problems 4A, 4B, and 4C) and experience shows that they often
exhibit a linear rate of convergence.

(v) A methodology for comparison of mathematical programming
software is sorely needed, in order that hypotheses about algorithm and
code behavior may be tested in a scientific manner. Hopefully, Ref. 27 is a
step in this direction.

7.1. Suggestions for Future Research

(i) There is a pressing need for an efficient and robust dual-based GP
code (if only as an intellectual challenge). The author feels that the approach
that should be taken is to specialize some of the numerically stable tech-
niques for linearly constrained NLP as described in Ref. 2. A framework for
doing this already exists (see Ref. 1). In particular, any strategy that is
adopted should be amenable to extensions to large-scale applications. That
is, the algorithm should be able to exploit sparsity and/or problem structure.

(ii) Some theoretical developments are that definitely needed, before
dual-based algorithms can be competitive, are efficient algorithms for
handling simple bounding constraints on primal variables. It is not unreason-
able to postulate that the resulting special structure in the dual problem,
when simple primal bounding constraints are present, could be exploited

~4 Strictly speaking, these conclusions are only valid for the test problems solved in this study.
Since, however, Rijckaert and Martens (Ref. 4) reach similar conclusions on a different set of
problems, there is reason to believe that these concludions will be true for a wide variety of
GP problems.

JOTA: VOL, 26, NO. 2, OCTOBER 1978 173

computationally. This is an important consideration, because simple
bounding constraints are invariably present in models of real systems.

(iii) Many nonlinear programming applications (Ref. 35) are
signomial problems that may be written in the form:

minimize ~ cj exp(yj), (34)
y,Z jEJO

subject to ~ cj exp(yi)= 1, k = 1, 2 , q, (35)
j~Jk

where the sets

cj exp(yi)--- 1, k=q+l , . . . ,p , (36)
jeJk

yj- ~ aijz i=0, j = 1, 2 , . . . , n, (37)
i = 1

l/<--zi<--uj, j=l ,2 , . . , ,n , (38)

Jk are defined as before and the coefficients cj, the
"exponents" aq, and the variable bounds l i and uj are arbitrary real numbers
(with lj < uj, of course).

The common approach to solving such problems (Ref. 35) has been to
somehow convert Eqs. (35) to inequalities and then to apply the Avriel-
Williams procedure, which converts the solution of the above signomial
problem to the solution of a sequence of GP's. This strategy" is fraught with
difficulties and requires an experienced mathematical programmer for its
implementation. It is this author's feeling that research into the develop-
merit of software for signomial programs should concentrate on a direct
solution of the above program. It has special features that would make either
a generalized reduced gradient approach or an augmented Lagrangian
approach attractive possibilities when designing a code. Naturally, if the
code is to be competitive, the linear constraints (37) and (38) should be
handled in some implicit fashion.

8. Appendix: Summary of GP Software Reported in the Literature

This appendix summarizes available information on GP codes that have
appeared in the literature. We only include publications in which there is
some evidence that the proposed algorithm has been coded and tested on a
number of problems. There have been many attempts at coding GP
algorithms, and it is hoped that none of these have been omitted here. Codes
that are not mentioned in this section have not been omitted purposefully
and were simply not known to this author at the time of writing.

174 JOTA: VOL. 26, NO. 2, OCTOBER 1978

Information on the codes is presented in the chronological order in
which they appeared in the literature. An asterisk next to the code's name
indicates that it appears in the computational study in Section 5.

Primal-Based Codes

Code 1
Name: DAP.
Author: G. V. Reklaitis (Ref. 36).
References: G. V. Reklaitis and D. J. Wilde (Refs. 37, 38, 16).
Algorithm: Solves SP directly using the differentiable algorithm of

Wilde and Beightler ~ e f . 39). Signomial programs solved via sequential GP
approximation scheme of Duffin (Ref. 40).

Comments: No Phase 1 method reported. Reklaitis (Ref. 41) has
compared DAP to the primal code GGP and in general has found GGP to be
far more efficient.

Code 2
Name: GGP*
Author: R. Dembo.
References: Dembo (Ref. 18, Ref, 5); Avriel, Dembo, and Passy

(Ref. 19).
Algorithm: Solves PGP directly using a cutting-plane algorithm based

on condensation. Signomial problems are solved using an accelerated AW
algorithm.

Comments: Does not require a feasible starting point. Phase 1
algorithm operates on a modified problem to compute an initial feasible
point if necessary. Experience with GGP has shown it to be both reliable and
efficient. The code has been widely distributed and has been used to solve a
large number of GP apllications. Feedback indicates that the method is
robust and efficient for small- to medium-sized problems. A very similar
algorithm was coded and tested as early as 1968 at Mobil Research
Laboratories (Williams, Ref. 6).

Code 3
Authors: W. Gochet and Y. Smeers (Ref. 42).
Algorithm: Solves SPGP directly using a cutting-plane algorithm. Cuts

are shown to be "deeper" than Kelley cuts.
Comments: No extension to signomial programs is reported. Compu-

tational experience is reported on two of Beck and Ecker's (Ref. 12)
problems.

JOTA: VOL. 26, NO. 2, OCTOBER I978 t75

Code 4
Authors: G. S. Dawkins, B. C. Mclnnis, and S. K. Moonat (Ref. 43).
Algorithm: Tangential approximation method of Hartley and Hocking

(Ref. 44). Operates on PGP in the variables z = log x.
Comments: No extension to signomial programming reported. No

details of the implementation are given and only the solution of a single
problem is presented.

Code 5
Authors: J. G. Ecker and M. J. Zoracki (Ref. 45).
Algorithm: PGP is converted to a GP with at most two monomiat terms

in each constraint, according to the procedure outlined by Duffin and
Peterson (Ref. 20). This posybinomial problem is solved using a hybrid of
the tangential approximation and cutting-plane methods.

Comments: No extensions to signomial programming are given, and
only a limited amount of computational experimentation is reported.

Code 6
Name: GPKTC*.
Authors: M. J. Rijckaert and X. M. Martens (Ref. 22).
Algorithm: The Kuhn-Tucker conditions for optimality of PGP are

solved iteratively using a condensation procedure. This method is essentially
equivalent to a Newton-Raphson algorithm for direct solution of the
Kuhn-Tucker conditions expressed in terms of the variables z = log x.

Comments: The code GPKTC has been extensively tested in Rijckaert
and Martens (Ref. 4) and appears in the comparative study in Section 5.
Experimentation with the code has shown it to be very robust and efficient
especially for small GP problems. The code does not have an efficient
mechanism for handling simple bounding constraints and constraints that
are slack at optimality. A Phase 1 procedure is included in GPKTC and,
judging from the results in Section 5, it appears to work well.

Code 7
Name: GEOLP*.
Authors: J. J. Dinkel, W. H. Elliott, and G. A. Kochenberger (Ref. 46).
References: Dembo (Ref. 18); Avriel, Dembo, and Passy (Ref. t9).
Algorithm: Essentially the same as GGP.
Comments: The authors claim to have successfully solved fairly large

problems using GEOLP, and they feel (Ref. 46) that GEOLP works better
than any other GP software that they have developed. It is interesting to
note (see Section 6) that, despite the fact that GGP and GEOLP are based
on the same algorithm, GGP seems to do consistently better than GEOLP

176 JOTA: VOL. 26, NO. 2, OCTOBER 1978

on the test problems in Ref. 23. One possible explanation could be that GGP
contains a number of algorithm refinements not contained in Refs. 18 and
19.

Code 8
Authors: M. Rammamurthy and G. H. Gallagher (Ref. 7).
References: Dembo (Ref. 18); Avriel, Dembo, and Passy (Ref. 19).
Algorithm: Essentially the same as GGP.
Comments: The authors claim to have solved a large number of civil

engineering design problems using their code. Experience similar to that
quoted in Code 2 above.

Dual-Based Codes

Code 1
Author: C. J. Frank.
References: Frank (Refs. 47, 48).
Algorithm: Solves the dual program DGP by applying the direct search

method of Hooke and Jeeves (Ref. 49). Probably, the first published GP
code. Experimentation has indicated that, in many cases, convergence of the
method is extremely slow.

Comments: Code does not solve signomial problems.

Code 2
Name: GOMTRY
Authors: G. E. Blau and D. J. Wilde (Refs. 50, 51).
Algorithm: Solves the Kuhn-Tucker conditions for the dual program

SDGP. Solves signomiat programs in the above manner by attacking the
necessary conditions for optimality of the pseudo-dual problem (Ref. 49).

Comments: GOMTRY's convergence is relatively good for small prob-
lems but experimentation (Ref. 4) shows that the code often fails to converge
especially for medium-sized problems.

Code 3
Author: G. W. Westley (Ref. 52).
Algorithm: Based on the Murtagh and Sargent (Ref. 53) projection

method for linearly constrained nonlinear programs. Nondifferentiability of
the dual objective function is handled by placing arbitrary bounds on the
dual variables.

Comments: Solves DGP; no extensions to signomial programs are
reported. Bradley (Ref. 21) has tested the code extensively and reports that
it often failed to solve even simple problems taken from the literature.

JOTA: VOL. 26, NO. 2, OCTOBER 1978 177

Code 4
Name: SIGNOPT*.
Authors: A. B. Templeman, A. J. Wilson, and S. K. Winterbottom

(Ref. 54)
Algorithm: Signomiat problems are solved using the Avriel and Willi-

ams (Ref. 17) procedure. The posynomial subprobtems are solved by
explicitly forming the reduced RDGP and solving it using a modified
Fletcher-Reeves (Ref. 55) algorithm. Nondifferentiability of dual objective
is handled by placing arbitrary'lower bounds on the dual variables.

Comments: The code has been extensively tested by Templeman (Ref.
14) and Bradley (Ref. 21), both of whom claim a fair degree of success in
solving small- to medium-size problems. However, these authors indicate
that convergence can often be very slow. These findings are born out by the
results in Section 6 and in Rijckaert and Martens (Ref. 4). No Phase 1
capability is included in SIGNOPT to initiate the Avriel and Williams
procedure.

Code 5
Name: GPROG*.
Author: T. Jefferson (Refs. 56, 57).
Algorithm: Explicitly forms the reduced dual RDGP and solves it using

a modified Newton algorithm. Nondifferentiabilities are avoided by adding
slack variables to the primal in the manner of Duffin and Peterson (Ref. 58).
Extension to signomials is carried out using the harmonic mean procedure of
Duffin and Peterson (Ref. 28).

Comments: Unless the invariance of the dual coefficient matrix is
exploited, the harmonic approach can be shown to be less desirable than the
condensation algorithm of Avriel and Williams (Ref. 17). Experience with
the code shows that it often fails to converge. This code and QUADGP,
however, are the only ones mentioned in this paper with the capability of
performing a detailed sensitivity analysis. G P R O G does not contain a Phase
1 routine for signomial problems.

Code 6
Name: CSGP.
Authors: P. A. Beck and J. G. Ecker (Ref. 12).
Algorithm: The concave simplex method is applied to DGP with a

modification that allows for blocks of variables to go to zero simultaneously.
It is this modification that overcomes the nondifferentiability problem.

Comments: This code stands out as being the only dual-based code that
attempts in a theoretically sound manner to overcome the nondifferen-
tiability problem and to include an option to solve subsidiary problems, if

178 JOTA: VOL. 26, NO. 2, OCTOBER 1978

they are needed, when converting to an optimal solution of the primal PGP.
No provision is made in the code for signomial problems. The code has been
tested extensively by Rijckaert and Martens (Ref. 4) and Beck and Ecker
(Ref. 12). Experience shows that CSGP is sometimes slow relative to other
codes but that it is fairly reliable.

Code 7
Authors: G. A. Kochenberger, R. E. D. Woolsey, and B. A. McCarl

(Ref. 59).
Algorithm: Solves SDGP using separable programming.
Comments: No extensions to signomial programming are mentioned.

Only computational experience reported is on one small problem and for
this problem the method does poorly.

Code 8
Name: NEWTGP.
Author: J. Bradley (Ref. 60).
Algorithm: Explicitly reduces dual program DGP to the program

RDGP. Solves the nonlinear equations resulting from the Kuhn-Tucker
conditions for optimality of RDGP using a Newton-Raphson procedure.
Nondifferentiability is avoided by setting a pseudo boundary which prevents
the algorithm from hitting a 6 -> 0 constraint. This is equivalent to artificially
adding a 6 -> e constraint.

Comments: The code has been tested extensively by Rijckaert and
Martens (Ref. 4), and the indications are that it often fails to converge; in
cases where convergence is attained, the code does not compete well against
the best primal methods.

Code 9
Name: GEOGRAD, GEOEPS*.
Authors: J. J. Dinkel, G. A. Kochenberger, and B. A. McCarl (Ref. 61).
Algorithm: The algorithm is essentially the same as the one used by

Bradley in NEWTGP. Extension to signomials is carried out using the
GEOEPS routine which executes the Avriel and Williams (Ref. 17)
algorithm.

Comments: No Phase 1 method for signomials. The implementation
seems to perform reasonably well when it converges. However, it is
generally not competitive with the best primal methods.

Code 10
Name: QUADGP.
Author: J. Bradley (Ref. 21).

JOTA: VOL. 26, NO. 2, OCTOBER 1978 179

Algorithm: Solves posynomiat programs by explicitly forming the
reduced dual program RDGP which is then solved by successive quadratic
approximations. Nondifferentiability of the dual objective function is
handled by artificially bounding dual variables from below. This bound, in
contrast to those mentioned previously, is dynamic and decreases rapidly
from iteration to iteration. Dual variables are zeroed when an estimate of
the primal constraint multiplier becomes very small. The code has options
for both the Avriel and Williams (Ref. 17) and the Duffin and Peterson (Ref.
28) extensions to signomial programming, but Bradley (Ref. 21) indicates
that the Avriel-Williams procedure is to be preferred.

Comments: A feasible point is required to initiate Q U A D G P for
signomial problems. Bradley (Ref. 21) has tested Q U A D G P extensively.
However, the only relative measure of effectiveness with the codes
in Section 5 can be obtained from Problems 8A, 8B, and 8C, for
which computation times are given, in his thesis. An important
feature of Q U A D G P is that it has the capability of performing sensitivity
analysis.

Code 11
Names: LAM, SP, LM, NRF, NRT, NRVB, DCA.
Authors: M. J. Rijckaert and X. M. Martens (Ref. 4).
Algorithm: LAM is a linear approximation method for solving the dual

and SP is based on a separable programming algorithm. LM, NRF, NRT,
NRVB and DCA are all essentially based on Newton-type algorithms for
solving the Kuhn-Tucker conditions of SDGP.

Comments: These codes are described and tested in (Ref. 4) and do not
seem to be competitive with the best available software. In particular, they
do not appear to be robust and often fail to converge on medium-sized
problems.

Code 12
Author: J. R. McNamara (Ref. 62).
Algorithm: Constructs an augmented primal problem with zero degrees

of difficulty. The augmented problem depends on a number of parameters
and for certain realizations of these parameters the solution to the aug-
mented dual is determined uniquely.

Comments: Solves posynomiat problems only. Computational results
are given for 2 trivial examples (Ref. 62), and mention is made of larger
examples. The author indicates that the proposed method does not neces-
sarily converge (Ref. 62, p. 23).

180 JOTA: VOL. 26, NO. 2, OCTOBER 1978

References

1. DEMBO, R. S., Second-Order Algorithms for the Geometric Programming Dual,
Part 1: Analysis, Mathematical Programming (to appear).

2. GILL, P. E., and MURRAY, W., Numerical Methods in Constrained Optimiza-
tion, Academic Press, New York, New York, 1974.

3. WOLFE, P., Convergence Theory in Nonlinear Programming, Integer and
Nonlinear Programming, Edited by J. Abadie, North-Holland Publishing
Company, Amsterdam, Holland, 1970.

4. RIJCKAERT, M. J., and MARTENS, X. M., A Comparison o[Generalized
Geometric Programming Algorithms, Katholieke Universiteit te Leuven, Report
No. CE-RM-7503, 1975.

5. DEMBO, R. S., GGP--A Computer Program for Solving Generalized Geometric
Programting Problems, Technion, Israel Institute of Technology, Department of
Chemical Engineering, Users Manual, Report No. 72/59, 1972.

6. WILLIAMS, A. C., Private Communication, 1972.
7. RAMMAMURTHY, S., and GALLAGHER, R. H., Generalized Geometric Pro-

gramming in Light Gage Steel Design, Paper Presented at the ORSA/TIMS
Meeting, Miami, Florida, 1976.

8. DINKEL, J. J., and KOCHENBERGER, G. m., Private Communication, 1975.
9. DUFFIN, R. J., PETERSON, E. L., and ZENER, C., Geometric Programming--

Theory and Application, John Wiley and Sons, New York, New York, 1967.
I0. IBM Corporation, Mathematical Programming System--Extended (MPSX)

and Generalized Upper Bounding (GUB) Program Description, Program No.
5734-XM4, 1972.

1 I. DEMBO, g. S., Dual to Primal Conversion in Geometric Programming, Journal
of Optimization Theory and Applications, Vol. 26, No. 1, 1978.

12. BECK, P. A., and ECKER, J. G., A Modified Concave Simplex Algorithm for
Geometric Programming, Journal of Optimization Theory and Applications,
Vol. 15, pp. 189-202, 1975.

13. DEMBO, R. S., Sensitivity Analysis in Geometric Programming, Yale University,
School of Organization and Management, Working Paper No. SOM-35, 1978.

14. TEMPLEMAN, A.]3., Private Communication, 1975.
15. PASSY, U., and WILDE, D. J., Generalized Polynomial Optimization, SIAM

Journal on Applied Mathematics, Vol. 15, pp. 1344--1356, 1967.
16. BEIGHTLER, C. S., and PHILLIPS, D. T., Applied Geometric Programming,

John Wiley and Sons, New York, New York, 1976.
17. AVRIEL, M., and WILLIAMS, A. C., Complementary Geometric Programming,

SIAM Journal on Applied Mathematics, Vol. 19, pp. 125-141, 1970.
18. DEMBO, R. S., The Solution of Complementary Geometric Programming Prob-

lems, Technion, Israel Institute of Technology, MS Thesis, 1972.
19. AVRIEL, M., DEMBO, R. S., and PASSY, U., Solution of Generalized Geometric

Programming Problems, International Journal of Numerical Methods in
Engineering, Vol. 9, pp. 141-169, 1975.

JOTA: VOL. 26, NO. 2, OCTOBER 1978 181

20. DUFFIN, R. J., and PETERSON, E. L., Geometric Programming with Signomials,
Journal of Optimization Theory and Applications, Vol. 11, pp. 3-35, 1973.

21. BRADLEY, J., The Development of Polynomial Programming Algorithms with
Applications, Dublin University, Department of Computer Science, PhD
Thesis, 1975.

22. RIJCKAERTS, M. J., and MARTENS, X. M., A Condensation Method for
Generalized Geometric Programming, Katholieke Universiteit te Leuven,
Report No. CE-RM-7503, 1975.

23. DEMBO, R. S., A Set of Geometric Programming Test Problems and Their
Solutions, Mathematical Programming, Vol. 10, pp. 192-213, 1976.

24. DINKEL, J. J., KOCHENBERGER, G. A., and MCCARL, B., A Computational
Study of Methods for Solving Polynomial Geometric Programs, Journal of Opti-
mization Theory and Applications, Vol. 19, pp. 233-259, 1976.

25. COLVILLE, A. R., A Comparative Study of Nonlinear Programming Codes,
IBM, New York Scientific Center, Report No. 320-2949, 1968.

26. RATNER, M., LASDON, L. S., and JAIN, A., Solving Geometric Programs Using
GRG--Results and Comparisons, Standford University, Systems Optimization
Laboratory, Technical Report No. SOL-76-1, 1976.

27. DEMBO, R. S., and MULVEY, J. M., On the Analysis and Comparison of
Mathematical Programming Algorithms and Software, Proceedings of the
Bicentennial Conference on Mathematical Programming, Gaithersburg,
Maryland, 1976.

28. HIMMELBLAU, D. M., Applied Nonlinear Programming, McGraw-Hill Book
Company, New York, New York, 1972.

29. RIJCKAERT, M. J., Private Communication, 1975.
30. LASDON, L. S., WARREN, A. D., RATNER, M. W., and JAIN, A., GRGSystem

Documentation, Cleveland State University, Technical Memorandum No. CIS-
75-01, 1975.

31. ABADIE, J., and GUIGOU, J., Numerical Experiments with the GRG Method,
Integer and Nonlinear Programming, Edited by J. Abadie, North Holland
Publishing Company, Amsterdam, Holland, 1970.

32. KREUSER, J. L., and ROSEN, J. B., GPM/GPMNLC Extended Gradient
Projection Method Nonlinear Programming Subroutines, University of Wiscon-
sin, Academic Computer Center, 1971.

33. HIMMELBLAU, D. M., Private Communication, 1975.
34. DUFFIN, R. J., and PETERSON, E. L., Reserved Geometric Programs Treated by

Harmonic Means, Carnegie-Mellon University, Research Report No. 71-79,
1971.

35. DEMBO, R. S., Some Real-Worm Applications of Geometric Programming,
Applied Geometric Programming, Edited by C. S. Beightler and D. T. Phillips,
Prentice-Hall, Englewood Cliffs, New Jersey, 1976.

36. REKLAITIS, G. V., Singularity in Differentiable Optimization Theory: Differen-
tialAlgorithm for PosynomialPrograms, Stanford University, PhD Thesis, 1969.

37. REKLAITIS, G. V., and WILDE, D. J., A Differentiable Algorithm for Posy-
nomial Programs, DECHEMA Monographien, Vol. 67, pp. 503-542, 1971.

182 JOTA: VOL. 26, NO. 2, OCTOBER 1978

38. REKLAITIS, G. V., and WILDE, D. J., Geometric Programming via a Primal
Auxiliary Problem, AIIE Transactions, Vol. 6, 1974.

39. WILDE, D. J., and BEIGHTLER, D. D., Foundations of Optimization, Prentice-
Hall, Englewood Cliffs, New Jersey, 1967.

40. DUFFIN, R. J., Linearizing Geometric Programs, SIAM Review, Vol. 12, pp.
211-227, 1970.

41. REKLAITIS, G. V., Private Communication, 1976.
42. GOCHET, W., and SMEERS, Y., On the Use of Linear Programs to Solve

Prototype Geometric Programs, Katholieke Universiteit te Leuven, Center
for Operations Research and Econometrics, Discussion Paper No. 7229,
1972.

43. DAWKINS, G. S., MCINNIS, B. C., and MOONAT, S. K., Solution to Geometric
Programming Problems by Transformation to Convex Programming Problems,
International Journal of Solid Structures, Vol. 10, pp. 135-136, 1974.

44. HARTLEY, H. O., and HOCKING, R. R., Convex Programming by Tangential
Approximation, Management Science, Vol. 9, pp. 600-612, 1963.

45. ECKER, J. G., and ZORACKI, M. J., An Easy Primal Method for Geometric
Programming, Management Science, Vol. 23, pp. 71-77, 1976.

46. DINKEL, J. J., ELLIOTT, W. H., and KOCHENBERGER, G. A., A Linear
Programming Approach to Geometric Programs, Naval Research Logistics
Quarterly (to appear).

47. FRANK, C. J., An Algorithm for Geometric Programming, Recent Advances in
Optimization Techniques, Edited by D. D. Lavi and D. D. Vogel, John Wiley
and Sons, New York, 1966.

48. FRANK, C. J., Development of a Computer Program for Geometric Programming,
Westinghouse Report No. 64-1, HO-124-R2, 1964.

49. HOOKE, R., and JEEVES, T. A., Direct Search Solution of Numerical and
Statistical Problems, Journal of the Association for Computing Machinery, Vol.
8, pp. 212-219, 1961.

50. BLAU, G. E., and WILDE, D. J., A Lagrangean Algorithm for Equality
Constrained Generalized Polynomial Optimization, AIChE Journal, Vol. 17, pp.
235-240, 1971.

51. KUESTER, J. L., and MtZE, J. H., Optimization Techniques with FORTRAN
Programs, McGraw-Hill Book Company, New York, New York, 1973.

52. WESTLEY, G. W., A Geometric Programming Algorithm, Oak Ridge National
Laboratory, Technical Report No. ORNL-4650, 1971.

53. MURTAGH, B. A., and SARGENT, R. W. H., A Constrained Minimization
Method with Quadratic Convergence, Optimization, Edited by R. Fletcher,
Academic Press, London, 1969.

54. TEMPLEMAN, A. B., WILSON, A. J., and WINTERBOTTOM, S. K.,
SIGNOPT--A Computer Code for Solving Signomial Geometric Programming
Problems, University of Liverpool, Department of Civil Engineering, Research
Report, 1972.

55. FLETCHER, R., and REEVES, C. M., Function Minimization by Conjugate
Gradients, Computer Journal, Vol. 7, pp. 149-154, 1964.

JOTA: VOL. 26, NO. 2, OCTOBER 1978 183

56. JEFFERSON, T., Geometric Programming, with an Application to Transportation
Planning, Northwestern University, PhD Thesis, 1972.

57. JEFFERSON, T., Manual[or the Geometric Programming Code GPROG (CDC)
VERSION 2, University of New South Wales, Australia, Mechanical and
Industrial Engineering Department, Report No. 1974/OR/2, 1974.

58. DUFFIN, R. J., and PETERSON, E. L., Geometric Programs Treated with Slack
Variables, Applied Analysis, Vol. 2, pp. 255-267, 1972.

59. KOCHENBERGER:, G. A., WOOLSEY, R. E. D., and MCCARL, B. A., On the
Solution of Geometric Programs via Separable Programming, Operations
Research Quarterly, Vol. 24, pp: 285-296, 1973.

60. BRADLEY, J., An Algorithm for the Numerical Solution of Prototype Geometric
Programs, Institute of Industrial Research and Standards, Dublin, Ireland,
1973.

61. DINKEL, J. J., KOCHENBERGER, G. A. and MCCARL, B. A., AnApproach to
the Numerical Solution of Geometric Programs, Mathematical Programming,
Vol., pp. 181-190, 1974.

62. MCNAMARA, J. R., A Solution Procedure for Geometric Programming, Opera-
tions Research, Vol. 24, pp. 15-25, 1976.

63. DUFFIN, R. J., and PETERSON, E. L., The Proximity of (Algebraic) Geometric
Programming to Linear Programming, Mathematical Programming, Vol. 3, ppo
250-253, 1972.

64. SHAPLEY, M., and CUTLER, L., Rand's Chemical Composition Program--A
Manual, The Rand Corporation, Report No. 495-PR, 1970.

65. CLASEN, R. J., The Numerical Solution of the Chemical Equilibrium Problem,
The Rand Corporation, Report No. 4345-PR, 1965.

