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Abstract. This paper attempts to consolidate over 15 years of attempts 
at designing algorithms for geometric programming (GP) and its exten- 
sions. The pitfalls encountered when solving GP problems and some 
proposed remedies are discussed in detail. A comprehensive summary 
of published software for the solution of GP problems is included. Also 
included is a numerical comparison of some of the more promising 
recently developed computer codes for geometric programming on a 
specially chosen set of GP test problems. The relative performance of 
these codes is measured in terms of their robustness as well as speed of 
computation. The performance of some general nonlinear programming 
(NLP) codes on the same set of test problems is also given and compared 
with the results for the GP codes. The paper concludes with some 
suggestions for future research. 
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1. Introduction 

Ever  since its incept ion,  geometr ic  p ro g r a mmi ng  (GP)  has been  
somewhat  of an outcast  in the m a i n s t r e a m  of mathemat ica l  p r o g r a m m i n g  
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literature. Indeed, to this very day many prominent members of the 
mathematical programming community regard GP as a highly specialized 
curiosity and a "dead" area for research. The reason for this is twofold. 
Firstly, the historical development of computational procedures and duality 
theory in GP has, for the most part, taken place outside of the accepted 
state-of-the-art procedures in nonlinear programming (NLP). Secondly, 
there has been a failure on the part of many mathematical programmers to 
realize that a wide variety of important practical problems (for example, 
optimal engineering design problems) may be effectively modelled using 
geometric programming. 

It is precisely because of its applicability to optimal engineering design 
that GP has been enthusiastically accepted by the engineering community. 
In fact, engineers have had almost an exclusive hand in the development of 
GP software. To some extent, which has been detrimental to GP in terms of 
improving its image in mathematical programming circles, mainly because 
GP software development has, as a result, lagged far behind general NLP 
software development. This is particularly true with regard to software for 
solving the linearly constrained dual GP. To be more precise, apart from 
work currently in progress (Ref. 1), to this author's knowledge there is no 
published algorithm for the linearly constrained dual that implements some 
specialized version of one of the latest numerically stable techniques for 
linearly constrained nonlinear programming, as discussed in Gill and Mur- 
ray (Ref. 2). Matrix factorization is virtually unheard of in GP circles. 

There has been, however, one fortunate byproduct of the above 
phenomenon. Since GP software developers were to a large extent not 
prejudiced by mathematical programming folklore, the implementation and 
testing of many algorithms that would otherwise have been shunned by 
"respectable" mathematical programmers has been carried out by GP 
researchers. A good example of this is Kelley's cutting-plane algorithm for 
convex programs. The method is purported to be at best geometrically 
convergent (see Wolfe, Ref. 3), numerically unstable, and definitely not an 
algorithm to be recommended for the solution of convex programming 
problems. Though theoretically there is definitely justification for the above 
hypothesis, there is no computational evidence to show that Kelley's 
algorithm does in fact perform worse (or better) than existing algorithms for 
convex programming. 

It is shown in Section 5 and confirmed by Rijckaert and Martens (Ref. 
4) that one of the most efficient 4 and robust 5 software packages currently 

4 In terms of standardized C P U  time. 
5 By robust,  we m e a n  that  the  code will succeed in solving the majority of problems for which it 

was designed, to within prescribed tolerance limits. 
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available for solving GP's is a simple application of Kelley's cutting-plane 
algorithm. Furthermore, the algorithm has proved to be so successful that 
there are at least four known software packages based on it (Refs. 5-8) and 
in each case the respective authors have claimed excellent results. 

The purpose of this paper is not only to summarize the current 
state-of-the-art of GP software but to identify the main sources of difficulty 
in designing such software and to point to directions for future research. To 
this end, we will discuss the following topics: solving GP's using general- 
purpose NLP software (Section 2); factors influencing the choice between 
primal-based and dual-based algorithms (Section 3); published extensions 
to signomial programming (Section 4); computational comparison of some 
of the above software (Section 5) and analysis of the results (Section 6); and 
conclusions and suggestions for future research (Section 7)° 

2. Solving GP's Using General-Purpose NLP Software 

Contrary to popular belief, one cannot in general simply solve 
geometric programming problems Using general NLP software without 
taking certain necessary precautions. To show this, we consider the primal 
and dual programs separately. 

2.1 .  

gram (PGP) may be defined 
problem: 

(POP) minimize g0(x) = ~ cj [~ x~"~, 
x j ~ J o  i=1 

Solving Primal Geometric Programs. A primal geometric pro- 
as the following nonlinear programming 

subject to gk(x)= ~. cj ~] x]  'j <- l, 
J E J k  i = I 

k = l , 2  . . . .  ,p, 

x~>0, i = 1 , 2  . . . . .  m, 

(2) 
(3) 

where (i) the sets Jk, k = (0, 1, 2 . . . . .  p), number terms in the objective 
function Jo and the constraints Jk, k = 1, 2 . . . . .  p, and (ii) the parameters ci 
and a~j are real constants with the restriction that c i > 0 for 

jE 0 
k=0 

The PGP has a number of special features that are important from the 
point of view of algorithmic design. They are the following. 

(a) Derivatives of the objective and constraint functions of any order 
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are available explicitly. Furthermore, they are relatively cheap to compute 
once function evaluations have been made. For example, in a posynomial 
with q terms, only q multiplications and q divisions are required to compute 
the first derivative of the function with respect to some variable, once the 
values of these terms are known. 

(b) The problem is convex in the variables log x, and thus may be 
solved by any convex programming algorithms that account for feature (c) 
below. 

(c) Observe that the primal variables x,, i =  1, 2 , . . .  m, are con- 
strained to be strictly positive. Thus, the feasible region of PGP may not be 
compact and strictly speaking we should write "seek the infimum of" in place 
of "minimize" in the above programming problem. When a primal variable 
goes to zero or to some negative value, some of the terms in one or more 
posynomial functions might become undefined (for example, terms that 
contain the variable raised to a negative power). 

The above characteristics of the primal indicate that any general NLP 
software may be used to solve GP problems provided that care is taken to 
avoid negative and, in some cases, zero values of the primal variables. One 
simple way of accomplishing this is to bound these variables from below 
using some small positive value. However, this approach may run into 
difficulty in cases where the GP is degenerate (see Duffin, Peterson, and 
Zener, Ref. 9) and some terms do go to zero in the optimal solution. 

Since analytical derivatives are available and are relatively cheap to 
compute, it seems reasonable to expect gradient-based methods to be 
suitable for specialization to solving PGP problems. It is also not difficult to 
write a suitable front-end to any general gradient-based code that will read 
the term coefficients c ~ , j = l , 2  . . . .  ,n, the exponent matrix a~j,i= 
1, 2 , . . . ,  m and j = 1, 2 , . . . ,  n, and numbers defining the sets Jk, k = 
0, 1 . . . . .  p, and from this data compute function and gradient values. 
Furthermore, since under a simple transformation the primal is convex, the 
above discussion applies to convex programming software as well. 

Geometric programming is also amenable to solution via separable 
programming techniques. The separable primal geometric program (SPGP) 
is given below. 

(SPGP) minimize Y~ c/exp(yi), (4) 
y;z  j~Yo 

subject to Y. c/exp(yj)-  < 1, k = 1, 2 , . . . ,  p (5) 

Yi - ~ a#zi = O, j = 1, 2 . . . .  , n. (6) 
i=t 
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Equivalence of this separable formulation of the primal to the primal 
program PGP is easily recognized if we let 

zi = log xi, i = 1, 2 . . . . .  m, 

and define the constants c i and aq and the sets Jk, k = O, 1, 2 . . . . .  p, as in 
PGP. 

The SPGP formulation of the primal is a problem in n + m variables as 
opposed to the m-variable formulation PGP. However, the addition of these 
variables results in a problem with a very special structure that may be 
exploited by special-purpose algorithms. Also, the above formulation would 
allow the solution of GP problems by widely available mathematical pro- 
gramming software systems such as MPSX (Ref. 10). 

To this author's knowledge, there have only been two attempts at 
devising special-purpose algorithms for the solution of SPGP, namely Codes 
1 and 3 (Appendix). Computational experience with these codes, both of 
which are based on linearization methods, is not encouraging. However, this 
should not be taken as conclusive evidence that solving SPGP is a poor way 
to approach the solution of GP problems. An algorithm more in keeping 
with the state-of-the-art in NLP would be to use a Newton-type method 
with an active constraint set strategy for maintaining feasibility of the 
nonlinear inequality constraints (5) and a projection method for handling 
the linear equality constraints. What makes this approach so attractive is the 
fact that the Hessian of a Lagrangian involving the constraints (5) would be a 
positive definite diagonal matrix, a fact that could surely be exploited 
computationally. 

Another approach that is also in keeping with current practice in NLP 
would be to incorporate the nonlinear constraints (5) into an augmented 
Lagrangian and minimize this Lagrangian with respect to the linear equality 
constraints (6). 

2.2. Solving Dual Geometric Programs. The dual geometric program 
(DGP) as defined by Duffin, Peterson, and Zener (Ref. 9) is the following 
linearly constrained nonlinear programming problem: 

(DGP) maximize v(6)= fi (cH3j) ~j fi *~ /~k, (7) 
/=1 k:=l 

subject to Z 3i=1, (8) 
j~Jo 

p 
~. 2 aq3j=0, i=  1,2 . . . . .  m, (9) 

k =  1 j E J  k 

,~j>- 0, j =  1, 2 . . . .  n, (10) 
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where /~k = ~ 3j, k = l , 2  . . . . .  p. (11) 
J~Jk 

A subtle but important point is that the Ak's are not treated as 
independent variables in the problem and the relationships in (11) are not 
treated as constraints, but rather as definitions. Whereas from a theoretical 
viewpoint this distinction might appear to be a case of semantics, it is 
extremely bad practice computationally. In fact, it is the view of this author 
that the explicit elimination of the A variables and the explicit formation of the 
reduced dual problem have been the singular most important factors in the 
failure to design efficient and numerically stable software for the dual problem. 
These statements will be justified in the discussion below. 

The reduced dual geometric program (RDGP) is obtained by eliminat- 
ing m + 1 basic variables from the program DGP and expressing them in 
terms of d = n - ( m  + 1) nonbasic variables. 6 This results in the following 
dual program in the variables ri, i = 1, 2 , . . . ,  d: 

(RDGP) maxirriize 
t" 

subject to 

d 

6i(r)=b}°~+ Y~ rib}°>-O, j = l , 2 , . . . , n ,  (13) 
i = l  

where 

Ak(r)~ 2 b ° ri b} ° , k=  1,2 . . . . .  p, (14) 
k j 6 J  k A i = 1  j 

Ki ~ I I  bq, --- c j , ,  i = 0, 1 , . . . ,  d. (15) 
j = l  

The reduced dual was strongly emphasized in Duffin, Peterson, and 
Zener (Ref. 9) as being a computationally useful formulation of the dual GP. 
Unfortunately, the theoretical exposition in Ref. 9 was taken far too literally 
by researchers who were attempting to design algorithms for the dual. 
Without exception, every dual-based code known to this author (see 
Appendix) explicitly computes and stores the basis vectors b (°, i=  
0, 1 , . . . ,  m, using Gaussian elimination or some related technique. This is 
completely contrary to accepted practice in nonlinear programming (Ref. 2, 
Chapter 2). A far more stable approach numerically would be to carry out 

6 The quanti ty d is somet imes  referred to as the degree of difficulty of a GP. 
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the reduction procedure implicitly by storing a matrix Z whose columns 
span the null space of the equality constraint coefficient matrix of D G P  
(Refs. 2-2). The matrix Z can be computed and stored explicitly or in 
product form by performing an orthogonal triangulation of the coefficient 
matrix. Incidentally, this same factorization can be used efficiently to find a 
stable least-square solution to the primal-dual optimality relationships (Ref. 
t l )  in order to recover the optimal primal variables. For details on this 
approach the reader should consult (Refs. 1-2). 

We feet that algorithms for the dual should be based on the following 
separable dual geometric program (SDGP), that is equivalent to DGP:  

(SDGP) maximize 
&A 

subject to 

V(6, A)= ~, 6 j log(q/Si )+  ~ XklOg)tk, (16) 
j = l  k = l  

a o 3  = 1, (17) 

A 3 = O ,  (18) 

B3 - A = 0, (19) 

--- o. (20)  

The constraints (17)--(19) are a matrix representation of (9)-(11). Here,  

dim(A0) = i x n, dim(A) = m x n, 

dim(B) = p x n, 

where n = number of primal terms, m = number of primal variables, and 
p = number  of primal constraints. 

Notice that the above dual program has n + p  variables as opposed to n 
variables in the formulation given in (8)-(11). Also, the above formulation is 
a convex program whereas the original is not. 

At first, it might seem ridiculous to increase both the number of 
variables and the number  of constraints. However,  this results in a problem 
with a very special structure. Firstly, the objective function is separable, and 
hence has a diagonal Hess ian  which can be utilized efficiently in a Newton- 
type algorithm for the dual problem (Ref. 1). The additional constraints 
should cause no consternation either. It is easy to construct algorithms which 
take implicit account of them. In fact, in Ref. i it is shown how the above 
problem may be solved by an algorithm in which the major computational 
effort involves either recurring an m x m or an (n - m - 1)x ( n -  m - 1) 
matrix at each iteration, depending on which is smaller. 

The  programs DGP,  RDGP,  and SDGP have a number of important 
characteristics, some of which preclude the direct application of NLP 
software for finding a numerical solution. 
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A major  source of difficulty is the fact that the dual objective function is 
not differentiable with respect to the dual variables at points where they take 
on the value zero. To see this, for example, note that 

0 V/08 i = log(cj/Sj)-  1, (21) 

which is undefined at 6j = 0. This fact (combined with the fact that, at an 
optimal solution, if for any j ~ Jk, 8-*., = 0, then 8* = 0 for all j ~ Jk) will cause 
general NLP software to fail if applied directly to these dual programs. 

There  are simple-minded remedies to the nondifferentiability problem, 
some of which are given below. 

(a) Bound the variables such that 8 i--. E > 0, j = 1, 2 . . . . .  n. This 
overcomes the differentiability problem, but causes other  numerical prob- 
lems such as an ill-conditioned Hessian at points near the solution. Also, 
most algorithms will tend to z ig-zag between the constraints 8 i >-E, j ~ J~, 
until they have convinced themselves that 6" = e for all j ~ Jk. 

More important is that simply zeroing all 8* = e to 8* = 0, as is done in a 
large number of dual codes (see Appendix), will result in infeasibilities in the 
dual equality constraints (8) and (9). This could cause poor estimates of  the 
primal variables to be computed using the primal-dual optimality conditions 
(Ref. 43). This author has long felt that this is precisely why it is often stated 
(see, for example, Ref. 12) that highly accurate dual solutions are required to 
obtain an even moderately accurate primal optimal solution. Thus, if the 
8 -  e bounds are used, one must ensure that feasibility of the dual con- 
straints is restored when the appropriate dual variables are zeroed. 

The choice of an E is also difficult. For example, in Problem 1 (Ref. 5) 
there are a substantial number  of dual variables whose optimal value is less 
than 10 -8 . 

(b) A better  approach than the one above is to approximate the jth 
term in the dual objective function by a quadratic 7 at points for which 8 i <- e. 
This is done as follows: 

where 

6j log(cj/6j) = aS~. +/36j, 0 -< 8 -< E, (22) 

a = - l / e ,  (23) 

/3 = log(ci/e) + 1. (24) 

The advantage of the above approximation is that the objective function 
V(6, ,~) so defined will be continuous and differentiable, since ce and/3 are 
chosen so that the derivatives and function values of 6j log(cj/6i) and 

7 The  quadratic approximation presented here  arose out  of a series of  discussions the  author  
had with L. Lasdon  and M. Saunders  in an a t tempt  to apply their general-purpose codes to the  

dual  G P  
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a6~ +fl6j are equal at 6 j=  E. Also, the two functions are equal at 6 j = 0 ;  
however, their gradients differ at this point. The quadratic approximation 
has a gradient of /3  at 6; = 0, whereas as 6j tends to zero the gradient of 
6j log(cj/6j) tends to infinity. 

Here,  the choice of e is not as difficult to make as in the bounding 
method discussed above. A balance must be struck between making e too 
small, in which case the Hessian matrix will become ill-conditioned (since 
the contribution of this term will be the diagonal element - 2 / e ) ,  and making 
e too large, in which case the gradient at 6;-= 0 [namely, fl = log(cj/E)+ 1], 
will be too small to approximate the true behavior of the objective function 
at 3i = 0. A limited amount of experimentation with the method has shown 
that a value of e = 10 -5 seems to suMce. 

It should be noted that the value of e could be chosen dynamically by 
the algorithm under consideration. For example, in a Newton-type 
algorithm, e could be set to its minimum value such that the condition 
number of the Hessian of the objective function V(6, A) would not be much 
larger than if this particular variable were not present. Since the Hessian is 
diagonal with elements - 6  -1 and ~-1 (Ref. 13), the above criterion would 
result in an e value that is not "very much" smaller than the smallest 6j. 

For algorithms based on an active constraint set strategy, the above 
quadratic approximation is only needed for variables that are exactly zero, 
as a means of providing the algorithm with approximate curvature informa- 
tion so that it can decide whether or not the active constraint 6j = 0 should be 
dropped from the basis at a particular iteration. Since 

3 = iog(cd ) + 1 

will be positive for any e < cie , if for example we choose e such that 

e = min{0.gcie , 10-5}, (25) 

we are always assured that the gradient of the approximating quadratic will 
have the correct sign. Furthermore,  this method will not be subject to the 
zeroing problem alluded to in (a) above. 

We will not deal with the important topic of converting an optimal dual 
solution into an optimal primal solution, since this is covered in detail in 
Dembo (Ref. 11). It will suffice to say that the results of Ref. 11 indicate that 
any algorithm for the dual should compute the optimal Lagrange multi- 
pliers, w*, i =0 ,  1, 2 . . . . .  m, corresponding to the normality and ortho- 
gonality constraints (8) and (9), since they are related to the optimal primal 
variables x* and optimal dual objective function V* by 

o2* = log x*, i = 1, 2 . . . . .  m (26) 

 oo* = t -  v * .  (27) 
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Thus, an optimal solution of the primal can be computed to the same 
degree of accuracy as the optimal dual multipliers. As is mentioned in 
Dembo (Ref. i 1), (27) provides us with a useful check on the accuracy of the 
multipliers since V* and w* may be computed independently. Also, a dual 
algorithm is not complete unless it provides for the case where the multi- 
pliers oJi are not unique and a subsidiary problem (Ref. 11)might have to be 
solved in order to recover an optimal solution of the primal problem. Only 
one of the dual-based codes in the Appendix, namely CSGP, provides for 
such an eventuality. 

3. Factors Influencing the Choice between Primal-Based and Dual-Based 
Algorithms 

The question is often raised as to whether geometric programs should 
be solved using algorithms based on the dual program or by direct solution of 
the primal program. To ask whether the primal problem or the dual problem 
should be solved is an oversimplification. It would probably be more correct 
to ask when should the primal problem be solved as opposed to the dual, and 
vice versa. There are obvious cases where the dual program is a very much 
simpler problem than the corresponding primal (for example, a geometric 
program with zero degrees of difficulty). Similarly, it is easy to construct 
geometric programs where the primal problem may be very much easier to 
solve than the dual (for example, consider the minimization of a posynomial 
function of one variable with a large number of terms). 

It is well known that linear programming (LP) is a special case of GP 
(see, for example, Duffin, Peterson, and Zener, Ref. 9). Therefore, as 
Templeman (Ref. 14) quite rightly points out, a special case of the above 
dilemma occurs in LP when one has to decide whether to solve a problem 
using primal-based or dual-based methods. For LP, the problem is much 
simpler and one can easily identify cases where a primal approach would be 
advantageous, and vice versa. Also, the same algorithm, namely the simplex 
method, may be applied to both the primal program and the dual. 

In geometric programming, the decision as to whether to solve the dual 
program or the primal is a far less obvious one. For the general case, there 
seems to be no way out other than to draw on empirical evidence generated 
by computational comparisons such as the one described in Section 6 and 
also in Rijckaert and Martens (Ref. 4). There is however one special case of 
GP, other than LP, for which the same algorithm may be applied to both 
the primal and dual problems; hence, an a priori estimate of which of 
the two problems is easier to solve can be made with a fair degree of 
certainty. 
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Consider a pair of primal-dual GP problems in the case where there are 
no posynomial inequality constraints in the primal problem (this is often 
referred to as an unconstrained GP). Here, the primal program (UPGP) and 
dual program (UDGP) may both be written as convex, separable linearly 
constrained nonlinear programming problems: 

(UPGP) minimize log ~ cj exp(yj), (28) 
y,w j = l  

subject to y - A rw = 0; (29) 

(UDGP) maximize i 3j Iog(cJ3j), (30) 
/ =  1 

subject to ~ 3 i = 1, (31) 
j = l  

A 6  = O, (32) 

3>-0. (33) 

Since the cost of function and derivative evaluations is roughly the same 
for UPGP and UDGP, the difference in computational effort required to 
solve them will be a function of the relative sizes (number of variables and 
constraints) of these dual programs, if the same  algorithm is applied to both. 
In both cases, the equality constraints may be handled implicitly using 
projection matrices; however, the primal problem (UPGP) does have a 
slight edge over the dual, in that it does not possess inequality constraints. 
Also, the primal objective function is differentiable at all points in the primal 
feasible region, whereas the dual is not. 

For constrained GP problems, the tables are turned. The primal 
problem (SPGP) is subject to the nonlinear inequality constraints (5), 
whereas the dual (SDGP) remains a linear constrained problem. The 
author's feeling is that, with few exceptions, the nonlinear inequality con- 
straints of the primal problem make the dual (SDGP) a more attractive 
problem to solve, even when the degree o f  difficulty (n - m - 1) is very large. 
The reason for this is twofold. Firstly, nonlinear constraints are at least an 
order of magnitude more diffficult to deal with than are linear constraints. 
Secondly, and this is what most researchers in the area of GP seem to be 
unaware of, the dual problem (SDGP) may be solved by a Newton-type 
algorithm where at each iteration the main amount of work involved lies in 
solving a square system of equations, whose dimension is either equal to the 
degree of difficulty of the problem (n - m - 1) or to the number of primal 
variables (m), depending on which of these two quantities is smaller. Details 
of such an algorithm are given in Dembo (Ref. 1). 
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4. Extensions to Signomial Programming 

A signomial programming (SP) problem is a program of the form given 
in (1)-(3), (namely, PGP), in which the term coefficients may take on any real 
value. This type of programming problem is sometimes referred to as an 
algebraic program. 

In general, SP problems are nonconvex, and the elegant duality theory 
associated with posynomial programs does not carry over to signomial 
programs. Attempts have been made at defining pseudo-dual problems (see 
Ref. 15 and Ref. 16, Chapter 5); however, the use of a pseudo-dual program 
as a vehicle for computing an optimal solution to a primal program PSP (that 
is, PGP where some cj <0)  is not to be recommended unless certain 
safeguards are incorporated into the algorithm. This is because a local 
maximum of the pseudo-dual program might correspond to a local maxi- 
mum of the primal (recall that PSP is a nonconvex minimization problem). 
Thus, if a dual approach is used to solve PSP, the algorithm must contain a 
built-in checking procedure to ascertain whether or not the computed 
stationary point of the primal problem is in fact a local minimum. If it is not, 
then the algorithm should invoke an alternative procedure until con- 
vergence to a local minimum is achieved. To the author's knowledge, none 
of the existing codes that solve SP problems via a pseudo-dual approach (see 
dual Codes 2 and 11 in the Appendix) have built-in safeguards. 

Apart from the pseudo-dual approach, there are essentially three 
different ways in which algorithms for SP problems have been designed. 
These are discussed below. 

4.1. Complementary Algorithm of Avriel and Williams. (Ref. 17). This 
algorithm solves an SP problem by solving a sequence of GP approxima- 
tions. Each GP approximation is computed using posynomial condensation 
(Ref. 17). It was noted by Dembo (Ref. 17, also reported in Ref. 18) that the 
complementary algorithm may be accelerated if an exterior method s is used 
to solve the approximating GP primal. 

The codes GGP, QUADGP,  SIGNOPT, GEOEPS, and GEOLP (see 
Appendix) all use this approach to solving SP problems. Unfortunately, a 
feasible point is required to initiate the algorithm, and this in general means 
that a Phase 1 routine has to be incorporated into the code (Ref. 20). 

4,2. Harmonic Method of Duflin and Peterson. (Ref. 20). Here too, 
the SP problem is solved by solving a sequence of approximating GP 

8 By exterior method, we mean that the sequence of points converging to an optimal solution 
remains infeasible until the solution is reached. 
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problems. Each harmonic approximation of Duffin and Peterson can be 
shown to be weaker than the complementary approximation (see, for 
example, Ref. I6) and in general results in an approximate GP problem 
whose dual has a larger degree of difficulty than in the complementary 
approximation. The harmonic approach, however, does have one important 
property that, to the author's knowledge, has never been exploited compu- 
tationally. That is, the exponent matrix remains constant for every GP 
problem in the approximating sequence, which is not the case in the 
complementary algorithm. Without making specific use of this property, any 
algorithm based on the harmonic method will be dominated by one based on 
the condensation method, other things being equal. Jefferson's code 
GPROG (see Appendix) uses the harmonic approach. Bradley's code 
QUADGP (see Appendix) has an option to use either the harmonic 
algorithm or the complementary algorithm. In both these codes, the invari- 
ance of the exponent matrix is not used. Bradley (Ref. 21) demonstrates the 
obvious superiority of the condensation procedure on a number of test 
problems. 

The same remarks in Section 4.2 regarding feasible starting points 
apply here also. 

4.3. Direct Solution of the Signomial Programming Problem. To 
date there has only been one code developed to solve the SP problem 
directly. Rijckaert and Martens (Ref. 22) solve the nonlinear equations 
corresponding to the Kuhn-Tucker first-order necessary conditions for 
optimality of the primal SP problem (PSP). However, they do not indicate 
whether they have built in safeguards to ensure that they compute a local 
minimum of PSP and not a stationary point or a local maximum. 

4.4. Convergence of the Complementary and Harmonic Algorithms. 
Unfortunately, it has been this author's experience that the complementary 
(and hence the harmonic) algorithm tends to converge linearly for most 
problems. 9 Thi~ makes it a poor method to use in a GP code, especially for 
problems with relatively few negative terms (see Test Problem 4A, Ref. 23). 
It is for this reason that the author feels that the best way to solve signomial 
problems in general is by a direct attack on the primal program written in 
separable form (that is, SPGP where the coefficients c i are not all positive). 
This will surely be more efficient than solving a sequence of similar-sized GP 
problems. Some justification for this statement is given in the next section. 

9 A computational comparison of these algorithms is given in Ref. 24. 
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5. Numerical Comparison of Some GP Codes 

This section summarizes the results of a Colville-type study (Ref. 25) 
that was undertaken by this author in the period from June 1974 to July 
1976, The ambitious aims of the study were: (i) to identify which available 
GP codes were obviously superior to other  in terms of computational 
efficiency; (ii) to test the robustness of various approaches; (iii) to isolate a 
good set of problems that would test various critical aspects of GP 
algorithms; and (iv) to answer the embarrassing question: are specialized GP 
codes more efficient in the solution of GP problems than good general- 
purpose NLP codes? 

Only one of the above aims was achieved to any degree of satisfaction, 
namely, the study did produce a good set of test problems (Ref. 23). Our 
justification for this conclusion comes from the feedback from people who 
have actually at tempted to solve these problems.l° Their  general conclusion 
is that the problem set contains a good mix of well-scaled, badly-scaled, 
easy, and difficult problems and also captures the inadequacies of various 
algorithmic approaches to GP. We will discuss the particular nature of each 
of the problems later, when the computational results are analyzed. 

There  is one major drawback, however, to conducting a comparative 
study based on a hand-picked sample of test problems. That is, very little in 
the way of inferences can be made as to the relative performance of the 
codes in question on a different set of problems (Ref. 27). It is precisely this 
sort of inference that one wishes to make; namely, since code X did bet ter  
than code Y on the test problems, this will be true for a larger class of 
problems. Unfortunately,  the methodology for designing comparative stu- 
dies in mathematical programming is primitive, to say the least, and has only 
recently been considered as a serious topic for research. 

The study reported here was conducted in the following wayJ  I An 
attempt was made to obtain the participation of all authors of GP software 
that were known to the author at the time the study was conducted. Each 
participant was informed that the problems would be run at the particular 
author's home institution, on the computer  for which the code was originally 
developed. In addition, Colville's standard timer (Re[. 25) was supplied in 
an attempt to standardize the CPU timing results and stopping criteria and 

io The names and addresses of people other than those mentioned in this study who have solved 
the problems in (Ref. 23) is available on request from the author. 

i ~ As is mentioned in the text, the author is fully aware of the drawbacks of such a study (see 
Refs. 27-28) and cautions the reader to be war3," of any conclusions drawn on the basis of the 
results presented here. In particular, the use of a standardized timing routine may in extreme 
cases make timing results meaningless. 



JOTA: VOL. 26, NO. 2, OCTOBER 1978 t63 

tolerances were specified as reported in (Ref. 23). Where possible, an 
attempt was made to standardize the use of compilers. For example, 
participants using IBM machines were requested to use the FORTG 
compiler when compiling the timing program. In some cases, participants 
did not adhere strictly to the rules, and this has added some additional noise 
to the results. 

To some extent, the experimental design did allow the participants to 
tune their codes to the set of problems in Ref. 23, and so the timing results in 
Table 4 represent the best results of each code on this set of problems, 
without a major alteration to the code design itself. Actually, in two cases 
(Refs. 8, 29) the participants redesigned the Phase I section of their codes as 
a result of repeated failures on some of the test problems. 

An attempt was also made to include CPU timing results for some 
recently developed general-purpose NLP codes in order to compare with 
GP codes tested. Table 1 summarizes the characteristics of the general 
purpose NLP codes that participated in the study. 

The GP codes that participated were SIGNOPT, GEOEPS-GEO- 
GRAD, GEOLP, GPKTC, GPROG, and GGP. A summary of their main 
features is given in the Appendix. Details of the computer configuration and 
other aspects of the timing runs for the GP participants are given in Table 2. 

Important characteristics of the test problems are summarized in 
Table 3. 

The standardized times (actual CPU time divided by Colville standard 
time) for all participating codes on all test problems are given in Table 4. 
Blank entries in the table indicate that the code did not converge to a 
solution. The participants were all asked to solve the problems to within the 
convergence and constraint tolerance criteria specified in Table 3 (see 
Dembo, Ref. 23). Whereas most participants met the crucial primal feasi- 
bility criterion, stopping criteria and other internal tolerances were not 
equivalent from one code to the next. This does add an additional degree of 
uncertainty in interpreting the results. Only one of the GP codes, namely 
GPROG, did not solve problems to the required feasibility tolerances. The 
results in Table 4 for GPROG refer to a primal feasibility tolerance of 0.01, 
whereas the required feasibility tolerances specified in Ref. 23 range from 
10 -4 tO 10 -6. 

In an attempt to measure the sensitivity of various codes to achieve 
different degrees of primal feasibility, two levels of feasibility tolerances 
were specified in Dembo (Ref. 23). Since only a few of the participants 
responded to a request for runs at both tolerance levels, these results are 
not reported here. They are reported, however, for the code GGP in 
Ref. 23. 
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Table 3. Test problem characteristics (Ref. 23). 

Problem Type 

Required tolerances 

Variables Constraints* Terms* EPSCONt EPSCGP$ 

1A GP 12 3 31 10 - 6  10 - 4  

1B GP 12 3 31 10 . 6  10 - 4  

2 SP 5 6 32 10 - 5  1 0  . 4  

3 SP 7 14 58 10 -5  10  - 4  

4A SP 8 4 16 10 -s 10 -4 
4B SP 8 4 16 10 -s 10 -3 
4C GP 9 5 15 10 -5 10 -4 

5 SP 8 6 19 10 .5 10 .4 
6 SP 13 13 53 10 -6 10 .4 
7 SP 16 19 85 10 -5 10 .3 
8A GP 7 4 18 10 -6 10 .4 
8B GP 7 4 18 10 .6 10 -4 
8C GP 7 4 18 10 .6 10 .4 

* Does not include simple bounds on variables. 
t If gk(x) < - 1 +EPSCON, k = 1, 2 . . . . .  p, then the constraints are considered to be satisfied. 

Convergence tolerance, see Footnote 12. 

6. Analysis ot Comparative Study Results 

We will ana lyze  the results p re sen ted  in Tab le  4 in terms of the original  

aims of the study. First,  results for G P  codes are analyzed.  Later ,  these are 
compared  with the  results for NLP  codes. 

6.1. Results for GP Codes 
(a) Ef f ic iency .  By glancing at the b racke ted  n u m b e r s  in Table  4, we 

see immedia te ly  that  the G P  codes G P K T C  and  G G P  stand out  a mong  the 
rest in terms of the speed with which the p rob lems  were solved. The  code 
G P K T C  was within 10% of the fastest s tandardized  t ime for 7 of the 13 test 
problems,  whereas  G G P  was wi thin  10% of the fastest t ime in 8 of 13 cases. 
A closer scrut iny reveals that  G G P  seemed to do be t te r  on the larger 
p rob lems  and  on  p rob lems  with m a n y  simple b o u n d i n g  constraints .  This  is 

ent i re ly  cons is tent  with the findings in Ref. 16. 
A n  in teres t ing  result  shown in Table  4 is that  G G P  consis tent ly  

domina tes  G E O L P  in terms of s tandard ized  times. This result  is in te res t ing  
because  these two codes are based on  the ident ical  m a t h e m a t i c a l  a lgor i thm.  
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This underscores the fact that what we are testing in this study is the 
performance of codes and not algorithms. 

The results, however, do shed some light on the underlying algorithms. 
Consider for example Problems 4A, 4B, and 4C. Problems 4A and 4B are 
both signomiat problems in 8 variables, 4 signomial constraints, and 7 
degrees of difficulty. The sole difference between these problems is that 
Problem 4A has a tighter convergence tolerance (EPSCGP = i0 -4) than 
Problem 4B (EPSCGP = 10-3). a2 In Ref. 26 and Table 3, it is shown that 
GGP requires more than twice as much CPU time for Probtem 4A as for 
Problem 4B. This is indicative of the sensitivity of the Avriel-Williams (Ref. 
17) algorithm to this commonly used termination tolerance criterion. The 
code GPKTC solves signomial problems directly, and Table 4 shows that the 
algorithm used is not at all sensitive to such a criterion; that is, GPKTC 
requires roughly the same amount of CPU time to achieve optimality in 
Problems 4A and 4B. 

An even more dramatic indication of how inefficient the Avriel- 
Williams procedure (Ref. 17) can be is found by examining the relative 
performance of GGP and GPKTC on Problems 4A and 4C. Problem 4A as 
mentioned above is a signomial problem. However, what was not mentioned 
was that only two of 16 terms in the problem have negative coefficients. Thus, 
Problem 4A is almo~tposynomial. Problem 4C is a GP approximation of 4A, 
which is obtained by condensing-out these two negative terms (Ref. 19). 
Therefore, Problem 4C is constructed to be a very similar-sized and similar- 
structured problem to Problem 4A but without any negative terms. For this 
problem (and using the same tolerance criteria as for Problem 4A) GGP is 
I4 times faster than for Problem 4A and is slightly faster than GPKTC. Note 
also that GPKTC needs approximately the same amount of CPU time for all 
three problems and, not unexpectedly, all the GP codes using the Avriel- 
Williams algorithm (namely, SIGNOPT and GEOLP) exhibit the same type 
of behavior as GGP on these three problems. 

It is difficult to compare GEOEPS/GEOGRAD, GPROG, and 
SIGNOPT, since they have few data points in common. Very roughly 
speaking, GEOEPS/GEOGRAD seems to be faster than GPROG and 
SIGNOPT; when it converges, it is fairly competitive with GPKTC and 
GGP. The standardized times for SIGNOPT show that it can exhibit 
extremely slow convergence (see Problem 2, for example). The reader is 

~2 The  tolerance EPSCGP is defined in Ref. 23 by 

I[g0(x')- go(X'- l )] /  go(Xi-l)] <- EPSCGP,  

where go(X i) is the objective function value at the / th  E-feasible point x ~ and x ~, i = I, 2 . . . . .  is 
the  sequence of points  that  converge to a m i n i m u m  of the s ignomia|  problem. That  is, if the 
above inequality is satisfied, then  x i is assumed to be in the vicinity of a stationary point. 
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asked to interpret this with caution, since it is this author's feeling that the 
inaccuracies introduced by using standardized timers penalize participants 
with very fast computers. The above tests using SIGNOPT were run on a 
CDC 7600 with a standardized time of 2.2 seconds. This is by far the fastest 
computer in the study. Fortunately, this effect is not present when compar- 
ing GGP and GPKTC, since IBM 370/158 computers were used in both 
cases. 

(b) Robustness. The number of blank entries in Table 4 shows that, 
despite the tuning effect mentioned in Section 5, many codes were simply 
unable to solve certain problems. The most difficult problems (in terms of 
the number of codes that failed to solve them) were Problems 1A, 6, and 7. 
Problems 6 and 7 were the largest in the study. 

Among the GP codes, GEOLP, GPKTC, and GGP stand out as being 
very robust on this set of test problems, since they never failed to converge to 
a solution. This is confirmed once again by the independently conducted 
study in Ref. 4. The codes GEOEPS/GEOGRAD and SIGNOPT each 
failed to converge for 5 of the 13 problems, and GPROG was the least 
robust, with only 4 successes out of a total of 13 problems. 

6.2. Results for General NLP Codes 
(a) Efficiency. Of the NLP codes tested, GRG ranks as the most 

efficient in terms of standardized CPU time and appears to do consistently 
better than GREG. This result is misleading and would probably be reversed 
if the timing runs for GRG were to be carried out using the FORTH 
(OPT = 2) compiler. The reason for this statement is graphically illustrated 
in Ref. 55. In Ref. 55, Problems 4C and 5 were solved by GRG using the 
FORTH (OPT = 2) compiler. The Colville timer, also run using FORTH 
(OPT= 2), yielded a standard time of 3.91 seconds for the IBM 370/168 
[as compared with 16.83 using WATFIV (NOCHECK)]. The standardized 
times thus computed for Problems 4C and 5 were 0.109 and 0.069, as 
opposed to 0.052 and 0.049 using WATFIV (NOCHECK)! 

The NLP codes all seemed to do badly on the most difficult problems in 
the set namely, Problems 1A, 6, and 7. The only NLP method that was 
able to solve the badly-scaled chemical equilibrium problem (Ref. 23) 
was the penalty method GAPF-QL. This is probably because care was taken 
in the coding of GAPF-QL to account for ill-conditioning (see Appendix). 
The only NLP code to solve Problem 6 was Abadie and Guigou's reduced 
gradient code GREG (Ref. 28). Since the majority of the effort in Problem 6 
lies in finding a feasible solution (Phase 1), this might indicate that, among 
the general NLP codes tested, GREG has the best Phase 1 component. 

On first attempt, the NLP code GAPF-QL converged only on Problems 
3, 4, and 7 (Ref. 33). The values given in Table 4 therefore in some sense 
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show the best results that could be attained by G A P F - Q L  on these problems 
and are a result of a number of trial runs. 

The code G P M / G P M N L C  seemed to produce the most inaccurate 
results; for the 3 of 7 problems solved, there was more than a 5% error in the 
optimal solution value computed. The fact that errors of this size appear in 
the results for COMET,  G P M / G P M N L C ,  and G A P F - Q L  leads the author 
to suspect that the constraint tolerances specified in Dembo (Ref. 23) were 
not strictly adhered to when these solutions were computed. However, 
without direct information to the contrary, the author will assume that the 
values in the table are CPU times computed with the specified tolerances. 

(b) Robustness. Among the general NLP codes, the two generalized 
reduced gradient codes that were tested, namely G R G  and G R E G ,  proved 
to be the most robust. The code G R G  failed on 3 of 13 problems, whereas 
G R E G  only failed on 2 of the problems. The codes C O M E T  and G A P F - Q L  
each failed on 4 problems, and G P M / G P M N L C  was the worst, with 5 
failures and a record of inaccurate solutions for the problems that it did 
solve. 

6.3.  Performance of G P  Codes  versus General  N L P  Codes 
(a) Efficiency, In order to demonstrate the relative efficiencies of the 

two sets of codes, standard times for the best two GP codes (GPKTC and 
GGP) are compared with the best time computed by any one of the 5 general 
NLP codes. This comparison is given in Table 5. 

Table 5. Standardized times of general NLP codes versus GP codes.* 

Problem 
Nonlinear Best NLP Best NLP Best NLP 

Type Variables constraints GPKTC GGP Best GP 

1A GP 12 3 79.6 17.0 79.6 
1B GP 12 3 1.0 [0.2] 1.0 
2 SP 5 6 [0.2] 5.0 5.0 
3 SP 7 14 1.3 t.4 1.4 
4A SP 8 4 1.7 [0.1] 1.7 
4B SP 8 4 1.8 [0.2] 1.8 
4C GP 9 5 1.7 1.9 1.9 
5 SP 8 6 1.5 [0.41 1.5 
6 SP 13 13 1.6 1.8 1.8 
7 SP 16 I9 1.4 4.0 4.0 
8A GP 7 4 [0.8] 1.8 t.8 
8B GP 7 4 1.0 2.0 2.0 
8C GP 7 4 1.8 3.3 3.3 

* Bracketed numbers refer to problems where the best standardized NLP time was better than 
the standardized GP time in question. 
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An interesting observation is that the best GP time is always better than 
the best general NLP time. Also, each of the GP codes G P K T C  and G G P  
outperform the best NLP result for the vast majority of the test problems. As 
expected, the standardized times for G G P  on Problems 4A and 4B are 
considerably worse than those for the best NLP time, since these problems 
were specifically designed to demonstrate the worst features of the Avriel-  
Williams algorithm used in GGP.  

(b) Robustness. The best GP codes were very much more robust on 
these problems than their NLP counterparts. There were, however, GP 
codes that did not perform as well as most of the NLP codes. 

7. Conclusions and Suggestions for Future Research 

Despite the drawbacks associated with the comparative study in Section 
6, it is possible to draw some inferences regarding the behavior of the various 
codes. These inferences hold with some (imprecise) degree of certainty for 
the particular problem set tested. It is encouraging to note that all the 
conclusions drawn in this section are supported by the results of an 
independent comparative study (Ref. 4), done in a more controlled setting 
and using a different set of problems. In the Rijckaert-Martens study (Ref. 
4), the two best GP codes (in terms of computational efficiency and robust- 
ness) were found to be G G P  and GPKTC. 13 The same conclusion is evident 
in the results of Section 6. 

Two of the general NLP codes in this study, namely G R G  and G R E G ,  
are known to be among the best available general-purpose NLP codes. In 
the Cotville study (Ref. 25) for example, Abadie and Guigou's G R E G  
proved to be one of the most efficient and robust codes tested. Whereas 
these NLP codes appeared to be fairly efficient in solving our  GP test 
problems, neither of them converged on the badly-scaled Problem IA  or the 
largest problem in the study, Problem 7. Also, their combined best time was 
equal to the best GP time for Problem 1B and was between 1.4 and 5 times 
slower for the remaining problems that they managed to solve. 

The above result is an indication to this author that there is a need for 
specialized GP codes, if not for any other  reason but robustness alone. This 
author comes to this conclusion despite the fact that he feels that even the 
best GP codes available (GPKTC and GGP)  are in many ways primitive and 
lag far behind what could be achieved by specilizing current NLP technology 
to GP. 

t3 It should be noted that the version of GGP referred to in Ref. 4 is an earlier and less efficient 
version than the one used here. 
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The GP problems SPGP and SDGP have a structure that makes them 
amenable to large-scale geometric programming (Ref. 1). As in LP, one can 
precisely define what is meant by a large sparse GP. Sparsity in the general 
NLP case is not easily defined. 

In the summary, the conclusions are as follows. 14 
(i) Specialized GP codes do appear to offer improvement in compu- 

tation times and to be more robust than general NLP codes, on GP 
problems. 

(ii) Algorithms for the linearly constrained dual GP do not make use 
of the latest available technology that has been developed for linearly- 
constrained NLP. 

(iii) Primal-based GP codes seem to dominate the field. The author 
feels that this is a reflection of (ii) above and not because of some inherent 
difficulty in the dual GP. 

(iv) The Avriel-Williams (Ref. 17) and Duffin-Peterson (Ref. 34) 
algorithms for solving signomial programs are often extremely inefficient 
(refer to Problems 4A, 4B, and 4C) and experience shows that they often 
exhibit a linear rate of convergence. 

(v) A methodology for comparison of mathematical programming 
software is sorely needed, in order that hypotheses about algorithm and 
code behavior may be tested in a scientific manner. Hopefully, Ref. 27 is a 
step in this direction. 

7.1. Suggestions for Future Research 

(i) There is a pressing need for an efficient and robust dual-based GP 
code (if only as an intellectual challenge). The author feels that the approach 
that should be taken is to specialize some of the numerically stable tech- 
niques for linearly constrained NLP as described in Ref. 2. A framework for 
doing this already exists (see Ref. 1). In particular, any strategy that is 
adopted should be amenable to extensions to large-scale applications. That 
is, the algorithm should be able to exploit sparsity and/or  problem structure. 

(ii) Some theoretical developments are that definitely needed, before 
dual-based algorithms can be competitive, are efficient algorithms for 
handling simple bounding constraints on primal variables. It is not unreason- 
able to postulate that the resulting special structure in the dual problem, 
when simple primal bounding constraints are present, could be exploited 

~4 Strictly speaking, these conclusions are only valid for the test problems solved in this study. 
Since, however, Rijckaert and Martens (Ref. 4) reach similar conclusions on a different set of 
problems, there is reason to believe that these concludions will be true for a wide variety of 
GP problems. 



JOTA: VOL, 26, NO. 2, OCTOBER 1978 173 

computationally. This is an important consideration, because simple 
bounding constraints are invariably present in models of real systems. 

(iii) Many nonlinear programming applications (Ref. 35) are 
signomial problems that may be written in the form: 

minimize ~ cj exp(yj), (34) 
y,Z jEJO 

subject to ~ cj exp(yi)= 1, k = 1, 2 . . . .  , q, (35) 
j~Jk 

where the sets 

cj exp(yi)--- 1, k=q+l , . . . ,p ,  (36) 
jeJk 

yj- ~ aijz i=0, j =  1, 2 , . . . ,  n, (37) 
i = 1  

l/<--zi<--uj, j=l ,2 , . . , ,n ,  (38) 

Jk are defined as before and the coefficients cj, the 
"exponents" aq, and the variable bounds l i and uj are arbitrary real numbers 
(with lj < uj, of course). 

The common approach to solving such problems (Ref. 35) has been to 
somehow convert Eqs. (35) to inequalities and then to apply the Avriel- 
Williams procedure, which converts the solution of the above signomial 
problem to the solution of a sequence of GP's. This strategy" is fraught with 
difficulties and requires an experienced mathematical programmer for its 
implementation. It is this author's feeling that research into the develop- 
merit of software for signomial programs should concentrate on a direct 
solution of the above program. It has special features that would make either 
a generalized reduced gradient approach or an augmented Lagrangian 
approach attractive possibilities when designing a code. Naturally, if the 
code is to be competitive, the linear constraints (37) and (38) should be 
handled in some implicit fashion. 

8. Appendix: Summary of GP Software Reported in the Literature 

This appendix summarizes available information on GP codes that have 
appeared in the literature. We only include publications in which there is 
some evidence that the proposed algorithm has been coded and tested on a 
number of problems. There have been many attempts at coding GP 
algorithms, and it is hoped that none of these have been omitted here. Codes 
that are not mentioned in this section have not been omitted purposefully 
and were simply not known to this author at the time of writing. 
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Information on the codes is presented in the chronological order in 
which they appeared in the literature. An asterisk next to the code's name 
indicates that it appears in the computational study in Section 5. 

Primal-Based Codes 

Code 1 
Name: DAP. 
Author: G. V. Reklaitis (Ref. 36). 
References: G. V. Reklaitis and D. J. Wilde (Refs. 37, 38, 16). 
Algorithm: Solves SP directly using the differentiable algorithm of 

Wilde and Beightler ~ e f .  39). Signomial programs solved via sequential GP 
approximation scheme of Duffin (Ref. 40). 

Comments: No Phase 1 method reported. Reklaitis (Ref. 41) has 
compared DAP to the primal code GGP and in general has found GGP to be 
far more efficient. 

Code 2 
Name: GGP* 
Author: R. Dembo. 
References: Dembo (Ref. 18, Ref, 5); Avriel, Dembo, and Passy 

(Ref. 19). 
Algorithm: Solves PGP directly using a cutting-plane algorithm based 

on condensation. Signomial problems are solved using an accelerated AW 
algorithm. 

Comments: Does not require a feasible starting point. Phase 1 
algorithm operates on a modified problem to compute an initial feasible 
point if necessary. Experience with GGP has shown it to be both reliable and 
efficient. The code has been widely distributed and has been used to solve a 
large number of GP apllications. Feedback indicates that the method is 
robust and efficient for small- to medium-sized problems. A very similar 
algorithm was coded and tested as early as 1968 at Mobil Research 
Laboratories (Williams, Ref. 6). 

Code 3 
Authors: W. Gochet and Y. Smeers (Ref. 42). 
Algorithm: Solves SPGP directly using a cutting-plane algorithm. Cuts 

are shown to be "deeper" than Kelley cuts. 
Comments: No extension to signomial programs is reported. Compu- 

tational experience is reported on two of Beck and Ecker's (Ref. 12) 
problems. 
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Code 4 
Authors: G. S. Dawkins, B. C. Mclnnis, and S. K. Moonat (Ref. 43). 
Algorithm: Tangential approximation method of Hartley and Hocking 

(Ref. 44). Operates on PGP in the variables z = log x. 
Comments: No extension to signomial programming reported. No 

details of the implementation are given and only the solution of a single 
problem is presented. 

Code 5 
Authors: J. G. Ecker and M. J. Zoracki (Ref. 45). 
Algorithm: PGP is converted to a GP with at most two monomiat terms 

in each constraint, according to the procedure outlined by Duffin and 
Peterson (Ref. 20). This posybinomial problem is solved using a hybrid of 
the tangential approximation and cutting-plane methods. 

Comments: No extensions to signomial programming are given, and 
only a limited amount of computational experimentation is reported. 

Code  6 
Name: GPKTC*. 
Authors: M. J. Rijckaert and X. M. Martens (Ref. 22). 
Algorithm: The Kuhn-Tucker conditions for optimality of PGP are 

solved iteratively using a condensation procedure. This method is essentially 
equivalent to a Newton-Raphson algorithm for direct solution of the 
Kuhn-Tucker conditions expressed in terms of the variables z = log x. 

Comments: The code GPKTC has been extensively tested in Rijckaert 
and Martens (Ref. 4) and appears in the comparative study in Section 5. 
Experimentation with the code has shown it to be very robust and efficient 
especially for small GP problems. The code does not have an efficient 
mechanism for handling simple bounding constraints and constraints that 
are slack at optimality. A Phase 1 procedure is included in GPKTC and, 
judging from the results in Section 5, it appears to work well. 

Code  7 
Name: GEOLP*. 
Authors: J. J. Dinkel, W. H. Elliott, and G. A. Kochenberger (Ref. 46). 
References: Dembo (Ref. 18); Avriel, Dembo, and Passy (Ref. t9). 
Algorithm: Essentially the same as GGP. 
Comments: The authors claim to have successfully solved fairly large 

problems using GEOLP, and they feel (Ref. 46) that GEOLP works better 
than any other GP software that they have developed. It is interesting to 
note (see Section 6) that, despite the fact that GGP and GEOLP are based 
on the same algorithm, GGP seems to do consistently better than GEOLP 
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on the test problems in Ref. 23. One possible explanation could be that GGP 
contains a number of algorithm refinements not contained in Refs. 18 and 
19. 

Code 8 
Authors: M. Rammamurthy and G. H. Gallagher (Ref. 7). 
References: Dembo (Ref. 18); Avriel, Dembo, and Passy (Ref. 19). 
Algorithm: Essentially the same as GGP. 
Comments: The authors claim to have solved a large number of civil 

engineering design problems using their code. Experience similar to that 
quoted in Code 2 above. 

Dual-Based Codes 

Code 1 
Author: C. J. Frank. 
References: Frank (Refs. 47, 48). 
Algorithm: Solves the dual program DGP by applying the direct search 

method of Hooke and Jeeves (Ref. 49). Probably, the first published GP 
code. Experimentation has indicated that, in many cases, convergence of the 
method is extremely slow. 

Comments: Code does not solve signomial problems. 

Code 2 
Name: GOMTRY 
Authors: G. E. Blau and D. J. Wilde (Refs. 50, 51). 
Algorithm: Solves the Kuhn-Tucker conditions for the dual program 

SDGP. Solves signomiat programs in the above manner by attacking the 
necessary conditions for optimality of the pseudo-dual problem (Ref. 49). 

Comments: GOMTRY's convergence is relatively good for small prob- 
lems but experimentation (Ref. 4) shows that the code often fails to converge 
especially for medium-sized problems. 

Code 3 
Author: G. W. Westley (Ref. 52). 
Algorithm: Based  on the Murtagh and Sargent (Ref. 53) projection 

method for linearly constrained nonlinear programs. Nondifferentiability of 
the dual objective function is handled by placing arbitrary bounds on the 
dual variables. 

Comments: Solves DGP; no extensions to signomial programs are 
reported. Bradley (Ref. 21) has tested the code extensively and reports that 
it often failed to solve even simple problems taken from the literature. 
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Code 4 
Name: SIGNOPT*. 
Authors: A. B. Templeman, A. J. Wilson, and S. K. Winterbottom 

(Ref. 54) 
Algorithm: Signomiat problems are solved using the Avriel and Willi- 

ams (Ref. 17) procedure. The posynomial subprobtems are solved by 
explicitly forming the reduced RDGP and solving it using a modified 
Fletcher-Reeves (Ref. 55) algorithm. Nondifferentiability of dual objective 
is handled by placing arbitrary'lower bounds on the dual variables. 

Comments: The code has been extensively tested by Templeman (Ref. 
14) and Bradley (Ref. 21), both of whom claim a fair degree of success in 
solving small- to medium-size problems. However, these authors indicate 
that convergence can often be very slow. These findings are born out by the 
results in Section 6 and in Rijckaert and Martens (Ref. 4). No Phase 1 
capability is included in SIGNOPT to initiate the Avriel and Williams 
procedure. 

Code 5 
Name: GPROG*. 
Author: T. Jefferson (Refs. 56, 57). 
Algorithm: Explicitly forms the reduced dual RDGP and solves it using 

a modified Newton algorithm. Nondifferentiabilities are avoided by adding 
slack variables to the primal in the manner of Duffin and Peterson (Ref. 58). 
Extension to signomials is carried out using the harmonic mean procedure of 
Duffin and Peterson (Ref. 28). 

Comments: Unless the invariance of the dual coefficient matrix is 
exploited, the harmonic approach can be shown to be less desirable than the 
condensation algorithm of Avriel and Williams (Ref. 17). Experience with 
the code shows that it often fails to converge. This code and QUADGP,  
however, are the only ones mentioned in this paper with the capability of 
performing a detailed sensitivity analysis. G P R O G  does not contain a Phase 
1 routine for signomial problems. 

Code 6 
Name: CSGP. 
Authors: P. A. Beck and J. G. Ecker (Ref. 12). 
Algorithm: The concave simplex method is applied to DGP with a 

modification that allows for blocks of variables to go to zero simultaneously. 
It is this modification that overcomes the nondifferentiability problem. 

Comments: This code stands out as being the only dual-based code that 
attempts in a theoretically sound manner to overcome the nondifferen- 
tiability problem and to include an option to solve subsidiary problems, if 
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they are needed, when converting to an optimal solution of the primal PGP. 
No provision is made in the code for signomial problems. The code has been 
tested extensively by Rijckaert and Martens (Ref. 4) and Beck and Ecker 
(Ref. 12). Experience shows that CSGP is sometimes slow relative to other 
codes but that it is fairly reliable. 

Code 7 
Authors: G. A. Kochenberger, R. E. D. Woolsey, and B. A. McCarl 

(Ref. 59). 
Algorithm: Solves SDGP using separable programming. 
Comments: No extensions to signomial programming are mentioned. 

Only computational experience reported is on one small problem and for 
this problem the method does poorly. 

Code 8 
Name: NEWTGP. 
Author: J. Bradley (Ref. 60). 
Algorithm: Explicitly reduces dual program DGP to the program 

RDGP. Solves the nonlinear equations resulting from the Kuhn-Tucker 
conditions for optimality of RDGP using a Newton-Raphson procedure. 
Nondifferentiability is avoided by setting a pseudo boundary which prevents 
the algorithm from hitting a 6 -> 0 constraint. This is equivalent to artificially 
adding a 6 -> e constraint. 

Comments: The code has been tested extensively by Rijckaert and 
Martens (Ref. 4), and the indications are that it often fails to converge; in 
cases where convergence is attained, the code does not compete well against 
the best primal methods. 

Code 9 
Name: GEOGRAD,  GEOEPS*. 
Authors: J. J. Dinkel, G. A. Kochenberger, and B. A. McCarl (Ref. 61). 
Algorithm: The algorithm is essentially the same as the one used by 

Bradley in NEWTGP. Extension to signomials is carried out using the 
GEOEPS routine which executes the Avriel and Williams (Ref. 17) 
algorithm. 

Comments: No Phase 1 method for signomials. The implementation 
seems to perform reasonably well when it converges. However, it is 
generally not competitive with the best primal methods. 

Code 10 
Name: QUADGP. 
Author: J. Bradley (Ref. 21). 
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Algorithm: Solves posynomiat programs by explicitly forming the 
reduced dual program RDGP which is then solved by successive quadratic 
approximations. Nondifferentiability of the dual objective function is 
handled by artificially bounding dual variables from below. This bound, in 
contrast to those mentioned previously, is dynamic and decreases rapidly 
from iteration to iteration. Dual variables are zeroed when an estimate of 
the primal constraint multiplier becomes very small. The code has options 
for both the Avriel and Williams (Ref. 17) and the Duffin and Peterson (Ref. 
28) extensions to signomial programming, but Bradley (Ref. 21) indicates 
that the Avriel-Williams procedure is to be preferred. 

Comments: A feasible point is required to initiate Q U A D G P  for 
signomial problems. Bradley (Ref. 21) has tested Q U A D G P  extensively. 
However, the only relative measure of effectiveness with the codes 
in Section 5 can be obtained from Problems 8A, 8B, and 8C, for 
which computation times are given, in his thesis. An important 
feature of Q U A D G P  is that it has the capability of performing sensitivity 
analysis. 

Code 11 
Names: LAM, SP, LM, NRF, NRT, NRVB, DCA. 
Authors: M. J. Rijckaert and X. M. Martens (Ref. 4). 
Algorithm: LAM is a linear approximation method for solving the dual 

and SP is based on a separable programming algorithm. LM, NRF, NRT, 
NRVB and DCA are all essentially based on Newton-type algorithms for 
solving the Kuhn-Tucker conditions of SDGP. 

Comments: These codes are described and tested in (Ref. 4) and do not 
seem to be competitive with the best available software. In particular, they 
do not appear to be robust and often fail to converge on medium-sized 
problems. 

Code 12 
Author: J. R. McNamara (Ref. 62). 
Algorithm: Constructs an augmented primal problem with zero degrees 

of difficulty. The augmented problem depends on a number of parameters 
and for certain realizations of these parameters the solution to the aug- 
mented dual is determined uniquely. 

Comments: Solves posynomiat problems only. Computational results 
are given for 2 trivial examples (Ref. 62), and mention is made of larger 
examples. The author indicates that the proposed method does not neces- 
sarily converge (Ref. 62, p. 23). 
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