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Abstract. The properties of combined multiplier and penalty function 
methods are investigated using a second-order expansion and results 
known for the Riecati equation. It is shown that the lower bound of the 
values of the penalty constant necessary to obtain a minimum is given by 
a certain Riccati equation, The convergence rate of a common updating 
rule for the multipliers is shown to be linear. 
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1. Introduction 

Recently, methods for solving optimal control problems that do not 
require the explicit solution of the differential equations have received some 
attention. Hestenes has suggested (Refs. 1 and 2) a method that is a 
combination of multiplier and penalty function methods. Rupp (Ref. 3) and 
Di Pillo et al. (Ref. 4) have used similar techniques. The combined penalty 
function and multiplier approach has also been used by Rupp (Ref. 5) for 
isoperimetric constraints and by Nahra (Ref. 6), M~trtensson (Ref. 7), and 
O'Doherty and Pierson (Ref. 8) for terminal constraints. Properties of these 
methods will be investigated here, using a second-order expansion and 
properties of the Riccati equation. The properties of the free endpoint 
problem are considered in Section 3, and those of the fixed endpoint 
problem are considered in Section 4. Finally, convergence properties of an 
iterative method for both free endpoint and fixed endpoint problems are 
investigated in Section 5. 

1 This work has been supported by the Swedish Institute of Applied Mathematics. 
2 Research Associate, Department  of Automatic Control, Lund University, Lund, Sweden. 
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2. Problem Formulation 

The optimal control problem to be studied here can be formulated as 
follows. Minimize the functional 

T / .  

I(x, u) = | L(x(t) ,  u(t), t) d t+F(x(T) ) ,  (1) 
Jo 

subject to 

Yc(t) = f(x(t),  u(t), t), 0 <- t <- T, 

x(O) = a, ~(x(T))  = O. 

Here, x and u are functions belonging to C7 [0, T] and C~ [0, T], respec- 
tively. C~ [0, T] denotes the class of continuous k-vector-valued functions 
on [0, T], while C k [0, T] denotes the class of continuously differentiable 
functions. The functions f and ~ are vector-valued with n and r components, 
respectively. 

The following assumptions are made. 
(i) L and f are three times continuously differentiable with respect to 

x and u. 
(ii) L and f, together with their first and second derivatives with 

respect to x and u, are continuous with respect to t. 
(iii) F a n d  ~p are three times continuously differentiable. 
(iv) The minimization problem has a solution, denoted by ($ (t), t~ (t)). 
Define the Hamiltonian 

H(x(t) ,  u(t),p(t),  t )=L(x( t ) ,  u(t), t )+pT(t)f(x(t) ,  u(t), t), (2) 

where p is a continuous function of time. The standard necessary conditions 
for the optimal control problem are given by the following theorem. 

Theorem 2.1. Let ~, ~ be the solution to the problem defined by (1), 
and assume that the following regularity conditions are satisfied. 

(i) The matrix Sx($(T)) has rank r. 
(ii) Given any vector z, it is possible to find a continuous function v 

such that 

h(t) =fx(~(t), a(t), t )h( t)+f ,(2(t) ,  a(t), t)v(t), h(0) = 0, 

has a solution satisfying 

h(T)  = z, 

i.e., the linearized system is controllable. Then, there is an n-dimensional 
vector-valued function/~(t) and an r-dimensional vector/~ such that, for all 
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t~[0 ,  T], 

Proof. 

- p ( t )  = Hx(y( t ) ,  a(t), p(t),  t), 

,6( T) = Fr~ (Y ( T) ) + O r (Y( T) )b, 

H,(~:(t), a(t), p(t),  t) = O. 

See Luenberger (Ref. 9). 

(3) 

3. Optimal Control Problem with Only Differentia! Equation Constraints 

In this case, the problem can be written as follows. Minimize the 
functional 

T t "  

I(x, u)= ] L(x(t), u(t), t) dt+F(x(T)), 
Jo 

subject to 

/c(t) =f(x(t) ,  u(t), t), o<_t<_ T, 
(4) 

x(0) = a. 

The idea in Hestenes (Ref. 1 and Ref. 2) is to form the augmented function 

/ .  T 

J(x, u, p, c )=  J0 {L(x(t), u(t), t)+pr(t)[f(x(t), u(t), t)--~(t)] 

+(C/2)[f(x(t), u(t), t)-- ~(t)]v 

• [ f ( x  (t) ,  u (t) ,  t)  - ~ ( t ) ] }  dt + F(x (T)). (5)  

Here, c is a positive real number and p is a continuous function. The 
functions x and u are now allowed to take arbitrary values, not necessarily 
satisfying the differential equation ~ =f(x, u, t). The condition x(0)= a, 
however, is still applied. 

It has been proved by Hestenes (Ref. 1) that J(x, u, fi, c) has a local 
minimum at (Y, ti) if c is large enough. Here, a different proof, based on the 
Riccati equation, will be given. It has the advantage of showing what the 
lower bound of c is. The connection with the sufficiency conditions in Bryson 
and Ho (Ref. 10) is also given. 

To show that J(x, u, ~, c) has a local minimum at (£, tT), an expansion is 
used. Let 

x(t)=Y(t)+h(t), u(t)=~(t)+k(t). 
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Since the function x belongs to C~[O, T], with x(0) = a, and u belongs to 
C~" [0, T], only variations h and k satisfying h (0) = 0, with h belonging to 
C7 [0, T] and k belonging to C ~  [0, T], are of interest. The functions h and 
k satisfying these conditions will be called admissible. The following norms 
are used: 

Ilhlh- sup IIh(t)ll+ sup IIh(t)ll, 
O<_t<<_T O ~ t < _ T  

flklto= sup flk(t)ll, 
O ~  t<-- T 

where II" II denotes an arbitrary vector norm. In what follows, x and u will 
often be written in place of x (t) and u (t), to simplify the notation. 

The expansion can now be written as 
T 

J(2+h, ~7 +k ,p ,  c) = I0 {H(2+h, ~+k,~,  t)--pT(fc+fl) 

+ (C/2)[f(Y + h, a + k, t) - 2 -/~ ]T[f(~ + h, a + k, t) 

- 2  - hi} dt + F($(T) + h(T)), 

where the Hamiltonian 

H = L + p T f  

is used. Expanding H, f, F in a Taylor series gives 
T 

J(~ + h, a + k, ff, c) = J(~, a, p, c)+ Io (Hxh + Huk-prl~) dt + Fxh(T) 

+ 2 for(h rHxxh 

+ 2h rHxuk + k rH,,k ) dt 

+21 -v ["Tc(h r rf.f.h +k W Wf~f.k + lirti + 2h rfrfuk 

- 2h rfr~h - 2k Vf~l~) at 

+~h T(T)Fxxh(T)+R(h, k), 

where Hx, Hu, H~, etc., are evaluated along ($,/~), 
T 

k)[<-e(h, k) fo (hrh+hTl~+kTk) dt, IR(h, 

and e(h, k)-~O as (h, k ) ~ 0  in the norms given above. 
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Since/5 satisfies the conditions of Theorem 2.1, it follows from an 
integration by parts that the linear terms disappear. Then, 

J ( i + h , a + k , p , c ) - J ( i , a , p , c ) = ~  {hr(H~+cffL)h 

- 2ch ~f~ti - 2ck~f~h} et 

+h r(r)F~h(T)+ R(h, k) 

= 62J(h, k)+R(h, k). 

To prove that 82J is positive, we transform it into a perfect square. First, 
observe that, for any continuously differentiable matrix function S, it is true 
that 

T 

fo (h WSh = 0 + 2h TSfl) d t -  h r ( T)S( T)h ( T) 

for all continuously differentiable h satisfying 

h (0) = 0. 

The addition of a term of this form to get a perfect square is used in the 
calculus of variations; see Gelfand and Fomin (Ref. 11). Adding this 
quantity to 62J gives 

- -  ½ I [ ~  ~ / ~  + ci:i~ + s~h + ~h ~ (,-,~. + c1:I.) ~ 62j 

+ kT(H.. +cf[L)k + cliVtl + 2h r (S -c f~ ) f t  -2ckTfTh} dt 

+ ½h W (T)[Fxx - S(T)]h(T) 

f0[ 1 1 T k+H~(H.x+f~S)h  ]r 
- 1  T 

= 2  h + [ f J - / . .  (H~ +f.S)+(1/c)S-L]hJ 
[ [ k + H ~ . ( H ~ + f . S ) h  ] r __cf T1 -1 T H.. +cf. f .  

I dt [ -e l .  cI J I~ + [f.H;J (H.x r -f~]h +DS)+(1/c)S 

1Io~ - f .H. .H~.)  S +~ hT[S+H. _H. .H~H.x+( f .  -1 w 

--1 --1 T + S(I~ -f .H.~H.~) (I/c)S z] - SI .H. . I .S  - dt 

+ ½ h T(T)[F** - S(T)]h (T). (6) 
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Here,  it is assumed that Hu.  is nonsingular. Now, the following theorem is an 
immediate consequence. 

Let  (g  a) be a solution to (1), and let ff satisfy Eq. (3) of 

t~[O, T], 

Theorem 3.1. 
Theorem 2.1. Also, assume that c > 0 ,  and 

Hu.(~(t), a(t), p(t), t)>0, 

and that the Riccati equation 

_ S  -1 -1  T =Hxx -HxuH..H.~ +(Ix - I .H. .H. . )  S 
- -1  - -1  T +S(f . - I .H. .Hux)-S[I .H. . I .  +(1/c)I]S, S(T) =F~., (7) 

where H**, etc., are evaluated along ~, a, has a solution over the whole 
interval [0, T]. Then, 6=J(h, k ) >  0 for all admissible h and k that are not 
both identically zero. 

Proof. First, it is shown that the matrix 

Huu +cfuTfu --cfu T] 
-cf~, cI J 

is positive definite for all c > O. Form the expression 

wq ,U "° + ci" i"_cio J 

Equality is attained only for z = 0, w = 0. 
Since the second and third terms of 62j in (6) disappear, it follows that 

62./--- 0. If 62J = 0, then 

k +Hu-~ T (Hux +f.S)h --- 0, 0 -< t -< T, 

h+[f.Hu~(H~x+fTs)+(1/c)S-fx]h=O, O<-t<-T. 

Since h (0) = 0, it follows from the uniqueness theorem for linear differential 
equations that h (t) is identically zero. Then, k is also identically zero. [] 

To show that J has a minimum at (~, ~), it is not enough to know that 82J 
is positive. It must also dominate the higher-order terms. The result of 
Theorem 3.1 can, however, be strengthened. 

Theorem 3.2. With the same assumptions as in Theorem 3.1, there 
exists a constant n > 0 such that 

T 

62J(h,k)>_~T f ° (hTh+14Tl4+krk)dt. 
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Proof. Consider the expression 
T 

A(h, k, n) = ~2J(h, k ) -  n Jo (h ~h + h:~h + kTk) dt, 

where ~ > 0. The value of A(h, k, ~1) is the same as the value of 82j(h, k) 
with 

h r (H~x + cfff~,)h replaced by h T (Hxx + cf~f~ -~lI)h, 

c/~ r/~ replaced by (c - rt)/~ rh 

k r (H, ,  + cf~rfu) k replaced by k r (H,u + cf~fu - ~I) k. 

It then follows from Lemma 7.5 in Appendix A that, if r~ is chosen 
sufficiently small, then the Riccati equation corresponding to A(h, k, ~) 
exists over the interval [0, T]. Since the matrix 

-cI~ (c - 7/)IJ 

is still positive definite for sufficiently small n, it follows that A(h, k, rl) >- O, 
and the theorem is proved. [] 

This leads directly to the following result, showing that J has a local 
minimum at (~, ~). 

Theorem 3.3. If the assumptions of Theorem 3.1 are satisfied, then 

J(£ +h, a+k,~,  c)>J(£, a,~, c) 

for all admissible h and k, not both identically zero, and with Ithlll and ltklto 
sufficiently small. 

Proof. From Theorem 3.2, one has 

J(£  + h, ~+k,~, c)-J(Y~, ~,~, c) 

= 82J(h, k)+R(h,  k) 
T 

>--[~7 -le(h, k)]] fo (h wh +/~ r/~ + k Wk ) dt > O, 

if ]]h][1 and ][kilo are sufficiently small and h and k are not both identically 
zero. [] 

It is interesting to note that the magnitude of c that is required depends 
only on the Riccati equation (7), provided c > 0. The interesting question is 
of course: is there any c for which (7) has a solution over [0, T]? First, note 
the following result. 
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Theorem 3.4. If (7) has a solution on [0, T] for c = cl, then it has a 
solution for any c -> cl. 

Proof. 

Then,  

Let  c2 > Cl, and define 

P CH- l t r+(1 / cOI ,  i : I u u u l u  

p ~ H-I,.T 2 = f u  uuYu + (1/c~)L 

PI-P2>_O. 

It now follows from Lemma 7.2 in Appendix A that 

S2(t) >- Sl( t) ,  

where $1 and $2 are the solutions corresponding to cl and cz, respectively. 
Since, from Lemma 7.4, the only way the solution S can fail to exist on an 
interval [q,  T]  is by going off to minus infinity, it follows that $2 exists on any 
interval where S~ exists. []  

Corollary 3.1. Either there are no values of c for which (7) has a 
solution on [0, T], or else there is a number Co such that S exists on [0, T]  for 
c > Co and goes to minus infinity for some tl ~ [0, T]  when c < Co. 

Proof.  Take Co = inf{all c > 0 such that S exists on the whole interval}. 
[]  

Theorem 3.5. Let  the Riccati equation 

-H~H~uHux +(L -f~H~.H.x) S 
- I H ~  - I  T + S(fx - f . H . ~  .~) - S f .H~. f .S ,  S(T) = F~x, (8) 

have a solution defined in the whole interval [0, T]. Then, there exists a 
co > 0 such that (7) also has a solution over  [0, T]  for all c > co. 

--1 T Proof.  Since the difference between the matrices f~Hu . f ,  and 
--1 T [ f .H.u f .  + (1/c)I] can be made arbitrarily small by choosing c large, the 

result follows from Lemma 7.5 in Appendix A. []  
An immediate consequence is the following theorem. 

Theorem 3.6. Let  (~, tT) be the solution to (1) and let ff satisfy Eq. (3) 
of Theorem 1.1. Also, assume that 

H~,(~(t), ~(t),~(t), t ) > 0 ,  t~ [0 ,  T], 
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and that the Riccati equation (8) has a solution over [0, T]. Then, there 
exists a constant Co - 0 such that J(x, u, p, c) has a local minimum at (~, ti) 
for all c > co. 

Proof. It follows directly from Theorems 3.5 and 3,3. [] 

The assumptions made in this theorem are the standard second-order 
sufficiency conditions of problem (1); see, e.g., Bryson and Ho (Ref. 10). If J 
has a minimum with respect to arbitrary (x, u), then it also has a minimum 
with respect to the special choice of (x, u) which satisfies the differential 
equation 2 =f(x,  u, t). Since J = l  for these (x, u), Theorem 3.6 actually 
forms an alternative proof of the sufficiency conditions. 

So far, it has been shown that, when H , ,  > 0, the existence of a solution 
to (7) over [0, T] is a sufficient condition for J to have a local minimum at 
(07, t2). The condition is almost necessary in the sense explained in the 
following theorem. 

Theorem 3.7. Let/~ satisfy (3), and assume that J(x, u,/~, c) has a local 
minimum at (~, ~7) for some c > 0. Assume that 

H,u(Y(t), a(t), p(t), t ) > 0 ,  t e [0 ,  T]. 

Then, the Riccati equations (7) and (8) have a solution over [e, T] for all 
e>O.  

Proof. For J to have a local minimum, it is necessary that 82J(h, k) >- 
0 for all admissible h and k. Since the solution of (7) exists on [h, T] for some 
tl < T (local existence theorem for differential equations, see Ref. 12), it 
follows that 

1 
fo t~ {h 7:(H= + cf~fx)h + 2h T(Hxu + cfrfu)k 82j(h, k) = -~ 

+ k 7: (Huu + cf~fu)k + cl~ Wl~ -- 2ch wfrl~ -- 2ck Tfrl~ } dt 

1 7: k + g , u  (hux +[uS)h 1 

1 +[ fun ,~  ( H , , + f , S ) + ( 1 / c ) S - f x ] h J  

r V [ k + H . .  (H~. +f~S)h ] . [ m , + 4 , z ,  - 4 .  I - i  7: 
L --Cfu c I  .1 l. ]~ -~ - t  T d t  [ [ . H . .  (H~  + f , S ) + ( 1 / c ) S - L J h J  

+½h T(h)S(h)h (h). 
Now, choose 

k(t) = O, t e [0, h], 

h( t )=( t /h)a ,  t¢[0 ,  h], 
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where a is an arbitrary constant vector, and let h and k be the solutions of 

k -H~-2 (n~. r = +f~S)h, 
t~ - 1  T : - [ f u H , ,  (H.~ + f u S ) + ( 1 / c ) S - f x ] h ,  h (q )  = a, 

in It1, T]. For  this choice of h and k, we have 

f tl T £J(h, g)=½a T {t=(Hxx +cf fL)+cI-c t (L  +A)} dta/t~ +½arS( t l )a .  
aO 

Since the h and k used here can be approximated arbitrarily well with 
continuous k and continuously differentiable h, it follows that 

82J(h,  k )  >- 0 

also for this choice of h and k. Then, 

I0 '1 
a r S ( q ) a  > - - a  r [ t 2 ( H ~ + c f J x ) + c I - c t ( f x + f r ~ ) ] d t a / t ~  (9) 

for any vector a. Now, suppose that S goes to minus infinity for t = t2, 0 < 
tz < T. Then (9) must be violated for some tl E [t2, T]. Consequently, the 
solution to (7) exists on [e, T]  for any e. From Theorem 3.5, this is true also 
for the solution to (8). []  

Corollary 3.2. If the solution to (7) goes to minus infinity for some t in 
(0, T), then J(x ,  u, if, c) does not have a local minimum at (£  a). 

Example 3.1. Find the shortest distance between a point and a great 
circle on a unit sphere. 

Let  the given point be at the origin 0 of a latitude-longitude coordinate 
system with latitude 0 and longitude a, and let the great circle be the 
meridian o~ = a l .  Then, 

ds 2 = (dO) 2 + (cos 0 da  ) 2, 

and the problem is to minimize 

Io °1 I = ~/(uZ+cos 2 O) da, 

where 

The Hamiltonian is given by 

o(o )  = o. 

H = ff(u z + cos z O) +pu.  
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The first-order necessary conditions are 

u/~/(u 2 + cos  2 0)  + p  = 0,  

p = cos 0 sin O/x/(u2+cos 2 0), p(T)  = 0. 

They are satisfied by 

a = 0 ,  g=0 ,  p = 0 .  

The second derivatives of H evaluated along 4, ~/~ are 

Hu. = 1, Huo = O, Hoo = - 1. 

The Riccati equation (8) then becomes 

- d S / d a  = - 1 - S  2, S(a l )  = 0, 

with solution 

S ( a )  = - t a n ( a 1 - a ) .  

The second-order  sufficiency conditions are satisfied if 

0 < a 1 < r r / 2 .  

The Riccati equation (7) becomes 

- d S / d a  = - 1  - ( 1  + 1/c)S  2, S(al)  = O, 

with the solution 

S = - t a n [ ( a l  -a )~ / (1  + 1/c)]/~/(1 + 1/c). 

The lower bound of c is then 

Co=a~/(~2/4--Ot21) for 0 < a l<~  ~ / 2 .  

4. Extension to Terminal Constraints 

The problem with terminal constraints can be written as 
Minimize the functional 

T t"  
Jo L(x(t) ,  u(t), t) dt + F(x(T)) ,  I(x, tt) 

subject to 

~(t) = f(x(t), u(t), t), 

x(O) = a, ~b(x(T)) = O. 

follows. 
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Terminal constraints have been treated by Nahra (Ref. 6), M~rtensson (Ref. 
7), and O'Doherty and Pierson (Ref. 8). They replaced F(x(T)) by 

F(x( T) ) + b TO(x(T)) + ½c20 r (x( T) )O(x( T) ) 

and iterated on the multipliers b. The combination of this idea with the 
methods of the preceding section will now be studied. 
Define 

T t" 
J(x, u, p, b, cl, c2) = J0 {L(x, u, t)+ pT[f(X, U, t ) - 2 ]  

+ ½cl[f(x, u, t)-~]T[f(x,  u, t ) -~]} dt 

+ F(x (T)) + b TO (X (T)) + ½c20 T (X (T)) 0 (x (T)). 

The following theorems, analogous to the ones of Section 2, can be 
proved. 

Theorem 4 . 1 ,  Let ,6 and 5 satisfy Eq. (3). Assume that 

c1>0,  c2~0,  

Huu(x(t), a(t),ff(t), t )>0 ,  t~[0, T], 

and that the Riccati equation 

- S =  Hxx -1 -1 r - fJ- t . , ,H.x)  -H~uHuuH~,x+(L-AHuuHu~) S + S ( L  -~ 
--1 T -S[f~,Huuf. + (1/c~)I]S, (10) 

S(T) = F** + c20~,.  + :~(¢,,)~x, 

has a solution over [0, T]. Then, J(x, u, ~, b, cl, c2) has a local minimum at 
(~, a). 

ProoL It follows from Theorems 3.1 to 3.3, with F replaced by 

F + U 4 ,  ~ +~c2O O. 

Theorem 4.2. Assume that J(x, u, ~, b, ca, c2) has a local minimum at 
(f, li) and that 

H,,(~, a, ~, t)>0, te[O,T]. 
Then, the Riccati equation (10) has a solution over [e, T] for arbitrary e > 0. 

Proof, It is analogous to the proof of Theorem 3.7. [] 

It is interesting to study some special cases. First, let 0 determine x(T) 
completely. 
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Theorem 4.3. Let ¢J(x(T)) have dimension n. Assume that the 
regularity conditions of Theorem 2.1 hold and that p and 17 satisfy Eq. (3). 
Assume the following. 

(i) H~(Y~(t), ~(t), f f(t) ,  t )>O,  t~[O, T]. 
(ii) There exists a symmetric matrix So such that the Riccati equation 

_ S  -1 - f , H ~ , H , , )  S = H x ~ - H , , H , ~ H , , + ( f ~  -1 , r  

- 1  
Sf,  H , , f , S ,  S ( T )  = So, (1t) 

has a solution in [0, T]. 
Then, there exist constants c, > 0 and c2 ->- 0 such that J(x, u, #, #, cl, c2) 

has a local minimum at ($, iT). 

Proof. There exists a value of c2 such that 

Fx, + c26~r6~ + £b,(~#i),~ >-So. 

The difference between -t T -i  T [f f lq ,ufu +(1/Cl)I]  and f , H , , f ,  can be made 
arbitrarily small by choosing cl large enough. The result then follows from 
Lemmas 7.1 and 7.5 in Appendix A. [] 

The simplest type of terminal constraint is xi (T) = d,. for some indices i. 
For easier notation, assume that the variables are ordered such that 

xi( T)  = d~, i = 1 . . . . .  r, 
(12) 

xdT) free, i = r + l  . . . . .  n. 

(i) 
(if) 

with 

Theorem 4.4. Let  the terminal constraint be given by (12), and 
assume that/7 and/~ are defined by (3). Assume the following. 

Hu,(Y(t), a(t ) ,p( t ) ,  t ) > 0 ,  t~[0 ,  T]. 
There exists an r × r matrix A such that the Riccati equation (11) 

So= __2 
o! 

has a solution on [0, T]. 
Then, there exist constants cl and c2 such that J(x,  u, p, b, cl, c2) has a 

local minimum at (~, tT). 

Proof. It is analogous to that of Theorem 4.3, [] 

Example 4.1. Shortest Distance Between Two Points on a Sphere. The 
difference between this example and Example 3.1 lies in the boundary 



316 JOTA:  VOL. 28, NO. 3, JULY 1979 

condition O(al)= 0. The Riccati equation (11) becomes 

-dS/d0/ = -1  - S  2, S(al) arbitrary, 

which has the solution 

S = - t an (ao  - 0/), 

where a0 can be chosen arbitrarily. To prolong the existence of S as much as 
possible, a0 should be taken close to 0/1- ~'/2, which corresponds to large 
values of S(al) .  The sufficiency conditions are then satisfied on the interval 
0-<0/-< 7 r - e  for any e > 0 .  

The Riccati equation (10) gives 

-dS /da  = - 1 - (1 + 1/Cl)S 2, 

with the solution 

where 

S(0/1) ~" C2, 

S = - t a n  [(0/0- 0/) -](1 + 1/cl)]/,/(1 + 1/cl), 

O~ 0 = 0/1 - - a r c t a n [ c z ~ / ( 1  + 1/Cl)]/.J(1 + 1/cl). 

The values cl and c2 for which S exists on [0, a l ]  are given by 

c2 + tan[~/2  - al-,/(1 + 1/cl)]/x/(1 + 1/cl) >-- O. 

Example 4.2. This example is given by Bryson and Ho (Ref. 10). 
Consider the motion of a rocket in a constant gravitational field. Let  xl 
denote  the altitude and x2 the vertical component  of the velocity. Assume 
that the thrust direction forms the angle 13 with the horizontal and that its 
magnitude is constant and equal to am, where m is the mass of the rocket. 
Let  g denote  the gravitational acceleration. The objective is to choose the 
control variable B to give the rocket  horizontal flight at the altitude h at the 
time T and to mximize the horizontal velocity component.  

The equations of motion are 

and the loss function is 

)~1 ~--" X2~ 

22 = a sin B - g, 

x l ( 0 )  = 0,  x2(0)  = 0,  

X l ( T )  --- h,  x2(T) = O, 

T 

J = - a ; o  cos fl dt. 
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The  Hamil tonian is 

H = - a  cos 3 +plx2+p2(a sin B -g)~  

The  first-order necessary conditions are 

Pl = 0, P2 = - p l ,  

sin fl + P2 cos B = 0. 

This gives a control strategy of the form 

tan fl = A t  + B, 

where A and B are determined by the boundary conditions. Along the 
optimal  trajectory, we have 

Hxx = 0 ,  Hxa = 0 ,  

Ha~ = a cos fl - ap2 sin fl = a /cos  fl > O, 

10] . 

The Riccati equation is 

For  c2 = 0, the solution is S(t) = 0 all t. This means that any c~ > 0 and c2 -- 0 
will be sufficient for J to have a local min imum at the solution to the 
problem. 

5. Iterative Algorithm 

The results of the previous two sections are only useful if p and b have 
the correct values/~ and/~ Therefore,  iterative methods of updating p and b 
in such a way that they converge to/~ and b must  be  studied. A natural way of 
updating p was suggested by Hestenes  (Ref. 2) and used by di Pillo et al. 
(Ref. 4). The  updating rule is 

p(t) "+l)= p(t)(° + cl[f(x(t)  (0, u(t) (°, t ) -  2 (t)(°], 

where x (° and u (° are the values that minimize the functional 
J(x, u, p(i~, b(O, cl, c2). The multiplier b is upd~/ted using a similar rule by 
Nahra  (Ref. 6) and O ' D o h e r t y  and Pierson (Ref. 8) 

b (i+I~ = b (i) + c25(x (° (T)). 
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The convergence properties of these updating methods will now be investi- 
gated. First, consider the minimization of J for fixed p and b, where 

T P 

J(x, u, p, b, cl, c2) = J. {L(x, u, t) +pV[f(x ,  u, t)-Yc] 

+ (cf f2)[/(x,  u, t ) -5c]r[/(x ,  u, t ) -~] }  dt 

+F(x (T ) )+bro (x (T ) )+½czO(x (T ) ) rd / ( x (T ) ) .  (13) 

This problem is of a standard form studied in the calculus of variations. 
Therefore, the minimum satisfies the Euler equations (see Gelfand and 
Fomin, Ref. 11) 

- d ( p  + c l ( f -  ic))/dt T r r . =Lx  +fxP +cl fx  ( f - x ) ,  

[p+cl ( f_yc)] t=r=F~+d/rxb  r +C2d/xd/, (14) 

T T c l f . ( f _ x ) = O .  Lu + f . p  + T • 

Introducing the definitions 

p + c 1 ( £ - ~ )  = ~, b + c 2 d / = L  

H(x,  u,p, t )=L(x ,  u, t )+pTf(x ,  U, t), 

(x, b) = F(x )  + b Td/(x), 

these equations can be written as 

ic = f(x,  u, t)+ ( 1 / c l ) ( p -  ~), 
__~.= T H~ (x, u, tL t), 

H .  (x, u, ~, t) = O, 

x(O) = a, d/(x(T)) = ( 1 / c 2 ) ( ( - b ) ,  
T ~(T) = Cx (x(T) ,  (). 

Let h, k, 71, O, q, d denote the deviations from the optimum, i.e., 

h = x - ~ ,  k = u - ~ ,  rl = f - p ,  

0 = f - b ,  q = p - • ,  d = b - b .  

Then, the equations are 

/~ =f(~ + h, a + k, t) - f ( £ ,  a, t) + (1/cl)(q - ~7), 

- ~  =Hff(£  + h, a +k, i0+ n, t)-Hxr(£, a,p, t), 

Hu(~ +h, a +k, P+n, t) = 0, (15)  

h(0) =0, d / ( ~ ( T ) + h ( T ) ) = ( 1 / c 2 ) ( O - d ) ,  

77( T) = q~ff (Y~ ( T)  + h ( T), b+ O) -  ~off (~ ( T), b). 
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The linearized version of these equations is 

t~ = fxh + f . k  + (1/ca)(q - n) ,  

-¢7 = H ~ h  + H~,,k + f r~ rh 

H,,,,k + H ~ h  +f,Tr I = O, (16) 

h (0) = O, ~xh (T )  = (1/cz)(O - d),  

~ ( T )  = ~o.,,h(T) + 0 ff O, 

where Hx., H.~, etc., are evaluated along (~, a, i6). 
If H . .  > 0, k can be expressed as 

k -1 - I  T = - H . . H . ~ h  - H . . f . n .  

This gives the following two-point boundary-value problem: 

h G - '  = - f u H . . H . ~ ) h  -1 T - ~ . H . . f .  +(1/c~)I]r l  + (1 / c t )q ,  

- ' 1  = (Hx~ - I  "H H -I"T ."T, - H ~ , . H . . H . x ) h - (  x~, uu fu -yx ) 'O ,  

h (0) = O, ~p~h(T) = (1/c2)(0 - d),  

rl(T)=q~,,~h(T)+~Or~O. (17) 
Let 

• (t, s) = r ~11(t, s) ~2(t,  s)] 1 
LqP21(t, s) qbzz(t, s) 

be the fundamental matric of this system of linear differential equations, and 
let S be the solution of the associated Riccati equation 

+(L-LH~d4.~) s 
nu --I --1 T 

S ( f ~ - f ~ H u u H . ~ ) - S [ f ~ H u . f .  + ( 1 / c l ) I ] S ,  (18) 

S(T) = Gx + ~ ( # & x  + c~¢,~G. 

Note that this Riccati equation is identical to (10). Assume that there exist c 0 
and c o 2 such that (18) has a solution on [0, T] for c~>_c °, c2>_c °. In what 

0 0 follows, only values of Cl and c2 satisfying c~-  cl, c2 -> c2 will be studied. 
The two-point boundary-value problem (15) can be represented as an 

integral equation, using the technique of Falb and de Jong (Ref. 13). A short 
description is given in Appendix B. It is convenient to regard 0 as a function 
on [0, T] satisfying the differential equation 0 = 0. The boundary conditions 
of the linearized problem (17) can then be written as 

o - x  , :  t (r) I = o . 

o LO(O)j o -(1/c2)/_j LO(T)A -(:/c~) 



320 J O T A :  VOL.  28, NO.  3, J U L Y  1979 

The linearized problem is boundary compatible (see Definition 8.1 in 
Appendix B) if the following matrix is nonsingular 

I i 0 01  
A =  xx t~ l  1 - -  tff~T~21 I~Oxx ~D12 --  (I)22 I/]ff , 

where 

A is nonsingular if 

~,j = ~ / (T ,  0). 

(19) 

[O=(T, 0) - (V== + c2¢,~¢=)O12(T, 0)] 

is nonsingular. Since this matrix is related to the solution of the Riccati 
equation (18) by 

S(t) = [cI)22(T, t ) -  (~o== + c2@~r@=)qb12(T, t)] -t 

• [(~o~ +c20r~O=)~ll(T, t ) -  qb21(T, t)], 

the nonsingularity follows from the assumption that S(t) exists on [0, T]. 
Note that the equation 

Hu(;+h, a+k,P+n, t ) = 0  

defines k uniquely in terms of h and 71 if h and 77 are sufficiently small. This 
follows from the implicit function theorem (Ref. 9), since H,u (£, a, p, t) > 0. 
The solution of (15) can now be written as 

=K( t )  ff(£(r)+h(T), E+O)-~or(g(T), b)-~=xh(T)-O r 
@(g(T) + h (T)) - ¢~h (T) - (1/cz)d 

T - f(X + h, ft + k, s) -f(£,  a, s) -fxh -f~k + (1/cl)q I 
+fo G(t,s) H r ( ~ , & ~ , s ) - H r ( £ + h , ~ + k ,  ff+rl, s)+Hxxh+H~k+f=rrlJ ds, 

0 
(20) 

with k given by 
T - H~ (x +h, a+k,p+rl,  t)=O. 

K(t) and G(t, s) are the Green's matrices associated with the linear two- 
point boundary-value problem (see Lemma 8.1 in Appendix B). 

Theorem 5.1. There exist constants e > 0 and 8 > 0 such that, for all 
continuous functions q and all d with Ilqllo-<8 and Ildll -< & there exists a 
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unique solution (h, 7/) to the integral equation (20) satisfying 

tlh jjo + fin Jlo + tj011o -< s .  

Proof. The integral equation can be written as an operator equation 

h = Tl(h, ~7, O ) + A I  .q,  

rl = Tz(h, n, 0), 

0 = T3(h, 71, O)+A2"  d, 

where Ti are maps from C3"[0, r ]  to C~[O, T] and where A1 and A2 are 
linear maps. Let a be a real number, 0 ~ ~ < 1. Then, from Eq. (20), it 
follows that there exists an e > 0 and a 8 > 0 such that 

llTi(h~, 71, 01) -  Ti(h2, rl2, 02)I1o 

<-~[llhl-hz[lo+llnl-n2]jo+llO~-Odlo], i =  1 ,2 ,3 ,  

for all ha, hz, ~Ta, rl2, 01, 02 satisfying 

IIh,llo +lln;llo+llo, l]o-< ~, i =  1, 2. 
It also follows that 

Define 

Choose 8 such that 

for q and d satisfying 

IIT~(0, 0, 0)+A1- qll~ ltAdl" Ilqli, 

[IT3(0, 0, 0)+A2" dll~lIA211" ]Idll. 

rt = max [llAlli" ilqll, IIAall- ILdllq. 

r t /(1-a)--< e 

llq[10~a, Ildll~& 
The conditions of the contraction mapping theorem (see, e.g., Ref. 13) are 
then satisfied, and the theorem is proved. [] 

To study the solution h, k, r / for  small values of q and b, it is desirable to 
have an approximate representation. 

Theorem 5.2. Let (h, rt) be the solution of the nonlinear problem (15). 
Then, 

= g ( t )  0 I + (1 /c t )G( t ,  s) ds + r(q, d),  

(1/c2)dj 
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where 

lit(q, d)llo/(llql[o + lldll) ~ 0 as (q, d) ~ 0. 

Proof. From (20), it follows that 

II T, (h ,  k ,  ~7)1[-< ~gl[llh Iio + 117 Iio + 110110] 2, 

consequently, 

Ilhllo + tl711o + tl011o-<gl[llhllo + 11711o + tl0llo] = + gdllqtlo +tldll), 

for some constants K1 and Kz. Let e be the constant defined in Theorem 5.1, 
and let 

el = min (1/2K1, e). 

Then, for sufficiently small Ilqll and Ildll, 

rl/(1 - a )  <- e 1, 

where a and 7/are defined as in Theorem 5.1. Consequently, 

tlhllo + Ilntlo + It011o-< 1/2gx  

for sufficiently small llqtto and ltdlI. This gives 

Ilhllo + lln tto + I1011o -< 2g=[]lq tlo + lldll]. 

Using this in the expression for l[T~(h, n, 0)11 gives the desired bound on 
r(q, d). [] 

Corollary 5.1. Let /~, r~, ff denote the solution to the linearized 
boundary-value problem (17). Then, the solutions of the nonlinear problem 
and the linearized problem are related by 

= " +r(q,d) ,  

Proof. 

where 

Ilr(q, d)llo/(llqllo+lldll)~o as (q, d )~O.  

The solution to (17) is given by 

/~ 0 w (1 1) 
= K( t )  0 + G(t, s) ds. 

-(1/c2)a 
[ ]  (21) 
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With this result, it is possible to investigate the convergence rate of the 
iterative me thod  of updat ing the multipliers. As ment ioned  at the beginning 
of this section, the algori thm will be assumed to be the following. 

Algorithm 5.1 
(i) Choose starting values p(O), bW) ; put  i = 0. 

(ii) Minimize J (x ,  u, pCi), b(i), cl ,  c2); let the result be x (1), u (i). 
(iii) Update  the multipliers 

P (~+I) (t) = p (~ (t) + c l [ f (x  (i), u (o, t) - 2 ~) (t)] 

b( i+ l )  b(i) (i) = + c24t(x (t)); 

put  i = i + 1 and go to (ii). 
It is assumed that  c~ and cz are held constant,  and that  

0 CI ~cO~ C2~C2 . 

Theorem 5.3. Le t  p(;) and b (~) be genera ted by Algor i thm 5.1. 
Assume the following. 

(i) /~ and 5 satisfy Eq. (3). 
(ii) The linearized system 

2 =fx(2, ti, t )h  + f , ( 2 ,  a, t ) k  
is controllable. 

(iii) Hu,  (2, a, p, t) > 0, t E [0, T]. 
(iv) The Riccati equat ion (18) has a solution on [0, T] for 

c =d, c --c ° 

Then,  there are constants 
0 0 

Cl~Cl~  C2~-C2 

such that,  if p(O) and b (°) are sufficiently close to ff and 6, then 

lip (i+1) - N o  ÷ lib (g+" -/~[I <- KEHp (" -Pllo + lib (~> -bil] ,  

where K is an arbitrary number  in (0, 1). 

ProoL Using the notat ion 

p(~) - /~ = q(1), x (~) - 2  = h (~), 

u (~) - ~ = k (i), b (i) _ 5 = d "), 

the updat ing formula  can be writ ten as 

q( i+ l )  = q(i) +cl[ fxh( i )  + f~k(i) _ h ( i ) ] ÷ C l R l ( h  (i) ' k(i)),  

d (i+I) = d (i) + c2O~h ( i )(T)  + c 2 R z ( h  ( i ) (T)) ,  
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where  

t lRffh,  k)llo/(llhllo+llkllo)"O as (h, k)-+ 0, 

IIRm(z)ll/[Izll--, o as z * 0. 

If /~, r~, 0,/~ deno te  the solut ion to the linear, two-poin t  boundary-va lue  
problem., then  it follows f rom T h e o r e m  5.2 that  

q(i+l) = q(i) + cl(fxl~(i) + fufl¢(i) _ ~(i)) + Rs(q(i),  d(i)), 
(22) 

,~(i)(T , (0 d (i+1) = d  (1)+c2~b,n ~ ) + R 4 ( q  , d ( ° ) ,  

where  

llRi(q, d)llo/(LLqtlo+Ildll)-" 0 as (q, d ) ~  0. 

F r o m  ( i6) ,  it follows that  

f, f t  (i) + f,~(i) _ [l (i) = (1/  c O(rl (O _ q  (i) ), 

O,h ( T)  = (1/  c2)( O (i) - d(°) .  

Using these expressions in (22) results in 

q(~+l) = rl(i) + Rs(q(~), d(~)), 

d (~+1) = 0 (o + R4(q  (i), d (°). 

F r o m  condit ions (i)-(iv), it follows that  the l inear p rob lem (17) has a solut ion 
for  cl = oo, c2 = oo. Then ,  K (t) and G (t, s) go to finite limits as Cl -+ oo, c2 ~ oo. 
F r o m  (21), it then  follows that  there  are values cl  -> c o and c2 >- c o such that  

117 (')11o + ll0 (')110-< (g/2)[llq (')11o + lid ~)[I]. 

For  these values of c~ and c2, choose 3 such that  

J[Ri (q (i), d(i))[Io ~ (K/4)[[lq (i)][o + lid (i) [[] 

for  

Then ,  

for  

l]q (i)]lo + ]1 d{° 1] <- 8. 

Ihq ('+~) [[o + lid "+~)11 ~ K[I I¢  i)llo + lid (° II1 

l[q <m tlo + lid (°) tl ~ & U3 

T h e o r e m  5.3 shows that  Algor i thm 5.1 can be used to solve the opt imal  
control  problem,  However ,  this a lgori thm is based on the minimizat ion of J 
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for fixed values of the multipliers. This is not a trivial problem, even if it is 
simpler than the original optimization problem, because the differential 
equation and terminal constraints are eliminated. Di Pillo et aL (Ref. 4) have 
studied this problem and shown that a conjugate gradient method can be 
used. The optimization problem can then be solved using only quadratures 
and without the solution of any differential equations. 

6. Conclusions 

The results of Sections 3 and 4 shed some light on how the constant c 
affects the existence of a minimum for Z In particular, it is interesting to note 
that, in some cases, the result can be seen at a glance, without any 
computations, as shown in Example 4.2. It is also worth noting that, for 
problems where 

_/rXx - -  1 
- H x ~ H ~ , t L ~ > O ,  O<-t<-T, 

F~  > O, 

with the above expressions evaluated along a? and ti, the solution to (7) can 
be extended over the whole interval. In this case, any c greater than zero is 
sufficient. 

The results in Section 4 are analogous to results known from the 
finite-dimensional case. Theorem 5.3 suggests that high values of c are 
always good, since they give a high linear convergence rate. In practice, it is 
also necessary to consider the fact that a high value of c gives an ill- 
conditioned problem when minimizing J. 

7. Appendix A: Properties of the Riccati Equation 

Here,  some basic properties of the Riccati equation that are needed in 
the proofs on the preceding pages are collected. Most of them can be found 
in Refs. 7, 14, 15, but not necessarily in the form given here. 

We will write the Riccati equation in the form 

- S ( t )  = A r(t)S(t)  + S( t )A( t )  + O ( t ) -  S( t)P(t)S(t) ,  S (T )  = Qo, 

where A, O, P are matrices whose elements are continuous functions of t 
and Oo, O, P are symmetric. It follows from standard theorems for differen- 
tial equations that S(t) exists at least on a sufficiently small interval to <- t <- 7". 
Moreover ,  the only way in which S can fail to exist is by having some element 
which becomes unbounded.  In what follows, M-> NI where M and N are 
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symmetric matrices, means that M - N is nonnegative definite and M > N 
means that M -  N is positive definite. 

It is useful to rewrite the Riccati equation as an integral equation. 
Introduce the fundamtneal matrix d~(t, T) satisfying 

(d/dt)ob(t, T )=  [A(t)-½P(t)S(t)]~(t ,  r) ,  q~(T, T ) =  I. 

Then, we have 
P T 

S(t) = | &T(s, t)O(s)&(s, t) ds +4)T(T, t)Oo&(T, t). 
Jt 

L e m m a  7.1. For the Riccati equation 

- S  = A Ts + SA + Q -  SPS, 

let $1 and $2 be the solutions corresponding to 

S(T)  = Oo ~ and S(T)  = 020, 

respectively. Then, if Oo 2 -> Olo, it follows that S2(t) >- Sl(t) for all t e [to, T], 
where [to, T] is an interval on which both solutions exist. 

P r o o f .  W e  have 

- ( d /  dt)(S2-  $1) = (A - PS1) T (S2-  S1) + ($2 - S1)(A -PS1) 

- (S2  - S I ) P ( S 2  - S1) ,  

S2(T) - SI(T) 2 1 = Q o  - Qo. 

Regarding this as a Riccati equation in $2-$1  we get, using the integral 
equation representation above, 

t 2 1 T. S 2 - S l  =q~ T(T, )(Qo -Oo)d#( , t), 

where ~ (t, T) now is the fundamental matrix corresponding to 

A - P S l - ½ P ( S 2 -  Sl). 

Lemma 7.2. Let Sl and S2 be the solutions of the Riccati equations 

- S = A T S + S A + Q - S P 1 S ,  S (T )=Qo,  

- S  = A T S + S A + Q - S P 2 S ,  S(T)  = Qo, 

respectively. If PI >-- P2, then 

S2(t) >- S~(t), t ~ [to, T], 

where [to, T] is any interval on which both solutions exist. 
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Proof.  We have 

- (  d/ dt)(S2- Sl) = (A - P2S1) r ( S2-  Sl) + (S2 - Sl)(A -PzS1) 

- ( S 2 -  8 1 ) P 2 ( S 2  - $ 1 )  + SI(P1 -P2)S1, 

S2(T) - SI(T) = O. 

Using the integral equation form, this can be written as 
T t *  

S2(t) - S l ( t )  = Jt ST(s' t )Sl(P1-P2)Sle(S,  t) ds. 

Lemma 7.3. Let  S~ and Sz be the solutions of the Riccati equations 

- $ = A T S + S A + O I - S P S ,  S(T)=Oo, 

- S  =ATS+SA + O2-SPS, S(T) = 00, 

respectively, Then, if Qz >- 0i ,  it follows that 

S2(t)>---Sl(t), t~[to, T], 

where [to, T]  is any interval on which both solutions exist. 

Proof. We have 

T / ,  

S2(t)-Sl(t) = J, daT(s, t)(Qe- Ol)~(s,  t) ds, 

where ~b is the fundamental matrix corresponding to 

A 1 - P S I  - ~ P ( S 2  - $ 1 ) .  

We can now deduce the following result. 

Lemma 7.4. If P > 0, then there exists a continuous matrix R (t) such 
that S(t)<-R (t) on any interval [to, T]  where S exists. 

Proof. From Lemma 7.2, it follows that S(t)<-R(t), where R is the 
solution to the linear differential equation 

-t~ = A T R + R A + Q ,  R(T)=Qo. 

From this lemma, it follows that, to prove existence of S(t) on some interval, 
all that is needed is a lower bound on S on that interval. 

Lemma 7.5. Let  S be the solution of the Riccati equation 

- :~=ATS+SA+O+SPS,  S(T)=Qo, 
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and assume that S exists on the interval [to, T]. Let S be the solution to the 
Riccati equation where A, O, P have replaced A, O, P. Then, there exists an 
e > 0 such that S also exists on [to, T] if 

II.~-AII-< ~, LIe)- Oil-< ~, IIF-PII-< ~. 

Proof. Since the right-hand side of the Riccati equation is a continu- 
ous function of S, A, O, P, the result follows from general results for 
nonlinear differential equations (see Ref. 12). 

8. Appendix B: Two-Point Boundary-Value Problem 

A linear two-point boundary-value problem can be written as 

)~ = V(t)y +f(t), My(0) + N y ( 1 ) =  c, 

where V, M, N are p ×p matrices and f, c, y are p-vectors. 

Definition 8.1. (See Ref. 13). The set {V, M, N} is called boundary 
compatible if (i) V(t) is measurable with llV(t)II < m(t) for an integrable 
m (t), and (ii) det[M + N~b (1, 0)] ~ 0, where ~(t, s) is the fundamental matrix 
of y = V(t)y. 

{ V, M, N} is a boundary compatible set iff the linear two-point boun- 
dary-value problem has a solution for all f and c. 

Lemma 8.1. Let D be an open set in R P, and let I be an open set in R 
containing [0, 1]. Assume the following: (i) F(y,  t) is a map of D x I into D 
which is measurable in t for each fixed y and continuous in y for each fixed t; 
(ii) there is an integrable function rn (t) such that IIF(y, t)[[ < m (t) on D x I ;  
(iii) g(y) and h(y) are maps of D into D ;  and (iv) {V(t), M, N} is a boundary 
compatible set. Then, the boundary-value problem 

)) = F ( y ,  t), g(y(0))+ h(y(1)) = c 

has the equivalent representation 

y(t) = H(t){c - g(y (0)) - h (y (1)) +My(0)  + Ny (1)} 
P 1 

+ Jo G(t, s){F(y(s), s i -  V(s)y(s)} ds, 

where the Green's functions H(t) and G(t, s) are given by 

H(t) = cb(t, 0)(M + Nqb(1, 0)) -1, 

I ~(t'O)(M+Ncb(l'O))-lMdg(O's)' 0 < s < t ,  
G(t, s) = [ -~( t ,  O)(M + N~(1 ,  0))-lNd~(1, s), t < s < 1, 
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where qb(t, s) is the fundamental  matrix of the linear system y = V(t)y. 

Proof.  See Falb and de Jong (Ref. 13). 
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