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Linear-Quadratic, Two-Person, Zero-Sum 
Differential Games: Necessary and 

Sufficient Conditions 1 

P.  B E R N F I A R D  ~ 

Communicated by P. L. Yu 

Abstract. We consider linear-quadratic, two-person, zero-sum per- 
fect information differential games, possibly with a linear target set. We 
show a necessary and sufficient condition for the existence of a saddle 
point, within a wide class of causal strategies (including, but not restrict- 
ed to, pure state feedbacks). The main result is that, when they exist, the 
optimal strategies are pure feedbacks, given by the classical formulas 
suitably extended, and that existence may be obtained even in the 
presence of a conjugate point within the time interval, provided it is of a 
special type that we call even. 

Key Words. Linear differential games, conjugate points, saddle 
points. 

1. Introduction 

It has long been known that, for the two-person, zero-sum differential 
game with linear dynamics, quadratic payoff, fixed end-time, and free 
end-state (standard LO game), the existence of a solution to a Riccati 
equation is a sufficient condition for the existence of a saddle point within the 
class of instantaneous state feedback strategies (Refs. 1-2), and therefore 
within any wider class (Ref. 3). 

In the simpler case of optimal control theory (one-player game), it is 
also known that this constitutes a necessary condition for the existence of a 
minimum (Refs. 4-6), and this result can be extended to the case where the 
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final state is constrained to lie in a given linear subspace, although this raises 
the problem of abnormal trajectories (Refs. 4 and 7). 

Up to now, however, the problem remained unsettled for the standard 
LQ game. Two main questions were posed: Is the absence of conjugate 
points a necessary condition for the existence of a pure feedback solution? Is 
the answer any different if one allows greater use of past information in the 
elaboration of the controls? The aim of this article is to provide a rather 
complete answer to these questions. The answer to both questions is 
negative. And we shall provide the necessary and sufficient condition, within 
a mild positivity hypothesis on some of the data (hypothesis that corresponds 
to the standard situation of worst-case design). 

It turns out that, to investigate the problem, even with free end-state, 
we need to study the linearly constrained end-state game. We thus start out 
with that more general situation. As in the one-player case, this obliges us to 
look into normality questions. These questions, however, happen to be more 
complicated than in the previous ease, and we are obliged to introduce a 
further distinction between normalizable and unnormalizable problems. 

In Section 2, we state the problem and the hypotheses. In Section 3, we 
introduce the necessary concepts to state the main theorem, including 
normalizability. Section 4 is devoted to the proof of the theorem in the 
absence of conjugate points, and Section 5 is devoted to the study of 
conjugate points. Many details will be skipped in the proofs; they may be 
found in Ref. 3. 

2. Problem 

We consider a linear system 

~(t) = F( t )x (  t) + G(t)u( t )  + E(t)v( t ) ,  (1) 

x (to) = Xo, (2) 

where t~[to, t l ] C R  is the time, to and tl are prescribed, x ( t ) ~ R  ~ is the 
state, the dot means time derivative and u( t )e  R m and v ( t ) c  R p are the 
pursuer 's and evader 's controls. 

The sets I t ,  and It~ of admissible control functions are made of all 
square-integrable functions u ( .  ) and v ( - )  from [to, ti] to R '~ and R", 
respectively. F ( -  ), G ( .  ), E ( .  ) are matrix time functions of appropriate 
type, piecewise continuous, chosen right continuous everywhere and left 
continuous at tl. 

A linear target setd~ of dimension m is given in R ~, as the range of a full 
rank m x n matrix M:  

= ~ ( M ) ,  dim J/ /= m = n - I. 
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When necessary, we shall assume that an orthogonal basis has been chosen 
in ~ = ~t j-, and use the orthogonal projection from R ~ onto &o, whose matrix 
II is of type I x n and satisfies 3 

H ' H = I - M M * ,  IIII' = Iz. (3) 

A payoff or criterion is given by 

J(xo, to; u(" ), v(" ))=x'(t l)Ax(tl)+ [x'(t)O(t)x(t)+x'(t)S(t)u(t) 
*~t o 

+ u'(t)S'(t)x (t) + x'(t) T(t)v (t) + v'(t) T'(t)x (t) 
+ u'(t)R (t)u (t) -v ' ( t )B (t)v (t)] dt 

and 

x (tl) c ~ or equivalently Hx(tl) = 0, 

(4) 

(5) 

J(xo, to; u(" ), v(" ))= +oo if x( t l )~ ,~  or Fix(t1)~ O, (6) 

that the pursuer ¢//tries to minimize and the evader 7/" to maximize. Hence, 
the final constraint (4) is under the pursuer's responsibility. 

In (4), A, O(t), R(t), B(t) are symmetric matrices, and S(t), T(t) are 
any matrices of appropriate type, the last five matrices with the same 
regularity as F, G, E as functions of time. 

We further make the following positivity assumptions: 

Vt c [to, tl], R ( t ) > 0 ,  B ( t ) > 0 ,  (7) 

Vt~[to, tl], [O(t)s,(t) S(t)]  R ( t ) j - 0 ,  A>-0.  (8) 

Notice that specifications (6) and (8) are asymmetrical, in that they give 
different roles to the two players. We would have a completely analogous 
treatment by reversing both, using in (8) the matrix made with O, T, -B .  

It is assumed that both players have perfect instantaneous state 
measurement, perfect recall, and (if necessary) perfect knowledge of their 
opponent 's past control function. Thus, strategies are functions ~p and 0 of 
R"  x R x f ~  into Ou and R n x R x llu into fl~, respectively, giving the 
players' controls through 

u(t) = q~(Xo, to; v(- ))(t), v(t) = ~b(Xo, to; u(" ))(t), (9) 

3 We use the prime notation for transpose, and t for pseudoinverse. 



54 JOTA: VOL. 27, NO. 1, JANUARY 1979 

with the casuality property: for vl(-  ),/32(" ) in f~,  if/21(t) ----- V2(t) for almost 
all t ~ [to, ~-], r --< tl, then 

~0(x0, to; vl)(r)= e(x0, to; v2)(~), 

and conversely for 0. 
To each initial phase (Xo, to), we associate two sets qb and ~ of 

admissible strategies, chosen such that: 

(i) they contain open-loop control functions in ftu or 12~; 
(ii) they are closed under concatenation; 

(iii) any ( ~ 0 , ~ ) c q b x ~  generates through (1)-(2) at least one tra- 
jectory, generating control functions in IIu x I)~. 

Our main theorem holds ~or any such pair of admissible strategy sets 
that contains q~* and O* given below. 

Remark 2.1. The sets ~ and ~ are chosen a priori for each initial 
phase, so that the game always takes place over a product set of strategies. 
We omitted writing explicitly the dependence of dp and ~ on (Xo, to). We 
shall make use repeatedly of the possibility to conca tena te  games ,  using the 
value of the game over [t2, h]  as the final cost of a game on [to, t2]. For  the 
legitimacy of this, see for instance Ref. 3. For consistency, we must assume 
that, for any t2 C [to, t l ] ,  the restriction to [t2, tl] of a strategy pair (~0, ~b) E 
d~(Xo, to) x ~(Xo, to) belongs to qb(x2, t2) x ~(x2, t2), where x2 is the state at 
time t2 on any trajectory generated by (~0, 0) from (Xo, to). The  converse is 
implied by (ii) above: one is allowed to concatenate a strategy pair of 
(ID(x2, t2) X XI)'(X2, t2) to any trajectory from (xo, to) to (x2, t2). 

We are obliged to use this set-up, because we want to allow state 
feedbacks with a gain that can be unbounded in the neighborhood of a time 
,r, such that at that time trajectories exist only through some special states of 
interest. In that case, the meaning of (1) is that it must be satisfied for almost 
all t. If ~" is the initial time, we state the following definitions. 

Definition 2.1. A trajectory generated from x(~-) = ~ is an absolutely 
continuous function x( -  ), satisfying (1) for all t > r in a right neighborhood 
of ~', and such that x(t)--z,s e when t$~-. 

Definit ion 2.2. Admissible strategies sets are sets ff~ and W satisfying 
(i)-(iii) above, and such that all admissible strategies are locally bounded, 
except at most in the neighborhood of finitely many instants of time. 
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Definition 2.3. A solution of the differential game is a set of admis- 
sible strategies (~p*, O*) such that, V(~, 0)  c ~ x ~ ,  

Y(xo, to; ~o*,~p) <-J(xo, to; ~*, 0*) = V(xo, to) <-J(xo, to; ~,4,*), (10) 

or equivalently (see Ref. 3 or Ref. 8), 

V(u(- ), v(-  )) e f ~  x ~ , ,  

J(xo, to; ¢p*, v(" ))<-J(xo, to; ¢*, 6") = V(xo, to)<-J(xo, to; u(" ), 4'*), (11) 

with a transparent abuse of notations for the arguments of J. If a pair of 
admissible strategies generates several trajectories, the inequalities must 
hold for J evaluated on any of them, and this, in turn, ensures the unicity of 
the value J(q~*, ¢*). 

3. Basic Equations 

'We introduce the foUowing canonical equations, involving two square 
n x n matrix functions of time X ( .  ) and A(. ): 

= (F - G R - a S '  + E B  - 1 T ' ) X  - ( G R - t  G' - EB-1E ' )A ,  

X ( q )  = M M  t, (12) 

h = - ( O  - SR-1S '  + T B - 1 T ' ) X  - (F' - S R - I  G '+  T B - 1 E  ')A, 

A(h) = AI"vIM t + I - MM*, (13) 

and the definition 

P(t) = A( t )Xt ( t ) .  (t4) 

We have the following classical lemma (see Ref. 3 or Ref. 7). 

Lemma 3.1. On any interval of time where X ( t )  is invertibte, P ( .  ) 
satisfies the following Riccati equation : 

[~ + PF + F 'P  - (PG + S )R  -1 (G 'P  + S') + (PE + T)B-1  (E 'P + T') + O -- 0; 
(15) 

conversely, if X ( r )  is invertible, X ( t )  is invertible on any interval [rl, r2] 
over which the equation (15), initialized at time ~- with (14) has a solution. 

Let  74/~(t) be the subspace of states that can be controlled by u alone to 
Jtt on [t, t~]: 

°W(t)=dP(t, t t )[Jt~+~(! '~di f fq,  s )G(s )G ' ( s )* ' ( t l ,  s) ds ) l .  (16) 

• (t, s) is the transition matrix associated with F. 
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Proposition3.1. The subspace ~t4P(t) is of piecewise constant 
decreasing dimension. 

Proof, The range subspace that appears in the definition (16) is a 
decreasing set, and therefore piecewise constant and of decreasing dimen- 
sion. []  

Definition 3.1. The system (1) is said to be G-reducible if 

Vt, ~(E(t))  C ~¢/'(t). (17) 

As a matter  of fact, in that case v cannot by himself drive the state out of 7¢', 
so that, if the initial state belongs to it, one can, by the classical technique, 
restrict the state space to ~P, losing no information, and making the system 
completely u-controllable modulo d4, at tl. Hence,  the terminology. 

We have the following obvious result. 

Lemma 3.2. A necessary condition for the existence of a nonde- 
generate (i.e., with finite value) saddle point is that the system be G- 
reducible and that 

Xo ~ ~tP(t0). (18) 

Proof. It is elementary. [] 

Now, we shall study the problem on a time interval [t2, hi on which 
~f'(t) is of constant dimension, so that performing the G-reduction,  we shall 
have a system differentially completely u-controllable modulo ~/ at tl 
(d.c.u-c mod d~). We shall show that, if a saddle point exists at all, the set of 
initial states for which it does exist is a linear space d//2. For  initial states 
X (t2)~ J///2, V can make J arbitrarily large. Therefore,  if on [to, h] 74/" changes 
dimension at some instants ti, i = 2 . . . . .  we can first consider the problem on 
[tz, h], then on It3, tz] with capture set M2 at t2, a final cost V(x, t2) (which 
will be quadratic in x), and so on up to to. Furthermore,  the equations 
(12)-(13) for the problem on [ti+l, h] may be initialized with X(t~), A(tl) as 
given by the system over [tl, t~-l] (see Ref. 3 or Ref. 7). Therefore,  there is no 
loss of generality in making the following assumption: 

Vt ~ [to, hi ,  7g'(t) = R n. (19) 

We are obliged to state a further definition. 

Definition 3.2. The problem (1)-(6) is said to be normalizable if, for 
all t on [to, tl], except possibly at isolated points, called focal points, 

~(X(t))  = ~V(t). (20) 
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If (20) holds, by performing the G-reduction, one can make the 
problem normal according to the classical definition (see Refs. 4 and 7), that 
we now recall. 

Definition 3.3. The problem is normal if, for all t on [to, hi ,  except 
possibly at isolated focal points, 

det X(t)  ~ O. (21) 

It is a central fact of second-variation theory that, in optimal control 
theory, all nonsingular problems are normalizable according to the above 
definition. Therefore, the concept is not needed. The new fact is that this is 
not true for differential games. As a counterexampte, choose 

F = 0 ,  G = E ,  O = 0 ,  S = 0 ,  T = 0 ,  R = B .  

Definition 3.4. A focal point different from tl is called a conjugate 
point. 

We can now state the main theorem. 

Theorem 3.1. A necessary and sufficient condition for the existence 
of a nondegenerate saddle point to the problem (1)-(6) with the assumptions 
(7) and (8), is that: 

(i) the system (1) be G-reducible (Definition 3.1); 
(ii) the problem be normalizable (Definition 3.2); 

(iii) xo~ ~(X(to)), X(t) is defined by (12)-(13); 
(iv) Vt~ [to, tl], P(t)>-O, P(t) defined by (14). 

Then, the optimal strategies are 

u(t) = ¢*(x(t), t), q~*(x, t) = -R-t(t)(G'(t)P(t)  +S'(t))x, (22) 

v(t)=g,*(x(t), t), O*(x, t)=B-l(t)(E'(t)P(t)+ T'(t))x, (23) 

and the value of the game is 

V(xo, to) = x'oP(to)xo. (24) 

If the above conditions do not hold, v can make the payoff arbitrarily large. 

Remark 3.1. In the neighborhood of a focal point, ¢* and 4'* are 
unbounded (for some x's). We must check that these strategies are consis- 
tent with the requirements set to define admissible strategies. This is done as 
follows. 

(i) The strategies ~o* and 4'* generate trajectories from any initial 
state satisfying condition (iii) of the theorem, against any opponent 's open- 
loop control. This is not trivial only if to is a conjugate point. The fact that it is 
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true for ~O* will be a consequence of the sufficient condition in Section 4, and 
the study of the reverse game  in Section 5. For q~* this has to be proved 
independently and is asserted by Lemma 3.3. 

(ii) The controls generated by (~p*, v(" )) or (0", u ( .  )) are square 
integrable if the opponent 's  one is. This again is a consequence of the proof 
of the theorem. For 0",  it holds only if u ( . )  ensures (5). We may admit that, 
if it does not, v chooses to bound his control once he has made a sufficient 
profit, chosen arbitrarily large. He can then play v = 0. Notice, however, that 
this is no longer a pure feedback strategy. 

Lemma 3.3. For any XoC Y~(X(to)), and for any admissible control 
function v( • ), there exists at least one trajectory generated from Xo by 
(~*, v(-)). 

Proof. It is omitted (see Ref. 3). [] 

4. Proof of the Main Theorem: No Conjugate Point 

4.1. Simple Game. We first study a particular case of the game 
(1)-(6), that we call the simple game. It is defined by 

F = 0 ,  J / /=  {0},  i . e . , M = 0 ,  H=/~ ,  

A = 0, Vt 6 [to, tl], Q(t )  = O, S(t)  = O, T( t )  = O. 

In this case, assumption (8) is void. 
We further assume that the sys tem is d.c.u-c rood :///, i.e., (19) holds. 

Equations (10)-(14) now reduce to 

X(t) = cj', [G(s)R-l(s)G'(s)-E(s)U-l(s)E'(s) ds, 

P( t )  = X*( t ) ,  P( t )  = X - l ( t ) ,  

if the system is normalizable. 

A(t) = / ,  

(25) 

Necessary Condition. The necessity of (i) follows from Lemma 3.2. 
The necessity of (iii), (iv) follows from Heymann, Pachter, and Stern (Ref. 9, 
Corollary 3.10): they state that, if the conditions 

X(to)>_O, (26) 

X(to) ~ ~ ( X ( t o ) ) ,  (27) 
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are not both satisfied, then 

sup inf J(xo,  to; u ( .  ), v(-  )) = +m.  
u(-)eIl~, v ( . ) e ~  

This means that, even knowing the whole future control function v( .  ), u 
cannot prevent  his opponent  from making J arbitrarily large. This is a 
fortiori true if u is constrained to using causal strategies. And, in that case, 
(26) must hold for all t ~ [to, tl], and not only at to. Otherwise, if it were 
violated at a time t2, v could wait  (say, play v = 0) until that time, and use the 
above result from t2 on. 

For  the same reason, u must also ensure (27) at all t c [to, hi ,  from any 
admissible initial state. At a conjugate point, this is possible only if ~ is 
allowed to be unbounded in a left neighborhood, and this, together with 
Definition 2.2, forbids accumulation points of conjugate points. The neces- 
sity of (ii) is then a consequence of the following result. 

Lemma 4.1. If X ( t )  is positive semidefinite and singular on an inter- 
val [t2, t3], no strictly causal strategy q~ can hold the state in ~ ( X )  for every 
control v ( . )  ~ II~. 

Proof. It is omitted (see Ref. 3). 

Sufficient Condition. Using (22)-(23) and (25), one sees that, for all u 
and v, assuming X ( t )  > O, 

u ' R u  - v ' B v  = - (  d /  d t ) ( x ' X - l x  ) + (u - q~*)'R (u - ~ *) - ( v - (~*)'B ( v - ¢*). 

Integrating by parts, this yields (using the notation u ' R u  = itull~): 

f,i (llul[~ - =  x'oX(to)-lxo - x ' ( t ) x ( t ) - l x  (t) livll~) ds 

f f + ] l u - q ~ * l l ~ d s -  Hv-~*[12Bds. (28) 
0 0 

Assume that the pursuer uses the strategy ~*. The above relation gives 

i I/ Ilull~ ds = tlvil~ ds + x'oX(to)-~Xo 
0 0 

- x ' ( t ) x ( t ) - t x  ( t ) -  ltv - ~*[t~ ds 
o 

In the right-hand side of this equation, the first two terms are positive and 
bounded as long as v ( .  ) is square integrabte on [to, h]. The last two terms 
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are negative. However, the left-hand side being positive, these last two 
terms are both bounded. From this, we can conclude: firstly, ~he function 
u ( .  ) thus generated is square integrable on [to, tl]; secondly, there exists a 
positive real number a such that 

x ' ( t )X(t)- lx( t )  <- a 2, Vt < q, 
so that 

tlx(t)ll-< Ilsl/=(t)lf [[X-1/2(t)x(t)tl <-IlXl/2(t)lta; 

and, since X(t )  goes to zero as t goes to tl, in the limit 

x(tl) = 0; (29) 

thirdly, taking the above fact into account, 

J(xo, to; q~*, v( . ))<- x'(to)X(to)-~X(to). (30) 

Now, assume that against q~*, v plays g,*. With these strategies, we get 

(d/dt ) (X- l ( t )x  (t)) = O. 

Therefore X - ~ x  is constant along a trajectory; thus, since x(t) goes to zero, 

x ' ( t )X- l ( t ) x ( t )~  0 as t ~ tl. (31) 

Equations (23) therefore give 

J(xo, to; q~*, q~*) ' -1 =xoX(to) Xo (32) 

We must now establish the second inequality of the saddle point, i.e., that 

Y(xo, to; u(" ), ~P*) >-xroX(to)-lxo. (33) 

This will be done using the following result. 

Lemma 4.2. Against the strategy v = ~b*, all L 2 controls u(" ) that 
ensure capture (29) result in property (31). 

Proof. We now consider the one-player system 

2c = E B - 1 E ' X - l x  + Gu 

that we want to control to the origin. A difficulty comes from the fact that its 
matrix is unbounded in the neighborhood of tl and is undefined at tl. Thus, 
we cannot use its transition matrix "tt(t~, t). However, using the proof of 
Faurre (Ref. 6), which carries over unchanged to the linearly constrained 
final state case, we know that there exists a matrix W(t) such that, for all 
capturing controls, 

I, q 
min Ilull~ ds =x'(t)  W(t)x(t),  (34) 
u(-) 
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and that W satisfies the Riccati equation 

I;V = - W E B - 1 E ' X  -1 - X - 1 E B - 1 E ' W  + W G R - 1 G '  W. 

W is positive definite [since u = 0 cannot cause (29) from Xo # 0], and thus 

(W- l ) "  = E B - t E ' X - 1 W  -~ + W - 1 X - 1 E B - 1 E  ' - G R - I G ' .  (35) 

From classical control theory, and using the fact that, as a product of positive 
semidefinite matrices, E B - 1 E ' X  -1 has all its eigenvalues unstable, we see 
easily that the coercivity constant p ( W )  goes to infinity as t goes to tl; 
therefore, W-1( t )  can be extended to h, by posing 

W - l ( h )  = O, (36) 

which together with (35) uniquely defines W(t) .  
We now notice that (25) and (35)-(36) give 

( X  - W- l ) "  = - E B - 1 E  ' + E B - 1 E ' X - I ( X  - W -1) + ( X  - W - 1 ) X - 1 E B - 1 E  '. 

Therefore, for t < s < h,  

x ( t ) -  w - ~ ( t ) -  qJ(t, s ) [X(s ) -  w-l(s)]q,'(t, s) 

= q~(t, o-)E(cr)B-~(~r)E'(o')~'(t ,  cr) do" ->- O. (37) 

From the nonnegativity of the eigenvalues of E B - a E ' X  -1 and Gronwall's 
inequality, it follows that ~(t ,  s) remains bounded as s goes to tl. And since 

X(h)  = W-~(t~) = 0 ,  

(37) yields 

X ( t )  - W - l ( t )  >_ O. 

X and W being both positive definite, this implies that 

X - ~ ( t )  <- W( t ) ,  Vt<  h; 

and, using (29), we have, for all t < tl, 

x'( t)  W ( t ) x ( t )  <- f,1 [[u (s)[l~ ds. 0 x~( t ) s - l ( t ) x ( t )  << 

Since u ( - )  is by hypothesis square integrable, the rightmost term goes to 
zero as t goes to h;  therefore, (31) holds, which proves the temma. D 

Now, use v = g,* and (31) in Eq. (28), and (33) follows. 
Finally, if the problem is not normal, it must still be normalizable, with 

x( t )  in ~ ( X ( t ) )  (see necessary condition). Then, X * x  coincides with X-Ix ,  
where Yf is the restriction of X to ~ (X). Therefore the theorem is proved 
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for the simple game in the absence of a conjugate point (but with the final 
constraint). 

4.2. Reduction of the General Game to the Simple Game. We give 
here a shortened treatment, that hides some underlying facts. See Ref. 3 for 
a more detailed account. 

We consider anew the problem (1)-(6), with assumption (7). But up to 
and including Lemma 4.3, we are careful not to use hypothesis (8). With this 
problem, we associate the same problem, but without the final constraint. 
Let X ' ,  y1, p1 be the matrices X, Y, P for this last problem. By continuity, 
X 1 is invertible in a left neighborhood of t,; therefore, p1 satisfies the Riccati 
equation (15) in that neighborhood, with 

P~(h )=A .  (38) 

We now take that Riccati equation as the definition of p 1  
We make the classical change of control variables, possible as long as 

the free end-state problem has no conjugate point (p1 defined): 

u = a - R - I ( G ' P I + S ' ) x ,  v = ~ + B - I ( E ' P I + T ' ) x ;  (39) 

and, via the same type of calculation as we did to obtain (22), we have, as 
long as p1 exists on [to, h], 

I, '1 
J(xo, to; u(" ), v(" ))=x'oPl(to)Xo+ (llall -II ll ) dt, (40) 

0 

the state being now governed by 

2 = [(F - (GR-1G'  - EB-~E ' )P  ~ - GR-~S'  + EB-1T ']x  + Ga + E~. 
(41) 

The remarkable fact is that now (41) serves only to define the constraint (5) 
on a and that the criterion does not involve x any more (since we can ignore 
the first term, which depends only on the initial condition). We can therefore 
replace (41), (5) by any equivalent constraint. This is done using the 
transition matrix ~ of (41), and the projection II on J¢/±, and using the new 
state 

~(t) = I I~(h ,  t)x (t), (42) 

which is governed by the equation 

~(t) = G(t)a(t) + l~(t)~(t), (43) 

G(t) = H~(h ,  t)G(t), /~(t) = I I~(h ,  t)E(t), (44) 

and the final constraint reads 

-~(h) = 0. (45) 



JOTA: VOL. 27, NO. 1, JANUARY 1979 63 

Now, (40), (43), (45) define a simple game; the only things that remain to be 
checked, in the case where P~ and j~- i  (corresponding to this game) exist on 
[to, h], are these: the known saddle point of this game translates back in 
q~*, ~* as given by (22)-(23); the value is V as given by (24); and the 
necessary conditions on the simple game translate into the same on the 
general game. 

We first establish the relations that link the various matrices involved. 
Introduce 

i 
t 

X°(t)  = ~ (h ,  s ) [G(s )R-1G' ( s ) -E(s )B-1E ' ( s ) ]~ ' (h ,  s) ds. (46) 

It is a simple matter of tracing back into the proper equations to check that 

X(t) = n x ° ( t ) H  ', (47) 

X( t )  = ~(t, h)[X°(t)(I  - M M  ~) + l~h~v/*], (48) 

A(t) = +'(h, t ) [ I - M M *  + Pl(t)X(t)].  (49) 

We now are in a positiort to prove the following important results. 

Lemma 4.3. On an interval [to, h] on which P and p1 are bounded, 
the following results hold. 

(i) A necessary and sufficient condition for the problem to have a 
nondegenerate saddle point is that it be normalizable, xo ~ ~(X(to)) ,  and 
J~(t) > 0. In that case, the solution is given by (22)-(24). In the absence of 
terminal constraint, P and p1 coincide, and their existence suffices as (40) 
shows, and it also ensures invertibility of X by Lemma 3.1. 

(ii) For the normalized problem, if P is positive semidefinite, J~ is 
positive definite; therefore, the saddle point exists for every initial point. 

Proof. We first show that normalizability of the two problems is 
equivalent. On the one hand, (x, t) is controllable to (~g~, tl) iff (2, t) is 
controllable to (0, h). On the other hand, in view of (47), 

;: e ~ (2)  ~ n+(h ,  t)x e y~ ( i i x ° i r )  ~ +(tx, t)x e ~ (x° irr i )  + ~ .  

We also have the simple fact that 

(X°II'H) + ~ = ~ (X° ( I  - MMt))  + ~ (~1Vt t) 

= ~l (X° ( I  - MM*) + MlVIt), 

which in view of (43) and (45) gives 

(50) 

e ~ ( 2 ) ¢ , x  e ~ ( x ) .  
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Since normalizability and normality only involve comparison of the 
subspace of controllable states with ~ ( X ) ,  the first result is proved. 

It turns out to be convenient to introduce for the normal game the 
matrix: 

Z( t )  = ~'(t l ,  t)II'ff-llIdP(tl, t). (51) 

By differentiating with respect to time and checking the initial conditions, 
one can see that 

(Pl(t) + Z( t ) )X( t )  = A(t), 

so that, when these matrices exist and X is invertible, 

P(t) = e l ( t )  + Z(t) .  (52) 

Placing back the solution of the simple game in ~ in (34), and using (46), (47), 
(51), (52), one recovers (21)-(24). Again, if the system is not G-reduced, we 
can check that we can replace X -a by X*. Therefore, using the equivalence 
between the two games and the results of Section 4.1, we have the first 
assertion of the lemma. 

Assume now that X is not positive definite in the neighborhood of tl, 
but invertible. Then, ~ - a  has eigenvalues that diverge to -co as t goes to t,. 
Therefore, for t large enough, there exist vectors ~: of unit norm such that 
~:,~-1~: is arbitrarily large negative. Since II~(tl ,  t) is surjective, there exist 
vectors rt of unit norm such that rt'Zrt is arbitrarily large negative; thus, 
according to (52), r/'Prt can be made negative. Therefore, if P is positive 
semidefinite in a left neighborhood of q, X is positive definite in that 
neighborhood. But Y( cannot become singular without P of P~ diverging. 
Therefore, the second assertion of the lemma is proved. [] 

We now complete the proof of the main theorem, in the absence of a 
conjugate point, with the following lemma, which is the first place where we 
use assumption (8). 

Lemma 4.4. Under assumption (8) for a normal problem, the follow- 
ing results hold. 

(i) On any interval on which P is positive semidefinite and bounded, 
p1 exists. 

(ii) If, in a neighborhood of h,  where p1 exists, Y~ is positive definite, P 
is positive semidefinite on any interval [to, tl] over which it is bounded. 

Proof. (i) We introduce the solution P,(t)  of the Riccati equation of 
the free end-state control problem, i.e., Eq. (15) with the term (PE+ 
T ) B - I ( E ' P +  T') deleted, and initialized as P1, i.e., 

P, (q )  = A.  
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We know that P .  exists for all t < h and (see Ref. 11) 

0 <- P , ( t )  -<- Pl ( t )  (53) 

Now, if P is positive semidefinite, J(  is positive definite in a neighborhood of 
h; therefore, in this neighborhood, according to (51)-(53); 

0 <- P~(t) <- P(t) .  

We have seen that, if P remains bounded, J~ remains positive definite; 
therefore, P~ cannot diverge without P doing so. 

(ii) If X is positive definite, according to (51)-(53) again, P is positive 
definite, and we have just seen that then, as long as it bounded, this situation 
prevails. [] 

Therefore, the condition P_> 0, instead of P~ exists, and J~ positive 
definite is sufficient because of Lemmas 4.3 and 4.4, and necessary because 
of Lemmas 4.3 and 4.4, and the fact that there always exists a neighborhood 
of tl where p1 exists. 

5. Proof of the Main Theorem: Conjugate Point 

We shall make use of the following fact (see Ref. 7). 

Proposition 5.1. At any time t2 < h,  the matrices X(t2), A(t2) which 
are solutions of (12)-(13) can be used to initialize the canonical equations of 
the game with the same dynamics and integral payoff, final time t2, target set 
~'(X(t2)), and final cost x'(tE)P(t2)x(t2). 

Notice that this proposition allows us to extend our solution beyond an 
instant t2 at which ~V changes dimension, by concatenating the two games, 
after t2 and before t2. 

5.1. Extension of the Solution to t~. We again assume that the system 
has been G-reduced, and consider the case where to = t~ is the first rear 
conjugate point of tl, Let  

By definition, 

~(x(t*)) =/~*. 

J/~* ~ R ~ . 

We assume that the necessary conditions of the previous paragraph hold 
over [t, h], for any t > h*. 
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Assume first that Xo ~ rig*. We consider a new game (referred to as J - ) ,  
which is in fact the present one with time reversed, in the neighborhood of 
t*. Let  r be its time: 

dx/  dr  = - F x  - Gu - Ev, 

I f  1 
J - =  - x ' ( r l )P ( t* ) x ( r l )+  L(x, u, v) d'c if x(~'l) e ~ * ,  

0 

J - =  - o o  if x(zl) # ~/*, 

where the matrices F, G, E, and the integrand L(x, u, v) are the same as in 
(1), (4), evaluated at t = t 2 -  ~'. t2 is a time larger than t*, that we shall choose 
later. Let  

to=O,  x(ro)=X2, r l = t 2 - t * .  

This new game is similar to the first one, except for the fact that the roles of q/ 
and ~ have been reversed. The assumption corresponding to (8) is not 
satisfied either. We chose t2 in such a way that the matrix p t  corresponding 
to this new game exists on (~'0, ~'1). It is straightforward to write the canonical 
equations of this game, that can be initialized with X( t~)  and -A( t*) .  
One sees immediately that their solution is X - ( r ) ,  A-(r):  

X - ( z )  = X ( t 2 -  "c), A-(~') = - A ( t 2 -  r),  P - ( r )  = - P ( t 2 -  "r). 

We can apply Lemma 4.3 to this game (with signs suitably reversed), 
and we see that 

~o-(x, "r) = - R - I ( - G ' P -  + S')x = ~o*(x, t 2 -  r), 

O(x, t) = B - t ( - E ' P -  + T')x = O*(x, t 2 -  r) 

are a saddle point. In particular, 0 -  induces the capture against any u ( .  ), 
and produces trajectories through any point of ~/*, showing that 0* is an 
admissible strategy from x0 E ag*. 

Consider a control v ( - )  applied to the game J - .  According to Lemma 
3.2, there exists a trajectory of (1) generated by (q~*, v) through x0. Let  
x2 = x(t2) on this trajectory. Applying the above construction with that x2, 
we obtain: 

J-(xo, ~'0; q~*, v ( .  ))<--x'2P(t2)x2. 

Thus, 
t 2 

I,,  L(x, ~o*, v) dt <- x'oP(t*)Xo- X~P(tz)x2. 
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Still playing u = ~o* from t2 to tl, using the results of Section 4, and adding 
the saddle-point inequality to the previous one, we get 

J(xo, t~ ; ,p*, v(" ))<--x'oP(t*)xo. 

We proceed in the same way to obtain the other  inequality of the saddle 
point. 

Consider now the case XoCJ/et*. Assume that there exists an optimal 
strategy o that ensures a finite cost against any admissible control v ( .  ). 
Consider for v ( • ), the strategy 

• * =~*  [ t~+e ,  tl]. v = 0  on ( t~, t l  +e), v on 

The switch occurs at a point x, that goes to x0 as E goes to zero. However,  we 
have the following lemma. 

Lemma 5.1. On any sequence (x,, t,) converging to (xo, t*), with 
t, > t* ,  X o g ~ * ,  one has 

x'P(t , )x ,  ~ eo 

Since, with the strategy that we have proposed, the total cost is larger or 
equal to x',P(t,)x,, by choosing E sufficiently small, ~V can make the cost 
arbitrarily large. 

Therefore,  the main theorem is proved for the case to = t*. 

5.2. Extension beyond t*. Assume now that to < t*. It is still possible 
that P(t)>-0 on [to, tl]. When this is the case, t* will be called an even 
conjugate point. In that case, the game with same dynamics, same integral 
part of the payoff, final time t*, target set J//*, and final cost x'(t* )P(t*)x(t*) 
[and +co if x(t*)jg~¢/[*, i.e., still V(x(t~),  t*)] has a nondegenerate saddle 
point given by the same formulas (thanks to the proposition above). There-  
fore, the global game has a saddle point. But if P fails to be positive 
semidefinite for t -< t*, we know that the game ending at t~* has an infinite 
value. The theorem is now completely proved. 

Example 5.1. The following game has a saddle point that survives a 
conjugate point. All variables are scalar, and there is no terminal constraint. 

= ( 2 -  t)u + tv, J/[ = R, 
t ,  2 

J =½x(Z)2+jo (u2-v 2) dt 

We leave to the reader to check that t = 1 is an even conjugate point: 

e(t) = 1 / 2 ( 1  - t )  2 
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Remark 5.1. It is possible that, in a given game, our sufficient condi- 
tion will be satisfied and that, still, there exists a strategy 47 such that, against 
any L 2 control u ( .  ), we are ensured that x(tl)Ed~, or x( t~)~eg*,  an 
apparent  paradox. 

On the one  hand, the pair (¢*, 47) would generate controls (u ( - ) ,  v ( . ) ) ,  
none of which is L2; therefore, from the condition (iii) on admissible strategy 
sets and the requirement that ~* ~ qb, it follows that 47)d ~ .  But this is a rather 
arbitrary dictum, that lets one player play his capturing strategy, and not his 
opponent  play his anticapturing one. 

On the other hand, this set-up allowed us a clean theory, and is justified 
by the remark that Eq. (28) shows that a strategy pair (¢*, 47) would cause 
the criterion to diverge to -oo  as t 1' tl (or t T t*), so that ~ would be driven 
out of the market  before the game ends. We could decide a priori that, in 
such a case, J = -oo,  and relax the constraints on ",I t to include 47. 

6. Conclusions 

We have a complete theory with the positivity hypothesis (8), which 
corresponds to the worst-case design of a classical positive control problem. 
The two remarkable facts are that, if they exist at all, the optimal strategies 
are pure feedbacks, and that the saddle point can exist even in the presence 
of a conjugate point, provided it is even. It is easy to generalize everything to 
a nonhomogeneous problem or to a problem with intermediary costs 
x'(ti)Aix(ti)+2a'ix(ti), or both (see Ref. 3). 

Lemma 3.3 and the notion of even conjugate point give the basis for a 
theory without the positivity assumption. It would also be interesting to 
investigate what happens at an accumulation point of conjugate points, a 
situation that we have ruled out with the help of Definition 2.2 and then 
classified as nonnormalizable. 
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