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Abstract. Necessary conditions in the form of multiplier rules are 
given for a function to have a constrained minimum. First-order 
differentiability conditions are imposed, and various combinations of 
set, equality, and inequality constraints are considered in arbitrary 
normed linear spaces. 
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1. Introduction 

In this paper,  necessary conditions in the form of multiplier rules are 
given for constrained minimization problems in normed linear spaces. The 
results can be divided into two general types, according to the types of 
constraint. Set and inequality constraints are first introduced, and then 
equality constraints are incorporated. 

The  objective is to establish first-order multiplier rules in normed 
linear spaces under the weakest  conditions possible. The approach taken is 
to introduce constraint qualifications which involve the cost function (see 
Theorems 3.2 and 5.2). That  the constraint qualifications introduced are 
not overly restrictive is seen in the fact that they are, in some sense, 
necessary conditions for the multiplier obtained. 

A number  of known theorems or refinements thereof are proven to 
demonstra te  the applicability of the constraint qualifications. The proofs 
given are generally much simpler and shorter than the original proofs.  In 
addition, the method of proof  serves to demonstra te  the interrelation of 
these results. 

1 This paper is based upon part of the author's doctoral dissertation at Ohio University, 
Athens, Ohio. 

2Assistant Professor, Department of Mathematics, Bridgewater College, Bridgewater, 
Virginia. 
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2. Notation and Preliminary Results 

Throughout,  it will be assumed that all vector spaces are over the field 
of reals. 

The first definition is generally attributed to Neustadt (Ref. 1). It is 
stated for normed linear spaces, although it can be stated for topological 
vector spaces. Most of the theorems in this section and following sections 
are equally valid for topological vector spaces; but, for simplicity, they are 
stated for normed linear spaces. The exceptions are when the Fr6chet 
derivative is used. 

Definition 2.1. Let  X and Y denote normed linear spaces and 
f :  X ~ Y. For  xo ~ X, f is said to be differentiable at Xo in the sense of 
Neustadt if, for all k ~ X, there exists a vector Df(xo)k in Y such that 

[f(xo+eh)-f(xo)]/e~Df(xo)k as (~, h ) ~ ( 0  +, k). 

Df(xo) is referred to as the Neustadt derivative o f f  at Xo. 

Remark 2.1. It is easily verified that Df(xo) is positively homo- 
geneous; furthermore,  if f is differentiable at x0 in the sense of Neustadt, 
then f is continuous at x0. 

For additional properties of the Neustadt derivative see Tagawa 
(Ref. 2). 

Remark 2.2. To define the Neustadt derivative of f, it is essential 
only that f be defined on an open subset of X. If this is kept in mind, it is 
easily seen that, for all of the theorems to be stated involving extrema, the 
extrema need only be local. 

Remark 2.3. It can be verified that, if f has a Fr6chet derivative at 
Xo, then f has a Neustadt derivative at x0 and the two derivatives coincide. 

Definition 2.2. Let  X denote a vector space, and let A and B denote 
subsets of X. Then, A and B can be separated by a linear functional if there 
exists x'  ~ X '  and p ~ R such that 

x'a<-p for all a ~A,  

x'b>_p for atlb ~B,  

where X '  denotes the algebraic dual of X and R denotes the field of reals. 
If X is a normed linear space, then A and B can be separated by a 

continuous linear functional if A and B can be separated by a linear 
functional which is continuous. 
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The space of continuous linear functionals on X is denoted by X*.  
It is well known that, if A and B are convex subsets of a normed linear 

space such that 

int A ¢ Q~, int A (-? B = • ,  

then A and B can be separated by a continuous linear functional, where int 
A denotes the interior of A. Theorem 2.3, which will be stated presently, 
gives sufficient conditions for separating subsets of a vector space. 

Definition 2.3. Let  X denote a vector space and B a subset of X. B 
is a cone if, for all b ~ B and for all p -> 0, 

pbcB. 

Remark  2.4. It is easily verified that, if B is a cone, then B is convex 
iff 

B =B+B.  

From this, it follows that, if B is a convex cone, then 

B c B - b  

for all b e B. 

Definition 2.4. Let  X and Y denote vector spaces, B a convex cone 
in K and 

f :X- - ,  Y, 

{ is said to be B-convex if, for a and b ~ X and p ~ [0, 1], 

f(pa + (1 -p)b ) - p f ( a ) -  (1 -p)f(b )~ B. 

Remark 2.5. In the preceding definition, B is treated as a negative 
cone, that is, an order-< can be defined on Y by 

a<-b i f a - b ~ B .  

If Y is the space of reals and B is the set of nonpositive reals, then - 
reduces to the usual order and B-convex reduces to the common notion of 
convexity for functions. 

The next definition is usually credited to Varaiya (Ref. 3). 

that 
Definition 2.5. Let X denote a normed linear space, and assume 

x o ~ A ~ X .  
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Then, the local cone of A at Xo, denoted by LC[A;  Xo], is the set of all 
vectors k in X satisfying the following property: there exists sequences (An) 
of reals and (an) of elements of A such that 

3 . .>0 ,  An 1' ~ ,  an~Xo, An(a . -xo)~k .  

The next theorem is a slight variation of a theorem by Varaiya and is 
due to Tagawa (Ref. 2, Theorem 3.2). 

Theorem 2.1. Let  X denote a normed linear space and A a subset of 
X. Assume that f :  X -~ R has a Neustadt derivative at xo e X. If f has a min 
on A at xo, then 

LC[A;  Xo] _ Df(xo) +, 

where 

D f ( x o )  ÷ = {k  : D f ( x o ) k  >- 0}. 

Remark 2.6. It is apparent that 

el(co LC[A;  Xo]) ___ Df(xo) + 

if Df(xo) is linear, where, given a set S, co S and cl S denote the convex hull 
and topological closure, respectively, of S. 

The next definition appears to be due to Girsanov (Ref. 4). 

Definition 2.6. Let  X denote a normed linear space, f :  X ~ R, and 
Xo an element of X. The cone of direction of decrease o f f  at Xo, denoted by 
K[f;  x0], is the set of all k ~ X which satisfies the following condition: there 
exists a neighborhood G of k, E >0 ,  and o~ < 0  such that, for all 6 c (0, e) 
and for all x ~ G, 

f(xo + a,: ) < f(xo) + 8,~. 

The next theorem is due to Das (Ref. 5). 

Theorem 2.2. Let  A denote  a subset of a normed linear space X and 
f :  X ~ R .  For xo~A,  assume that K[f;  xo] is convex and nonempty and 
that K is a convex subset of LC[A;  Xo] such that 0 ~ K. 

If f has a min on A at x0, then there exists a nonzero ~ in X*  such that 

q~k - 0 for all k ~ K[f;  Xo], 

q~k -> 0 for all k c K. 
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With the exception of Theorem 2.6 the remaining definitions and 
theorems appear to be due primarily to Klee (Refs. 6 and 7). Proofs of all 
of the remaining theorems can be located in Ref. 8. 

Definition 2.7. Let  X denote a vector space and C a subset of 32. 
The affine hull  of C, denoted by aft (7, is defined by 

aft C = span(C - c )+  c, 

where c is any element of C and s p a n ( C -  c) is the smallest subspace of X 
containing C - c. 

The intrinsic core of C, denoted by crier C, is the set of all z in C such 
that, for all 

x ~af f  C - z ,  

there exists y ~ (x, z)  such that 

[y, z]=_ c, 

where (a, b) and [a, b] denote the closed and open line segments, respec- 
tively, connecting a and b. 

Theorem 2.3. Let  X denote a vector space, and let A and B denote 
convex subsets of X with nonempty intrinsic cores. If 

cram A ~ Craff B ---" Q~, 

then A and B can be separated by a linear functional. 

Definition 2.8. Let  X denote a normed linear space and C a convex 
subset of X. The relative interior of C, denoted by in t~  C, is the interior of 
C relative to the affine hull of C. 

Theorem 2.4. 
subset of X. If 

then 

Let  X denote a normed linear space and C a convex 

inta, C # ~ ,  

inta~ C = cr,n C. 

Theorem 2.5. Let  X and Y denote vector spaces, 
function from X to Y, and C a convex subset of X.  If 

c r~  C ¢ ~ ,  
then 

Craft T ( C ) # (~ . 

T a linear 
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Remark 2.7. Despite a similarity between intrinsic core and relative 
interior, the preceding theorem is false if craft is replaced by inta~. For 
closed convex subsets of locally convex, second-category, topological 
vector spaces, the intrinsic core and the relative interior coincide. 

To complete this section, the following theorem due to Flett (Ref, 9, 
Theorem 3) is stated. 

Theorem 2.6. Let X and Y denote Banach spaces and f :  X ~ Y. 
Assume that f has a continuous Fr6chet derivative Df at Xo ~ N(f) and that 
Df(xo) is onto II. Then, 

N[Of(xo)] c_ LC[N(f) ;  Xo], 

where N(f) denotes the null set of f. 

3. Abstract Multiplier Rules 

The results of this section are of the general form referred to as 
multiplier rules, but do not involve explicitly optimization. In subsequent 
sections, applications will be made to minimization problems. 

Theorem 3.1. Let X, Y, Z denote normed linear spaces, 

F : X ~ R ,  G : X ~ Y ,  H : X ~ Z  

such that 

F(0) = 0, G(0) = 0, H(0)  = 0. 

Let B denote a subset of Y and K a subset of X for which 

where 

O~K, g(xo)~B, 

xo~X, g:X-~ Y. 

Define subsets $1 and T1 of R × Y and $2 and T2 of R × Y × Z as follows: 

S1 = {(F(k), G(k)): k ~ K}, 

$2 = {(F(k), G(k), H(k)):  k ~K}, 

T1 ={(r, y): r - 0 ,  y ~B-g(xo)}, 

T2 ={(r, y, 0): r-<0, y E B -  g(xo)}. 
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Then, the following results hold: 
(a) $1 and T1 can be separated by a linear functional iff there exists 

r~ ~ R and y' 6 Y', not both zero, such that 

(i) r t F ( k ) + y ' G ( k ) > - O f o r a l l k ~ K ,  
(ii) r l>-Oandy'y<-Oforal l  y ~ B - g ( X o ) o  

(b) $2 and T2 can be separated by a linear functional iff there exists 

rl ~ R,  y' ~ Y ' ,  z ' ~ Z ' ,  

not all zero, such that 

(i) r l F ( k ) + y ' G ( k ) + z ' H ( k ) > - O  for all k ~K, 
(ii) rt >- O and y' y <- O for all y ~ B - g(xo). 

Proof. Only (b) will be proved, since the proof of (a) is similar. First, 
assume that $2 and 7'2 can be separated. Then, there exist real numbers rl 
and p, y' s Y',  and z' ~ Z ' ,  where r/, y', z' are not all zero, such that 

r l F ( k ) + y ' G ( k ) + z ' H ( k ) > - p  for all k ~ K, (1) 

-qr+y'y<_p f o r r < _ O , y ~ B - g ( x o ) .  (2) 

If 

then by (1), 

If 

then by (2), 

k = O ,  

O>_p. 

r = 0 ,  y =0 ,  

0_<p. 

The conclusion is now evident. 
Now assume that (i) and (ii) hold for ~, y', z '  not all zero. To show that 

$2 and T2 can be separated, it suffices to show that 

for 

which is obvious. 

r/r + y'y -<0 

r<-O, y ~ B - g ( x o ) ,  
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Remark 3.1. (i) Clearly, $1 and T1 can be separated by a continuous 
linear functional iff continuous linear multipliers, not all zero, exist satisfy- 
ing (i) and (ii) of (a) and (b), 

(ii) If B is a convex cone, then it is not necessary to require that 
0 e K, nor that 

F ( 0 )  = 0, G ( 0 )  = 0, H ( 0 )  = 0. 

In this case, (2) alone is sufficient to establish that p may be taken to be 
zero. 

(iii) If B is a convex cone, then 

is equivalent to 

y ' y  <- 0 for all y e B - g(xo)  

y'y -< 0 for all y ~ B and y'g(xo) = O. 

This follows from the fact that 

B _c B - g(x0), 

if B is a convex cone. 
In applications, it will generally be the case that F is the derivative of 

the cost function evaluated at the optimal point and that G and H are the 
derivatives of the functions defining the inequality and equality constraints, 
respectively, evaluated at the optimal point. 

Norris (Ref. 10) and Weatherwax (Ref. 11), among others, have 
introduced constraint qualification in nonlinear programming problems in 
infinite-dimensional spaces. They are modeled after the well-known 
Kuhn-Tucker constraint qualifications common to finite-dimensional 
optimization. Such qualifications generally do not involve the cost function 
which is to be optimized. However, even in the classical Kuhn-Tucker  
theory, assumptions are made concerning the cost function, in particular 
differentiability. Thus, qualifications concerning the cost function are 
generally present, to some extent. 

In the next theorem, qualifications are introduced which iavolve the 
cost function. It should be noted that the theorem does not apply explicitly 
to optimization, so that the terminology cost  f u n c t i o n  is perhaps inaccurate. 
The qualification (3) will be shown to be, in some sense, necessary as well 
as sufficient for the existence of multipliers of the desired form. This is not 
the case with standard constraint qualifications. 

Thus, the qualification to be introduced is not overly restrictive, in the 
sense of precluding application of the necessary conditions to optimization 
problems for want of satisfaction of the qualifying conditions. 
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Theorem 3.2. Let  X and Y denote normed linear spaces; let 

F : X ~ R ,  G : X ~  Y 

denote linear functions. Assume 

g:X-~  Y 

such that 

g(xo)6B, 

where B is a closed convex subset of Y with nonempty interior and Xo ~ X. 
If K is a convex subset of X such that 0 6 K and 

g N G-~[int B - g(xo)] _ F +, 

then there exists , /~  R and y* 6 Y*, not both zero, such that 

(i) ~TF(k)+y*G(k)>_O for all k6K ,  
(ii) rt ->0 and y ' y - < 0  for all y ~B-g(Xo). 

Furthermore,  if there exists ~7 ~ R and y * s  Y* such that ~ > 0 and (i) and 
(ii) are satisfied, then 

g N G-I[B - g(xo)] c f +. 

Proof. To prove the second part, assume that 

k s g  n G-I[B - g(xo)]. 

Then, 

k c K ,  G(k)~B-g(xo) .  

Thus, 

y*G(k)-<O, 

So, since r / >  O, it follows that 

~?F(k )>- -y*  G(k ) >- O. 

F(k).>-O. 

To complete the proof, by Theorem 3.1 (a) and Remark 3.1 (i), it 
suffices to show that $1 and T1 can be separated by a continuous linear 
functional. To this end, observe that $1 is convex, since K is convex and F 
and G are linear and T1 is convex with 

int TI = {(r, y):  r < 0, y ~ int B - g(xo)}. 

Thus, it suffices to show that 

Sa N int T~ 
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is empty. Suppose the contrary. Then, there exists 

such that 

F (k )<O,  

k ~ K  

O(k )~ int B - g(xo). 

That is, there exists 

such that 

k ~ K N O-l[int  B - g(x0)] 

F (k )<O.  

This violates (3), and the proof is complete. 

Remark 3.2. If B is taken to be a closed convex cone with nonempty 
interior, then the preceding theorem remains true even if F and G are not 
linear, but rather F is convex and G is B-convex. In this case, the condition 
0 ~ K can also be dispensed with [see Remarks 3.1 (ii)]. 

To establish the theorem under the additional condition that B is a 
cone, but F and G are convex, one must be careful in that $1 may fail to be 
convex. However, it is easily seen that 

(co S1) N int T1 = ~ .  

4. Applications of Theorem 3.2 

The usefulness of Theorem 3.2 will be demonstrated by obtaining 
results of Nagahisa and Sakawa (Ref. 12) and Das (Ref. 5). In both cases, 
the proofs presented here are more elementary and considerably shorter 
than the original proofs. 

To establish the desired results, the following lemma is needed. 

Lemma 4.1. Let X and Y denote normed linear spaces. Assume 
that 

and 

xoEA c_X 

g : X ~ Y  
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has a Neustadt derivative D g ( x o )  at x0, Also, assume that B is a closed 
convex subset of Y for which 

Then, 

g(xo)  ~ B ,  

LC[A;  Xo] N D g ( x o ) - ~ [ i n t  B - g(xo)l _c LC[A N g-~(B); Xo]. 

Then, 

Proof.  Let  

k ~ LC[A; Xo] n D g ( x o ) - l [ i n t  B - g(xo)]. 

D g ( x o ) k  c i n t  B - g ( x o ) ,  

and there exist sequences (An) of positive reals and (an) of elements of A 
such that 

A n "~ c~ , a . -> X o , A n ( a n - x o ) -> k , 

A n [ g ( a . ) -  g(xo)] = [g(xo + (1/An)A. (a,, - x o ) ) -  g (xo ) ] / (1 /An) .  

As n -~ ~ ,  we have 

1/An ~ 0  + and A ~ ( a n - x o ) ~ k .  

Thus, as n -+ c~, we have 

An [g ( an ) -  g(xo)l -+ D g ( x o ) k .  

Now, int B - g ( x o )  is oper~ and 

D g ( x o ) k  c i n t  B - g(xo); 

so, for n large, 

A, [g (an ) -  g(x0)] ~ B - g(xo). 

This in turn implies that 

g ( a n ) s  (1/An)B + (1-1/An)g(xo) ,  

for n large. B is convex and 1/An < 1 for n large; so, we may conclude that 

g ( a n ) e B  

for n large. Thus, for n large, 

an ~ A N g- t (B) ;  

consequently, 

k ~ LC[A n g- l (B) ;  Xo]. 
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Similar versions of the preceding lemma were proved by Nagahisa and 
Sakawa (Ref. 12) and Das (Ref. 5). In both cases, more stringent condi- 
tions were imposed upon Dg(xo); in addition, Nagahisa and Sakawa 
required B to be a cone. The proof presented here is a slight variation of 
Nagahisa and Sakawa's original proof. 

Theorem 4.1. Let X and Y denote normed linear spaces, 

xo~A c_X, 

and B a dosed convex cone in Y with nonempty interior. Assume that 

f : X ~ R ,  g : X ~ Y  

have Neustadt derivatives at Xo for which Df(xo) is convex and Dg(xo) is 
B-convex. Let K be a convex subset of LC[A;x0].  If f has a min on 
A N g- l (B)  at Xo, then there exists r/~ R and y*e  Y*, not both zero, such 
that 

(i) rlDf(xo)k + y*Dg(xo)k >- 0 for all k c K, 
(ii) 77 - 0 and y*y -< 0 for all y e B, 

(iii) y*g(xo) = O. 

Proof. 

In particular, 

By Lemma 4.1 and Theorem 2.1, 

LC[A;  x0] N Dg(xo)-l[int B - g(x0)] _c Df(xo) +. 

K N Dg(xo)-~[int B - g (Xo)] _c D/(xo) +. 

Now, let 

F=Df(xo) 

and apply Theorem 3.2. The 
Remarks 3.2 and 3.1 (iii). 

and O = Dg(xo), 

result follows immediately in view of 

In their original result, Nagahisa and Sakawa required that Df(xo) and 
Dg(xo) be linear and continuous and that zero be an element of K. The 
present proof consists essentially of showing that two relatively simple sets 
can be separated. Nagahisa and Sakawa obtained their result by construc- 
ting a relatively complicated cone and then showing that it could be 
supported. 

Theorem 4.2. (Das). Let X and Y denote normed linear spaces, 

xoeA c_X, 
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B a closed convex set in Y with nonempty interior, 

f : X - ~ R ,  g : X ~  Y. 

Assume that g has a linear Neustadt derivative at Xo, and let K be a convex 
subset of LC[A;xo] with 0~ K. Assume that K[f; xo] is nonempty and 
convex. If f has a rain on 

A N g-l(B) 

at xo, then there exists x* ~ X*  and y* e Y*, not both zero, such that 

(i) x*k +y*Dg(xo)k >-0 for all k e K ,  
(ii) x*x <--0 for all x eK[f;  Xo], 

(iii) y*y -<0 for all y ~B-g(xo). 

Proof,  By Theorem 2.2, there exists a nonzero ~ ~ X *  such that 

LC[A N g - l ( B ) ;  Xo]_ * , 

~x --< 0 for all x ~ K[f; Xo]. 

So, by Lemma 4.1 and the fact that 

K __ LC [A ; x0], 

we have 

K N Dg(xo)-l[int B -g(xo)] _c ¢ +. 

Now, apply Theorem 3.2 with 

F=q~, 

The desired result follows with 

G = Dg(xo). 

X* = 'qcp, 

where r / is  given by Theorem 3.2. 

5. Equality, Inequality, and Set Constraints 

Theorem 5.1. Let  X, Y, and Z denote normed linear spaces; and let 

f : X ~ R ,  g:X-> II, h:X-->Z 

have linear Neustadt derivatives at Xo ~ X. Let  A be a subset of X such that 

LC[A;  Xo] N N[Dh (Xo)] c LC [A N g(h); Xo]. (3) 
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Assume that B is a closed convex cone with nonempty interior, and let K 
denote any convex subset of LC[A;  Xo] such that crier K is nonempty. If f 
has a min on 

A f') g - l (B)  N N(h) 

at Xo, then there exists 

71 ~R,  y*~ Y*, z ' c Z ' ,  

not all zero, such that 

O) rlDf(xo)k + y*Dg (xo)k + z'Dh (xo)k ~ 0 for all k a K, 
(ii) r/-> 0 and y*y ~< 0 for all y c B, 

(iii) y*g(xo) = 0. 

Proof. In Theorem 3.1(b), let 

F = Df(xo), G = Dg(xo), H = Dh (Xo). 

It will first be shown that $2 and 7"2 of Theorem 3.1 can be separated by a 
linear functional. By Theorem 2.5, 

c r~  $2 ¢ Q.  

In addition, 

is nonempty, so 

inta~ T2--- {(r, y, O):r <0 ,  y c in tB-g(xo)}  

cra. T2 = int.~ T2 ~ Q. 

Thus, to show that $2 and T2 can be separated, it suffices to show, by 
Theorem 2.3, that 

$2 N cr~  7"2 ~ Q. 

To this end, first note that, by Lemma 4.1, 

Dg(xo)-l[int B - g(xo)] n LC[A n N(h) ;  x0] _c LC[A N g-~(B) N N(h); x0]. 

This inclusion, together with (3) and Theorem 2.1, implies that 

LC[A;  Xo] N Dg(xo)-l[int B - g(xo)] N X [ P h  (Xo)] _~ Df(xo) +. (4) 

That $2 and cran 7"2 are disjoint now follows easily from (4). 
In view of Remarks 3. l(ii) and (iii), by Theorem 3. l(b) there exists 

~7~R, y*~ Y', z' ~ Z', 
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not all zero, satisfying (i), (ii), and (iii). It remains to show that y* is 
continuous. This follows immediately from the fact that, by (ii), y* is 
bounded above on an open set, namely int B-g(xo).  

Remark 5.1. (i) In general z'  is not continuous [see Example 6.2 and 
Remarks 6.20)]. 

(ii) The constraint qualification defined by condition (3) cannot be 
eliminated (see Example 6.1). 

(iii) The constraint qualification defined by (3) appears to have been 
first introduced in infinite-dimensional spaces by Weatherwax (Ref. 11) for 
handling equality and set constraints. 

Two corollaries will now be presented, the first of which is due to 
Norris (Ref. 10). 

Corollary 5.1. Let X, Y, and Z denote normed linear spaces; and let 

f : X - ~ R ,  g : X ~  Y, h : X ~ Z  

have linear Neustadt derivatives at xo ~ X. Let B be a closed convex cone in 
Y with nonempty interior, and assume that 

If f has a min on 

at xo, then there exists 

not all zero, such that 

N[Dh (Xo)] c LC [N(h); Xo]. 

g-l(B) (3 N(h) 

y*~ Y*, z' ~Z' ,  

(5) 

(i) rlDf(xo)k +y*Dg(xo)k +z'Dh(xo)k = 0 for all k 6X, 
(ii) rl ->0 and y*y - 0  for all y ~B, 

(iii) y*g(x0)=0. 

Proof. In Theorem 5.1, let 

A = X and K = X. 

If condition (5) is satisfied, then obviously condition (3) is satisfied. Now, 
observe that, because (i) of Theorem 5.1 holds on all of X, the inequality 
may be replaced by equality due to linearity. The result follows immedi- 
ately. 
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Remark 5.2. The constraint qualification defined by condition (5) 
cannot be eliminated (see Example 6.2). 

Corollary 5.2. Let X, Y, and Z denote Banach spaces; and let 

f:X->R, g:X--> Y 

have linear Neustadt derivatives at xo c X. Assume that 

h : X - ~Z  

has a Fr6chet derivative which is continuous at x0 and for which Dh (Xo) has 
closed range. Let B denote a closed convex cone in Y with nonempty 
interior. If f has a rain on 

at xo, then there exists 

r /~R ,  

not all zero, such that 

(i) 
(ii) 

(iii) 

g-l(B)f-)N(h) 

y*~ Y*, z*~Z*, 

71Df(xo)k + y*Dg (xo)k + z*Dh (xo)k = 0 for all k e X, 
~? -> 0 and y* y -< 0 for all y e B, 
y * g ( x o )  = O. 

Proof. Two cases are considered. 

Case I. Dh(xo) not onto Y. By the Hahn-Banach theorem, there 
exists a nonzero z*~ Z*  which is zero on the range of Dh(xo). For this 
choice of z*, and for 7/and y* both zero, the conclusion follows. 

Case IL Dh(xo) is onto Y. By Theorem 2.6, condition (5) is satisfied. 
So, by Corollary 5,2, there exists 

~ R ,  y*e  Y*, z*eZ' ,  

not all zero, satisfying (i), (ii), (iii). It remains to show that z* is continuous. 
By the open mapping theorem, Dh(xo) is open, and continuity of z* 
follows easily. 

Remark 5.3. The preceding corollary generalizes a result by Craven 
and Mond (Ref. 13, Theorem 4). Their necessary conditions are the same; 
but, in addition to the hypotheses of Corollary 5.2, they also find it 
necessary to require that, if Dh(xo) is onto Z, then either the algebraic 
complement of N[Dh(xo)] is closed or h is affine. 

An abstract multiplier rule intended for application to combinations of 
set, equality, and inequality constraints will be presented next. A constraint 



JOTA: VOL. 24, NO. 2, FEBRUARY 1978 279 

qualification will be introduced, the motivation for which can be found in 
the proof of Theorem 5.1. A crucial step in the proof of that theorem was 
showing that 

K n Dg(xo)-l[int B - g(x0)] N N[Dh (Xo)] ~ Df(xo) +. 

This inclusion is the model for the constraint qualification of the next 
theorem. 

Theorem 5.2. Let X, Y, Z denote normed linear spaces, and assume 
that 

f : X ~ R ,  g : X ~  Y, h : X - ~ Z  

have linear Neustadt derivatives at xo ~ X. Let K denote a convex subset of 
X and B a closed cone in Y such that K and B have nonempty intrinsic 
cores and g(xo)6 B. If 

K N Dg(xo)-l[Cran B - g(xo)] n N[Ph(xo)] ~_ Pf(xo) +, (6) 

then there exists 

~7~R, y' ~ Y', z'  ~Z ' ,  

not all zero, such that 

(i) nDf(xo)k + y'Dg(xo)k + z 'Dh (xo)k >- 0 for all k ~ K, 
(ii) T / -  0 and y'y --- 0 for all y c B, 

(iii) y 'g(x0)= 0. 

If there exists 

~7>0, y' ~ Y', z'  ~ Z '  

satisfying (i), (ii), (iii), then 

K N Dg(xo)-l[B - g(xo)] N N[Dh (Xo)] _~ Df(xo) ÷. 

Proof. First, suppose that there exists 

7 > 0 ,  y ' s  Y', z ' s Z '  

satisfying (i), (ii), (iii). Let 

k ~ K n Dg (Xo) -1 [B - g (Xo)] n X [Dh (Xo)]. 

Then, there exists k c K such that 

Dg(xo)k + g(xo) c B, Dh (xo)k = O. 
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It follows that 

0 >-- y'[Dg(xo)k + g(x0)] = y'Dg(xo)k = y'Dg(xo)k + z 'Dh  (xo)k 

>--nDf(xo)k. 

That is, 

and hence 

0 >- -nDf(xo)k, 

k ~ Df (xo)  + 

To prove the first part of the theorem, in Theorem 3.1 let 

F = Df(xo), G --- Dg (Xo), H = Dh  (Xo). 

In view of Theorem 3.1 and Remarks 3.1(ii) and (iii), it suffices to show 
that $2 and T2 can be separated by a linear functional. $2 is convex and, by 
Theorem 2.5, has a nonempty intrinsic core. T2 is also convex and 

Craft T2 -- {(r, y, 0): r < 0, y E Craft B - g(x0)}. 

It is easily verified that $2 and craft 7"2 are disjoint. Thus, by Theorem 2.3, 
$2 and/ '2  can be separated. 

Remark 5,4. (i) Condition (6) cannot be eliminated (see Example 
6.1). 

(ii) In general, z' is not continuous (see Example 6.3). 

Remark 5.5. (i) If the constraint is of the form 

g - l ( B )  N N(h) ,  

then take 
K = X  

and replace the inequality in condition (i) by equality. 
(ii) If the constraint is of the form 

A A N(h) ,  

delete all reference to B, Y, r/, y' in the hypotheses and conclusions of the 
theorem. To see this, take 

X = Y = B  

and g equal to the identity. Dg(xo) is the identity, and the only choice for y' 
is zero. 

(iii) If the constraint is of the form 

A A g- l (B) ,  
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then delete all reference to Z, h, z'. To see this, in the proof of the theorem 
replace $2 and T2 by $1 and 7'1, respectively. 

The final theorem to be presented is a corollary to Theorem 5.2. It is 
essentially due to Weatherwax (Ref. 11, Theorem 3.1). Also see Remark 
5.6. The proof presented is actually similar to Weatherwax's original proof. 

Corollary 5.3. Let X and Z denote normed linear spaces, and 
assume that 

f : X - ~ R  and h : X ~ Z  

have linear Neustadt derivatives at Xoe X. Assume that A and K are 
subsets of X and that K is a convex cone with a nonempty relative interior 
and 

K n N[Dh (Xo)] c cl(co LC[A n N(h); x0]). (7) 

If f has a rain on 

A AN(h)  

at Xo, then there exists 

r/->0, 

not both zero, such that 

rlDf(xo)k + z'Dh (xo)k >- 0 

z' EZ', 

for all k e K. 

ProoL Let 

F = Df(xo), H = Dh (Xo). 

Note that Craft K is nonempty. By Theorem 5.2 and in view of Remark 
5.5(ii), to establish the result it suffices to show that 

K N N[Dh (xo)] _~ Df(xo) +. (8) 

By Theorem 2.1 and the linearity of Df(xo), 

cl(co LC [AN N(h); Xo])c Df(xo) +. 

Combining this inclusion with (7), it is seen that (8) holds, and the proof is 
complete. 

Remark 5.6. In his original statement of the preceding corollary, 
Weatherwax asserted the existence of a continuous linear multiplier z*, as 
opposed to the linear (possibly noncontinuous) multiplier z' given above. 



282 JOTA: VOL. 24, NO. 2, FEBRUARY 1978 

In Example 6.3, it is demonstrated that, under the given hypotheses, the 
multiplier may fail to be continuous. 

6. Examples 

Three examples will be presented to demonstrate that various hypo- 
theses in the preceding theorems cannot be omitted and still have the 
necessary conditions hold. The details are left to the reader as the pro- 
perties ascribed to the examples are easily verified. 

Example 6.1. Let 

X = R  z, 

and define 

Z = R ,  B = Y = X ,  

f:X--~R, g : X ~  Y, h:X-->Z 

as follows: 

f(a, b) = -a, g(a, b)=  (a, b), h(a, b) = (1/2)a2-b, 

for (a, b )e X. Define C ~ X by 

C ={(a, b): a2>b > 0  and a >0}, 

and define A _ X by 

A = X - C .  

The following properties can be shown to hold: 

(i) f has a min on A A N ( h ) =  a N g- l (B)nN(h)  at x0 = (0, 0); 
(ii) L C [a ; xo ]  = X ;  

(iii) LC[A; Xo] N N[Dh(xo)] ~ Df(xo)+; 

thus, by Theorem 2.1, 

LC[A;  x0] nN[Oh(xo)] ~ LC[A AN(h) ;  x0]. 

(iv) let K = LC[A;  xo]; if r/~ R, z'  ~ Z ' ,  y* c Y* satisfy (i), (ii), (iii) of 
Theorem 5.1, then each of rt, z', y* is zero. 

Remark 6.1. The preceding example serves to demonstrate the 
following points: 

(i) The condition int B ¢ • cannot be eliminated from Theorem 
4.1 nor Theorem 3.2. To see this, treat h as defining an inequality con- 
straint with the constraint cone equal to {0}. 



JOTA: VOL. 24, NO. 2, FEBRUARY 1978 283 

(ii) The constraint qualification 

LC[A;  Xo] N N[Dh (x0)] _~ LC[A N N(h) ;  x0] 

cannot be eliminated from Theorem 5.1. 
(iii) The qualification 

K NDg(xo)-l[cr,n B-g(xo)]NN[Dh(xo)]c_ Df(xo)+ 

cannot be eliminated from Theorem 5.2. 

Example 6.2. Let 

X = Z  = 12, 

Define 

as follows: 

Y =  l~. 

f : X ~ R ,  g : X ~  Y, h : X ~ Z  

where 

f (x )  = Z 2x . /n ,  g(x)  = x, 
r t  

h(x) = (x 2 - 1/n2), 

x =(x.).  

Let B be the set of all (y . )~  Y such that yn->O for all n. The following 
properties can be shown to hold: 

(i) f h a s  a min on g- I (B)NN(h)  at Xo = ( l /n ) ;  
(ii) N[Dh(xo)]CLC[N(h); Xo]; 

(iii) int B # O ;  
(iv) if rt, y*, z '  satisfy the conclusion of Corollary 5.2, then z' is not 

continuous; 
(v) the range of Dh (xo) is not closed. 

O) 
(ii) 

this, let 

Remark 6.2. The preceding example serves to illustrate the follow- 
ing points: 

The multiplier z'  in Corollary 5.1 need not be continuous. 
The multiplier z'  in Theorem 5.1 need not be continuous. To see 

A = X ,  K=LC[A;xo] .  

(iii) The condition that the range of Dh(xo) is closed cannot be 
eliminated from Corollary 5.2. 
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Let  

Example 6.3. Let  

X = Z  = 12. 

A ~ X  

be the set of all ( x , ) c X  such that 

x,~ ~ 0  

for each n; and let 

Define 

as follows: 

K = LC[A; x0]. 

f : X--> R,  h : X - ~  Z 

h ( x ) =  (x] - 1/n2), f ( x )  = Y~ 2x . / n ,  
I"1 

for x = (x,). The following properties can be shown to hold: 

(i) f has a min on A A N ( h )  at x0 = ( l / n ) ;  
(ii) K is a convex cone with nonempty relative interior; in fact, 

K = X, so K has a nonempty interior; 
(iii) K n N[Dh(xo)] c LC[A N N(h); Xo]; 
(iv) for any 7/and z '  satisfying the conclusion of Corollary 5.4, z '  is 

not continuous. 

Remark 6.3. The preceding example serves to illustrate the follow- 
ing points: 

(i) The multiplier z '  of Corollary 5.3 need not be continuous. 
(ii) The multiplier z '  of Theorem 5.2 need not be continuous. To 

apply the example to Theorem 5.2, let 

B = Y = X ,  

and let g be the identity. 
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