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Numerical Solution of a Time-Optimal Parabolic
Boundary-Value Control Problem’
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Communicated by R. Jackson

Abstract. A special time-optimal parabolic boundary-value control
problem describing a one-dimensional heat-diffusion process is solved
numerically. Using a bang-bang principle recently proved by Lempio,
this problem can be transformed in such a way that the variables are
jumps of bang-bang controls. A discretization is performed in two steps,
and the convergence of the approximate solutions is proved. Finally, an
algorithm to solve the discrete problem is developed and some numeri-
cal results are discussed.
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1. Problem

In this paper, we try to solve numerically a time-optimal control
problem resulting from a special one-dimensional heat-diffusion process. A
thin rod is heated at one endpoint in such a way that a given temperature
distribution is to be approximated with a given accuracy as soon as possible.
Denote by y(s, t) the temperature at a point s € [0, 1] at time . Then, we can
describe this process through the following problem.

Problem. Minimize the time T under the restrictions that there is a
ue L. [0, T]with
yt(sa t)_.VSS(Sf t) = 07
ys(0, £) =0, y(s,0)=0,
b)(sa T) s kO(S>| = epS,

-1=su()<1.

' The author would like to thank Prof. F. Lempio, who pointed out this problem to him, and
Prof. K. Glashoff for many helpful comments and suggestions.

2 Wissenschaftlicher Assistent, Institut fiir Angewandte Mathematik und Statistik, Universitat
Wiirzburg, Wiirzburg, Germany.
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Here, [0, T s €[0, 1]; ko€ C[0, 1]is the given temperature distribution;
eps > 0 the given accuracy; and a > 0 a constant heat transfer coeflicient. For
every u € Ly[0, T}, we can determine the solution y(s, ¢, u) of the above
boundary-value problem. Yegorov (Ref. 1) has shown that it is equal to

I3

Vs, h0= X Awd cos (us) | um)explul-m)dn (1)

j=1 o
where

A; =2 sin p/(p, +sin wj cos w;), j=1,2,....
and {z;} is the sequence of all positive solutions of the equation
wtanu=1/a.

y(s, ¢, u) is continuous on [0, 1] as a function of s, and our time-optimal
control problem is equivalent to the following problem.

Problem (SP): min T,
T, u:lly(-, T, u)—ko( - lw<eps,
lullo=1,
uecL[0, T].

We know from Weck (Ref. 2) that Problem (SP) is solvable and we can
assume that the minimal control time T, is positive. For the subsequent
proofs of the convergence of the discretized problems, we need compact
feasible sets. Therefore, let us assume {without loss of generality) that there
is a g >0 with the following property: each T >0, for which a feasible
control with respect to Problem (SP) exists is less than or equal to u.

Lempio (Ref. 3) has shown that the following bang-bang principle is
valid.

Theorem 1.1. Let 7, > 0 be the minimal time and ug a time-optimal
control of Problem (SP). Then, ug is uniquely determined and piecewise
constant, having the values —~1 and 1 with finitely many jumps on any
interval [0, 1], 0 <t < T,.

This means that the jumps of the optimal bang-bang control accumu-
late at most in T,. This property of the optimal solution is fundamental
further on, because we can consider now only such feasible solutions of
Problem (SP) which possess the above bang—bang character. So we obtaina
problem whose variables are jumps of bang-bang solutions. We define,
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therefore,
E={Tt,ts,...2: T, t;e€R, ,lirg =T
E is a linear space and is normecd by
KT, 6, . e =max{|T], |t]:i=1,2,...}

Using the previously mentioned bang-bang principle, we see that Problem
(SP) is equivalent to the following problem.

Problem (P): min 7T,
(T, t,...)eX,
o(T, ty,...)eK,
where

X={T,ty,... )eE:0st;< --- sT=u},
K ={veC[0,1]: v~ ko< eps},

and ¢: X - C[0, 1] is defined by
(p(T’ [1,---)::)’(' 3 ,T" u(Ty tl" - ))'

The function u(T, t1, .. .)€ Lo[0, T]is bang-bang with jumps at #5, £, . . .,
more precisely,

u(t f;, A ){T) = (—1)£+1a TE [{i-ﬂy Ii): ie N, Z() = O.

In the following section, we approximate Problem (P) and prove some
convergence theorems. In Section 3, we develop an algorithm to solve the
discrete problem; Section 4 contains the numerical results.

It should be mentioned that the bang-bang principle expressed by
Theorem 1.1 is also valid for any L,-norm, p =1 (see Glashoff, Ref. 4). So it
is possible to formulate Problem (SP) for arbitrary L,-norms and discretize
this problem in a similar way.

Analogous heat-diffusion processes, but with a constant control time T,
were solved numerically by Sakawa (Ref. 6), Glashoff and Gustavson (Ref.
5), and Sachs (Ref. 7). Other analyses of such problems can be found in the
papers of Butkovskiy (Refs. 8, 9), Wypych (Ref. 10), Weck (Ref. 2),
Glashoff (Ref. 4), Friedmann (Ref. 11), and Fattorini {Refs. 12, 13).
Fattorini (Ref. 14) also succeeded in developing a bang-bang principle for
the exact final-value problem (i.e., for the case eps = 0).
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2. Discretization of the Problem

In order to compute a solution of Problem (P) that is at least approxi-
mate, we must examine a discretization of the problem. This will be done in
two steps. The first discretization will be performed with respect to the
number of jumps; that is, we construct Problem (P,) which permits only k
jumps of the feasible controls. For this, we define for k e N

Xe={(T, tr, ..., )R 0<sp< - sp<sT=su}
o Xi > C[0, 1],
oty . t)=e(T, ty, ..., 0, T,.. ).
So we get for each k the following problem.

Problem (Py): min 7,
(Ta Iy .0 vy tk)EXk,
eelT, t,. .., ) e K.
For the proof of the subsequent convergence theorems, we need the

following more restrictive feasibility statement, which could be charac-
terized as a Slater condition.

Theorem 2.1. Let T, be the optimal time of Problem (P). Then, there
is, for every T1> Ty, a bang-bang control with jumps at #4,#,..., i.e., a
(T4, t1,...)e X, with

(P(Tla tla e )EIév
where K is the set of all interior points of K.

Proof. Let (To, t1,...)e X be the optimal solution of Problem (P).
Then, To and uo= u(To, £}, . . . ) are optimal for Problem (SP); specificaily,
we get

lly(-, To, o)~ kol - )|l <eps, luolo=1. (2)
Choose a T1> T, and define

0 se€[0, T1—Ty),

TP
uo (s): { ugls =T+ To),  se[Ti—To, T1).

3)
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Since
T,

L ’ uol7) exp (—uj (To—7)) dr

Tl
- j uolo — Ty + To) exp (—u(Ts— o)) dor

T1~To
Tl
- j ut (@) exp (—u (T, ~ o)) dor @)

for each j, we have

y('aT()’uO):y(.’Tl)uBk)a
and

Iy(-, T, ul)—ko( Mw=<eps, |udlle<l. ()
Consider now the following minimum-norm problem.

Problem (MN):  minlly(-, T1, u) = ko * )|l
uulo=1,
ue Lco[o, Tl].
Glashoff (Ref. 4) has shown that the optimal solution of this problem is

bang-bang, uniquely determined, and that the jumps accumulate at most in
T:. uy is a feasible control for Problem (MN) with

ly(-, o, ug) = ko( - )l <eps,

but is not of bang-bang type. So we conclude that the unique optimal
bang-bang solution u; of Problem (MN) leads to the estimate

lly (-, Ta, un) = kol - )l <eps. (6)

Letty, 1, ... bethe jumpsof u; suchthat u; = u(7y, £, ... ). Sowe get finally
a(Ty, ty,...)eX with

o(T, t,...)ek.

Now, we show that the function ¢ is continuous on X.
Lemma 2.1. The function ¢: X'~ C[0, 1] is continuous on X.

Proof. We define a control operator

Sr: L0, T~ C[0, 1], T>0, p>2,
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by
Sru(s)=y(s, T, u) (7)

for every u € L,[0, T]and s €{0, 1]. Let t:=(T, 11, .. .)€ X, and choose an
arbitrary p > 0. Denote p* := (p/2)”. We can assume that 7'—p*/2 is not a
jump of u(f) and that T'—p*/2>0. Then, there is k(p) € N with

0sn<- - <p<T-p*/2<tepn<s-<T
Let to = 0 and
= min{p*/2k(p), T ~p* /2~ tiip), tk@+1— T +p*/2,

$G—nj=1,..., kip)}.
For

F=(T,t%,...)eX with ||t — g <8,

we get the estimates

T—-p*/2
) w0 =) dr+ 272

kip)
=(X ty-rrleori2)2e
i=1
<2%p%, ®)
or
() — u(e*)ll, <20**% = p. 9)

Here, || - ||, denotes the p-norm on L,[0, 1]. Glashoff and Gustafson (Ref. 5)
have shown that, for the linear operator St, the following relation is valid:

(Sruello= xllul, for all ue L,[0, T]. (10)

The constant y is independent of 4 and T.
Now, we can prove the continuity of ¢. Let (T, #,...)e X and € >0.
For p = ¢€/2x, we get a 6 > 0 such that, for every
Fe=(T,t5,...)eX  with|t—r*e <3,
we have
llu(2) — ()l < €/2x. (1)
Select
f=(T",ty,...)eX  with|t—1|e<8/2.
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It is easy to see that
StuT tr, .. )=Sru(T, 6+ T ~T,.. )= 8Spu*(T", fr=s1,
Sru(T', t1,...)=8Swu(T, 1 +T-T",...)=Su*(T), it T>T,

where u*(T')(s)=1, s€{0, T'—T], and u™*(T')(s)=0, otherwise. If, for
example, T'< T", we conclude this from

T
L u(T, ty, ... )7)exp (—pd,?(T-'r)) dr
-
= L w(T by, .. Yr—T'+T)exp (~u (T —7)) dr
"

- Liru(T', WHT'=T,.. Y exp (~u (T - D) dr.  (12)
Since
e—rlle<s/2,
WL +T-T,... )= (T t,.. Mg <l —dlg +|T—-T"]<8,
we get from (11) that
(T, 0+ T =T,...)=u(),
=llu(®)~u(T, 15 +T-T",.. ),
<e/2y, HT<T, (13)
VT, e +T =T, .. )—ult),<e/2y, it T>T.

Now, we establish the estimates

o ()~ (Mo = Sru () = ST 1t
_ﬁ{]lST'u(T’, hw+ T =T,.. )= Seu(t)—Sru*(T o, if T<T,

IS7u@)~ SrulT, s + T=T", .. .)+ S1u*(T)|o, if 7>T,
_ XNu(T, 6+ T =T,.. )= ul), +x(T'— T)? if T<T,
\{xllu(t)«u(T, BAT=T,. . Mp+x(T=T)"* it T>T,
<e/2+x(8/2)"" <e.

This completes the proof, since we assume that x(6/2)"/7 <e/2.
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The continuity property of the function ¢ will be very important for
proving the convergence of the optimal value of Problem (P} to the optimal
value of Problem (P).

Theorem 2.2. Let T,>0and Tg be the minimal times of Problems (P)
and (P:), respectively. Then,

lim T§ = To.

k »c0
Proof. We choose k €N and denote by
(TG, 11, ..., t0eXe  (To,1,...)eX,

the optimal controls of Problems (P) and (Py), respectively.
Since

K Lk k ok k Lk k ok
(To,t1,. .t To) € Xiny, (To, t1,-- st Tg, ... JEX,

and
Orar(Th B TO=(T6, 15, ...t T6,...)
=u(T6, 15, ..., th)eK,
it follows that
TE=TE = .2T, forallkeN. (14)

Now, we show that there is a subsequence of {T§} converging to To. For an
arbitrary T > Ty, Theorem 2.1 yielods a bang-bang control with jumps at
t:=(T, t1,...)eX and with ¢(t) € K. Since

lim Tty oot T, )= (T, .0 ),
and ¢ is continuous on X, we obtain k'€ N such that
qpk(ﬂtls'-'ytk):‘p(ntla*'"tk7T7"’)eK5 (15)

forallk=k'.So (T, t1, ..., &) is feasible for Problem (Py/), i.e.,
T=TE =T, (16)

Because T was chosen arbitrarily, we get a subsequence of {7} converging
to T. This proves the statement.
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It is not possible to solve Problem (P;) numerically. So we perform a
second discretization which allows us to compute approximate solutions of
Problem (P,). Therefore, we consider the following problem.

Problem (P}): min T,
(T, 1y )€ X,
ee(Tty, ... t)eK,
with

K, i={ve C[0, 1}: max Jo(s)—ko(s)l <eps, 5= (i~ 1)/(n — 1)},

ek X > C[0, 1],

T

PR )= £ uiA; cos (us) | u(r) exp (- (T =) dr,

for all t=(T,1,..., )€ X, {I.} is a monotone increasing sequence of
positive integers with

lim [, =0,

n—->eo

As a preparation for the subsequent convergence theorem, we establish
two lemmas.

Lemma 2.2. Assume that there is a v € C[0, 1] and a sequence of
functions v, € C[0, 1] converging to v uniformly on [0, 1]. Then,

iim max 0,(s;) = v,

-0 I=isn
with

$=0{-1)/(n-1), i=1,...,n

Proof. Define so, 5;, €[0, 1], by

Jnax v(s)=v(s0), (17)
max v,(s;) = v,(s;,). (18)

l=si=n
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Let s*€[0, 1] be an accumulation point of {s; }; i.e., there is a set M CN,
|M| =0, with

lim s;, = s*.
neM

We show that v has a maximum at s*. For this, we assume that there is an
s'€[0, 1] with

v(s") > v(s*).

Define

8 :=3(v(s") —v(s%).
The uniform convergence of {v,} and the continuity of v implies that

1 . = *

lim va(s;,) = v(s™).

So we have
o(s*)>0v,(s;,)— 68 forall n>n* neM.
For s’, we get a sequence
$ip =(n—1)/(n-1), 1sj.<n, neM,
with
lim s; =s'".
neM

Since

lim v, (s;,) = v(s"),
there is an n’'=n* such that

v(s)<wv(s;)+8 (19)
for all n e M, n > n'. Therefore,
vn(s; )+ 8> 0()=v(s*)+28 > v,(s;) + 6,
or
Un(83,) > 0nlsi,) = maxX vn(s). (20)

This is a contradiction; we get

lim v(s;,) = [ollo.
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1t is easy to see that now

lim v,(s;,) =]v].
F R A o]

Lemma 2.3. Let g, g.: X, = R be defined by
g(0) = llox(t) — kolw,
8:(1)= max o (1)(s:) = kols)],
si={-1)/(n-1), i=1,...,n
Then, the following relation is valid:

lim sup [g(r) —gn (1) = 0.

>R e Xy

Proof. g and g, are continuous on X3, because the functions ¢ and
<p§? are continuous on X;. Since X}, is compact, there exists, forevery n e N,

b :.:'(Tm t?, DRI Iz)erl‘c
with

max 18(1)~ ga (O] =g () — g (8:)I. 21

Let t*e€ X, be an accumulation point of {t,}, i.e., there is a set M CN,
|M| = o0, with

lim ¢z, = f*.
neM

Define
v(s) =] (t*)(s) — kols)],
v (8) = e i (£.)(8) — kols),
s€0,1], nel,
From

[0(s) = 0a ()| < l@e (F*)(s) ~ @ & (£)(5)]
<ler(t*)(s) — ex (1)) +lon (2 )(8) — @ (1)(s)]

= “‘Pk (t*) P (tn)“co
T’l
L w(6,)(r) exp (2 (To — 7)) dir 22)

- 2
+ Y Ak
=l +1
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and the existence of Y21 |A,| follows the uniform convergence of {v,}nenm
to v.
Lemma 2.2 shows that

lim max v,(s:) = |||,

neM lsi<sn
lim g, (1) = g(r™).
Further,

sup |g(1) — g, (1) =g (ts) — £ (t)]

te Xy

< [g(t) ~ g(r*)] + g (+) — gultn)] = 0. (23)

Since this is valid for each accumulation point of {z,}, the statement of the
lemma is proved.

Now, we are able to show the convergence of the optimal value of
Problem (P}) to the optimal value of Problem (P).

Theorem 2.3. Let T§" be the minimal time of Problem (P}), with
n, k€N, and T, be the minimal time of Problem (P). Then,

lim Tim T§" = lim lim T§" = T. (24)

k-»00 1-»00 k00 Wl

Proof. Choose a k€N, and assume that there is an accumulation
point T§ of {T§" }uenwith TF < T where T is the minimal control time of
Problem (P,). Then, there is a set M CN, [M|= 00, with

lim Tk = T¥ < TE
neM

For every n € M, we determine an optimal bang-bang control of Problem
(P, with jumps at

= (T, 1", ..., 1) e X

X, is compact. Therefore, aset M'CM, |M'|=00, and a
t={(T",t},...,t)eXy
exist with

.k
lim t5" =1
neM'
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From Lemma 2.3, we see that
Jlim, g (16") = g(1'). (25)
Since
2.(t6™) €[0, eps] forallne M,
it follows that

g(t") [0, eps].

So ' is feasible for Problem (P, ). This implies a :ontradiction, because

im T§" =T'=TE>T% =lin TS
nepM’ ne M

We conclude that, for every k e N,

Se=lim T =2TE=1,. (26)

n-»00

Let T > T, be chosen arbitrarily. Theorem 2.1 shows that there is

t=(T,t,...)eX  withe()ck.
Define
=T, t.T,..)eX,
t=(T,h, ..., 10) € X

From lim.of =¢ and the continuity of ¢ it follows that there is
k(T)ye N with

etV =o(@)eK  forallk=k(T). (27)

Now, choose &k = k(T). Since g(tk) €[0, eps), we conclude from Lemma 2.3
that there is an n(7, k) e N with

()€ [0, eps)
for all n = n(T, k). So t* is feasible for Problem (P9, that is,
T=T¢§"
for all n =n (T, k). This implies that

T=y = @ TE (28)
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The statement of the theorem follows now from the estimates
Tzywz82Tt=T, (29)

for all k = k(T) and the fact that T could be chosen arbitrarily.

3. Algorithm

In the last section, we succeeded in reducing the original problem (P) to
a nonlinear optimization problem (P}) in R**'. We have seen that the
optimal values of Problem (P) are approximations of the optimal value of
Problem (P).

But, for the subsequent algorithm, it is necessary to replace Problem
(P%) by a slightly modified problem with one more variable.

Problem (Pi.1): min T,

(T, to, try -+ ., i) € Xies1,
@lé‘—Fl (7-; tOv sy lk)EKm

with

T
Fous (06):= £ w2A; costus) | a0)e) exp (- (T =) dr

=1
and
0, for r 10, to),
ﬁ(t)(?') = (—_1)i+17 for TE [ti—--ly {i)’ i= 19 23 caes k,
(_1)k7 forre [tkv T]’
where

t=(T, to, t1, .. . » tr) € Xicv1.

Let us first show that Problems (P}) and (Pr.) are equivalent.

Lemma 3.1. The optimal control times of Problems (P%) and (P%.;)
are identical.

Proof. Let

to:= (TO’ t(1)7 ey tg)EXk
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be an optimal solution of Problem (P%). Then,

to:z (Toy 03 r‘l)’ LI I(}Z) eXk+1
is feasible for Problem (P}.,), i.e.,
TO T()a

where T, is the minimal control time of Problem (P .+). Now, let
= (To, ;g, PPN Z?:)exkﬂ
be an optimal solution of Problem (P}, ). We assume that 3> 0 and define
§0 = (To—19,0,70 =70, ..., o~ e X e
§° is feasible for Problem (Pr.1), since we can conclude from (4) that
@lé’-ﬂ (5_0) = (52'4—1 (;0)
But the estimate
To—19< T,

leadstoa contradlctlon because T is the minimal time of Problem Pr.o).
So we have fg= 0, and the control

=(TO7;(1)’---5;2)€X](

is feasible for Problem (P}), i.e.,
To= T,

Now, we define, for a 7 >0, with n, ke N,

i) =@ (T, 1)(s1),
ki = ko(s;),
with
t=(t,...,)eR", Osn<- --<t,<T
si={~-1)/(n—~1), i=1,...,n

The computation of a feasible control relative to Problem PHfora given T'
is equivalent to the following problem.
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Problem (D7). Determine ¢ = (11, . . . , t) € R*, with
Ff)—ki<eps, i=1,...,n,
Oy -<sf=<T (30)

The optimal control time T¢" of Problem (P%) can be computed now by
the following bisection method.

Algorithm 3.1

Step 0. Start. Select T >0 such that Problem (Dr,) is solvable. Set

Tonax = T4, Tnin = 0.

Forj=1,2,..., determine T;.; from 7; as follows.

Step 1. If (Dr,) is solvable, set Tha=T; If (D7) is not solvable,
set Ty =T}

Step 2. Set Tj = %(Tmax_ Tnin)-

We stop the algorithm, if the difference Tpax— Tmin is small enough.

Theorem 3.1. Let {7;} be any sequence generated by Algorithm 3.1.
Then,

lim T;=T§"

Fr0
Proof. The convergence of {7}} is obvious, if the following statement
is valid: If Problem (D7) is not solvable for a T >0, then

T<TE.
Let us assume that

T>T§
There is an optimal control of Problem PP, ie.
to= (T 15, ., 1) eXe,  with@r(to)e K
Displace #, such that the right end of ¢, coincides with T, that is, define
=T, +T-T, ..., 0+T—-T¢")e X
As shown in the proof of Lemma 3.1, we have
Ge(ts)=gr(to) € K.

So t& is feasible for Problem (PD). This contradicts the assumption that
Problem (D7) is not solvable.
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It should be mentioned that the statement in the beginning of the last
proof is in general not valid for Problem (P}).

Let us now construct a method solving Problem (D) for a given 7> 0.
We reduce Problem (D7) to a2 minimizing problem without restrictions.
Therefore, we define the penalty function

n k+1
hiry= L Iff (0 —ki*=r T [1/¢()) (31)
where
te )?k, r>0,

C}(f) =1,
g)=t1—1t, [=2,....k
crnly=16—"T.
h(t, r) is as a function of ¢ continuously differentiable on )fk. For sufficiently

small » >0, the minimum of A(z, r) is a good approximation of the restricted
problem

min ¥ [f7 (6) - &P,
Oshqs=s - =f=T

In order to define A(z, r) on R*, we set

e, ry= i [6—T/(k +2-)T+10"

for every 1 X
For the numerical solution of the problem
min (s, r),
teR®
we use a procedure of the program library, which can be characterized as a
rank-two quasi-Newton method of Broyden, Fletcher, Goldfarb, and
Shanno. This algorithm stops as soon as the relation

max |f{ (1)~ k| <eps
is valid. If the above estimate is not fulfilled after a sufficient number of

iteration steps, we suppose that Problem (D) has no solution. It has turned
out in practice that ten iteration steps are enough.
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Table 1. Numerical results for Algorithm 3.1.
k TkLo 539 (1,0 =20) Tk20 fh2o (Lo = 30)
2 1.59-1.63 0.029, 1.37 1.53-1.56 0.033, 1.32
4 1.69-1.72 0.040, 0.85, 0.87, 1.45 1.56-1.59 0.054,0.798,0.801,
1.35
6 1.69-1.75 0.046, 0.61, 0.63, 1.12 1.65-1.70 0.056, 0.60, 0.61, 1.10
1.13,1.49 1.11, 1.45
8 1.94-1.97 0.072, 0.52, 0.57, 0.97 1.94-1.97 0.072, 0.51, 0.57, 0.97

099,141, 143,171

0.99, 1.41, 1.43, 1.72

4. Numerical Results

For the numerical solution of Problem (P}), we choose the following

data:

. . . . 2
temperature distribution ko(s}=0.5—-0.5s", sel0,1];
accuracy eps=0.01;
heat-transfer coefficient: =1
a(t2?%
It S—
H 1
; ! 153
0 : .
: PooT
i ;
.{ é\—l
4,
, u't, ) )
7T 4 T 3
! i :
: " i 1.56
a I i T >
I i ! T
I ! |
-t # u ! ;
-, 8,20
uft 0’2 ey
H v . T 7 —
i i i i
i i K |: 1 165
§ i 1
o :‘ iy —
4 i ! T
4 it N 1
. B i L
Fig. 1. Optimal controls for k =2, 4, 6 and n =20.
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ky(s)

g.5 5

a e

1

Fig. 2. Temperature distribution 7(¢3*°) and ko.

penalty parameter r=10"%
initial time T,=2.

The computations have been performed on the computer TR 440 of the
computing center of Wiirzburg University,

Table 1 contains the numerical results for Algorithm 3.1 for n = 10 and
n =20, respectively. The values in the second column are bounds for T&";
18" denotes the jumps of the control computed with respect to the upper
bound. Furthermore, Fig. 1 shows the controls for k =2, 4, 6 and n =20.

The correquglging temperature distribution #(s5°°), i.e., the computed
values for f/o (t%’m), i=1,...,20, and the desired temperature dis-

tribution k, are illustrated in Fig, 2.

Obviously, the control for k =2 is optimal for two reasons. First, for
every k > 2, we get a greater time. The second reason is that the controls 76"
for k >2 approximate the control computed for k =2. As expected from
Lemma 3.1, the first jump of each control is close to zero.

The increase of the computed time Tk with k and the fact that no
jumps of the control belonging to it are identical can be traced to the
application of the penalty function A(r, r). The function values h(z r)
increase rapidly when approaching the boundary. This causes an error in
determining the optimal solutions and is also the reason for which we get no
feasible controls for k=1, 3,5,....
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