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Numerical  Solution of a Time-Opt imal  Parabolic 
Boundary-Value  Control Problem I 

K. S C H I T T K O W S K I  2 

Communicated by R. Jackson 

Abstract. A special time-optimal parabolic boundary-value control 
problem describing a one-dimensional heat-diffusion process is solved 
numerically. Using a bang-bang principle recently proved by Lempio, 
this problem can be transformed in such a way that the variables are 
jumps of bang-bang controls. A discretization is performed in two steps, 
and the convergence of the approximate solutions is proved. Finally, an 
algorithm to solve the discrete problem is developed and some numeri- 
cal results are discussed. 

Key Words. Optimal control, boundary-value problems, discret- 
ization, nonlinear programming. 

1. Problem 

In this paper ,  we try to sotve numerical ly  a t ime-opt imal  control  
p rob lem resulting f rom a special one-d imens iona l  heat-diffusion process. A 
thin rod is hea ted  at one  endpoin t  in such a way that  a given t empera tu re  
distr ibution is to be approx imated  with a given accuracy as soon as possible. 
D e n o t e  by y(s, t) the t empera tu re  at a point  s 6 [0, 1] at t ime t. Then ,  we can 
describe this process th rough  the following problem.  

Problem. Minimize the t ime T under  the restrictions that  there  is a 
u ~ L~[O, T]  with 

y,(s, t)-y~s(S, t ) =  0, 

ys(0, t) = 0, y (s, 0) = 0, 

y(1, t) +a ys (1 ,  t ) =  u(t), 

ty(s, T ) -  ko(s)l<~ eps, 

- l < ~ u ( t ) < ~  1. 

1 The author would like to thank Prof. F. Lempio, who pointed out this problem to him, and 
Prof. K. Glashoff for many helpful comments and suggestions. 

2 Wissenschaftlicher Assistent, Institut fiir Angewandte Mathematik und Statistik, Universitiit 
Wiirzburg, Wfirzburg, Germany. 
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Here,  t ~ [0, T]; s s [0, 1]; ko ~ C[0, 1] is the given temperature  distribution; 
e p s >  0 the given accuracy; and c~ > 0 a constant heat transfer coefficient. For 
every u s l y [ 0 ,  T], we can determine the solution y(s, t, u) of the above 
boundary-value problem. Yegorov (Ref. 1) has shown that it is equal to 

t 

y(s,t,u)= ~ Aitz ~ cos (~zis) fo u(r)exp(-tx2(t-z))d'r' (1) 
i=1 

where 

Aj:=2sinp.ff(txj+sintxicos~i), j = 1 , 2  . . . . .  

and {/z~} is the sequence of all positive solutions of the equation 

tan/x = t/a. 

y(s, t, u) is continuous on [0, 1] as a function of s, and our time-optimal 
control problem is equivalent to the following problem. 

Problem (SP): min T, 

T, u: ItY( ", T, u)-ko(. )t1~o ~eps ,  

u ~ L oo[0, T]. 

We know from Weck (Ref. 2) that Problem (SP) is solvable and we can 
assume that the minimal control time To is positive. For the subsequent 
proofs of the convergence of the discretized problems, we need compact 
feasible sets. Therefore,  let us assume (without loss of generality) that there 
is a tx > 0 with the following property: each T >  0, for which a feasible 
control with respect to Problem (SP) exists is less than or equal to/x. 

Lempio (Ref. 3) has shown that the following bang-bang principle is 
valid. 

Theorem 1.1. Let  To > 0 be the minimal time and Uo a time-optimal 
control of Problem (SP). Then, Uo is uniquely determined and piecewise 
constant, having the values - 1  and 1 with finitely many jumps on any 
interval [0, t], 0 < t < To. 

This means that the jumps of the optimal bang-bang control accumu- 
late at most in To. This property of the optimal solution is fundamental 
further on, because we can consider now only such feasible solutions of 
Problem (SP) which possess the above bang-bang character. So we obtain a 
problem whose variables are jumps of bang-bang solutions. We define, 
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therefore, 

E := {(7", tl, t2 . . . .  ): T, ti ~ R, lim ti = T} .  
i --~ o O  

E is a linear space and is normed by 

II(r, t l  . . . .  )ItE := max{IT/, ItiI : i = 1, 2 . . . .  }. 

Using the previously mentioned bang-bang principle, we see that Problem 
(SP) is equivalent to the following problem. 

P r o b l e m  (P): 

where 

rain T, 

(T,t~,...)eX, 

~ ( T ,  t~ . . . .  ) e K ,  

X : = { ( T , h  . . . .  )¢E :0~<h~<  . - .  ~< T~<~z}, 

K := {v c C[0, 1]: ]]v - k0H~ ~< eps}, 

and q~: X -~ C[0, 1] is defined by 

(¢(T, tl . . . .  ):= y ( ' ,  T, u ( T ,  h . . . .  )). 

The function u ( T ,  tl . . . .  ) • Lo~[0, T] is bang-bang with jumps at h, t2 . . . . .  

more precisely, 

u ( T , h  . . . .  )(~-) := (-1)  i+1 , r • [t~_~, t~), i • N ,  to:= 0. 

In the following section, we approximate Problem (P) and prove some 
convergence theorems. In Section 3, we develop an algorithm to solve the 
discrete problem; Section 4 contains the numerical results. 

It should be mentioned that the bang-bang principle expressed by 
Theorem 1.1 is also valid for any L~-norm, p ti- 1 (see Glashoff, Ref. 4). So it 
is possible to formulate Problem (SP) for arbitrary Lp-norms and discretize 
this problem in a similar way. 

Analogous heat-diffusion processes, but with a constant control time T, 
were solved numerically by Sakawa (Ref. 6), Glashoff and Gustavson (Ref. 
5), and Sachs (Ref. 7). Other analyses of such problems can be found in the 
papers of Butkovskiy (Refs. 8, 9), Wypych (Ref. 10), Weck (Ref. 2), 
Glashoff (Ref. 4), Friedmann (Ref. 11), and Fattorini (Refs. 12, 13). 
Fattorini (Ref. 14) also succeeded in developing a bang-bang principle for 
the exact final-value problem (i.e., for the case eps -- 0). 
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2. Discretization of the Problem 

In order  to compute a solution of Problem (P) that is at least approxi- 
mate, we must examine a discretization of the problem. This will be done in 
two steps. The first discretization will be performed with respect to the 
number of jumps; that is, we construct Problem (Pk) which permits only k 
jumps of the feasible controls. For this, we define for k c N 

Xk :={(T, tx . . . . .  tk)e Rk÷l: O ~ t l  <~ " ' "  <~tk<-T<~lx} ,  

~k: Xk --> C[O, 1], 

q~k(T, tl . . . . .  tk) := ~(T, h , - - - ,  tk, T , . . .  ). 

So we get for each k the following problem. 

Prob l em  (Pk): rain T, 

(T,  tl  . . . . .  t k )~  X k ,  

q~k( T, tl  . . . . .  t k )~  K .  

For the proof of the subsequent convergence theorems, we need the 
following more restrictive feasibility statement, which could be charac- 
terized as a Slater condition. 

Theorem 2.1. Let  To be the optimal time of Problem (P). Then, there 
is, for every T1 > To, a bang-bang control with jumps at tl, t2 . . . . .  i.e., a 
(T~, tl . . . .  ) e  X, with 

q~ (T1, tl . . . .  )~ / ( ,  

w h e r e / (  is the set of all interior points of K. 

Proof.  Let  (To, t o . . . .  ) ~ X be the optimal solution of Problem (P). 
Then,  To and uo := u(To ,  t ° . . . .  ) are optimal for Problem (SP); specifically, 
we get 

[[y( •, To, Uo)-ko(" )H~ ~< eps, [luoll~o ~ < 1. (2) 

Choose a T1 > To and define 

u*(s):= { 0, 
uo(s - r l  + To), 

s ~ [0, T~ - To), 
(3) 

s ~[T1-  To, T1]. 
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Since 

o T° Uo(~') exp (-tx~ (To-7 ) )  d:r 

2 = U o ( o - - r s + T o ) e x p ( - i z 2 ( T l - o . ) ) d o  - 
1-To 

fo T~ u*(o') exp (-/z i (T1-o ' ) )  do" (4) 
2 

for each ], we have 

y ( ' ,  To, uo) = y ( ' ,  7"i, u*), 

and 

IlY( ", Zl, u * ) - k o ( .  )lifo < eps, IluStL-< 1 (5) 

Consider now the following minimum-norm problem. 

Problem (MN): rain t]Y( •, T~, u ) - k 0 ( "  )]Iv, 

-:flu}L<1, 

u ~ L~[0, T1]. 

Glashoff (Ref. 4) has shown that the optimal solution of this problem is 
bang-bang, uniquely determined, and that the jumps accumulate at most in 
T1. u* is a feasible control for Problem (MN) with 

tly(", r l ,  u ~ ) - k o (  . )tr~<eps, 

but is not of bang-bang type. So we conclude that the unique optimal 
bang-bang solution Us of Problem (MN) leads to the estimate 

I[Y( ", 7"1, u l ) - k o ( "  )][~o<eps. (6) 

Let h,  t2 . . . .  be the jumps of ua such that us = u(T1, q , . . .  ). So we get finally 
a (7'1, tl . . . .  ) ~ X with 

q~ (T1, h . . . .  )e/~.  

Now, we show that the function cp is continuous on X. 

Lemma 2.1. The function ~o: X ~  C[0, 1] is continuous on X. 

Proof.  We define a control operator  

ST: Lp[0, r ] -~  C[0, 1], T > 0 ,  p > 2 ,  
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by 
Sru(s) := y(s, T, u) (7) 

for  every  u e L , [ 0 ,  T ]  and  s e [0, 1]. Le t  t := (T, h , . . .  ) ~ X ,  and choose  an 
a rb i t ra ry  0 > 0. D e n o t e  0 "  := (0/2)".  W e  can assume  tha t  T - p * / 2  is not  a 
j u m p  of u (t) and  that  T - P* / 2 > 0. Then ,  there  is k (p) e ~1 with 

0 <~ ta <~ • • • <~ tk(o) < T - 0 " / 2  < tk(,)+~ ~"  • • ~ T. 

Let  to := 0 and  

a := m i n { p * / 2 k ( p ) ,  T - p * ~ 2 - t k ( o ) ,  t k (o )+l - -T+p* /2 ,  

( t j - t ; _ l ) :  j = 1 . . . .  , k(o)} .  

For  

t * : = ( T , t ~  . . . .  ) ~ X  with l i t -  t*llE < &  

we get the  es t imates  

I[u (t) - u (t*)ll~ ~< I .  r - ° * n  l u ( t ) (z)  - u (t*)(~-) f dz  + 2 " 0 " / 2  

~<200 *, 

or  

I l u ( t ) -  u(t*)l[ .  ~ 2o  *1/p = o. 

(8) 

Select  

H e r e ,  t1" II, deno tes  the  p - n o r m  on Lp[0, 1]. Glashoff  and  Gus ta f son  (Ref.  5) 
have  shown that ,  for  the  l inear  o p e r a t o r  87, the  fol lowing re la t ion is valid: 

we have  

I[Srull~<~x[[u[Ip for  all u ~ Lp[0, T].  (10) 

T h e  cons tan t  X is i n d e p e n d e n t  of  u and T. 
Now,  we  can p r o v e  the cont inui ty  of  q~. Le t  (T, tl . . . .  ) ~ X  and ~ > 0 .  

For  O := e/2X,  we get  a 8 > 0 such that ,  for  every  

t* := (T, t~ . . . .  ) e X with tit - t*llE < 8, 

]lu( t)-  u (t*)[[p ~< E/2X. 

t' := (T ' ,  t~ . . . .  ) c X with lit - t'l[E < 6/2.  

(11) 

(9) 
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It is easy to see that 

S r u (  T, h . . . .  ) = S r . u (  T ' ,  h + T ' -  T, . . . ) -  Sr ,  u* (  T ' ) ,  

ST ,U(T ' ,  t~ . . . .  ) -= S T U ( T ,  t~ + T -  T ' ,  . . .) - S r u * ( T ) ,  

if T ~  < T',  

if T > T ' ,  

where 
example, T ~< T', we conclude this from 

T 

Io u(T, tl . . . .  )(z) exp ( - / x ~ ( T -  r)) d z  

T '  

= f T ' - r  u ( T ,  h . . . .  ) ( r -  T '  + T )  e x p  ( - t x ~  ( T ' - z ) )  d~" 

T'  

= f r ' - r  u ( T ' ,  tl + T ' -  T, . . . ) ( r )  e x p  ( - t x ~ ( T ' - ~ - ) )  dr.  

Since 

u * ( T ' ) ( s )  = 1, s 6 [ 0 ,  T ' - T ] ,  and u * ( T ' ) ( s ) = O ,  otherwise. If, for 

lit - t'l}E < 8/2 ,  

t[(T, tl + T - T ' , . . .  ) - ( T ,  h . . . .  )[tE ~ t l t ' - t i l e  + t T - T ' I <  6, 

if T > T'.  

we get from (11) that 

I lu(T ' ,  tl + T ' -  T, . . . ) -  u(t')IIp 

= I}u(t) - u ( T ,  t'~ + T -  T ' , . . . ) l i p  

~< e/2,g, if T ~ T',  

ltu( T, t l  + T -  T ' ,  . . . ) - u(t)llp <~ e/R,g, 

Now, we establish the estimates 

1t,; ( t ) -  u, (t')ll~ = t l S r u ( t )  - ST,U(t')Iloo 

_ f llST'U( T ' ,  tl + Z ' -  T, . . . ) -  ST, U ( t ' ) -  S r , u  *( Z')[l~o, 

- ~([ ISru( t ) -  S r u ( T ,  t~ + T -  T ' , . . . )  + S r u * ( T ) [ t ~  , 

<~Xltu(T',. tl + T ' -  T , . . . ) -  u(t')tlp + x ( r ' -  T )  1/~ 

(Xl lu ( t ) -  u(  Z, t~ + T -  T ' ,  . . . )llp + x ( Z -  Z' )  1/p 

< - e / 2  + X ( 6 / 2 )  ~/p <~a. 

if T < ~ T  ', 

if T > T ' ,  

if T < ~ T  ', 

if T > T ' ,  

This completes the proof, since we assume that ,,v(6/2) 1/p ~< E/2. 

(12) 

(13) 
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The continuity property of the function ~p will be very important  for 
proving the convergence of the optimal value of Problem (Pk) to the optimal 
value of Problem (P). 

T h e o r e m  2.2. Let  To > 0 and T~ be the minimal times of Problems (P) 
and (Pk), respectively. Then, 

lim To k = To. 
k -*~x) 

ProoL We choose k ~ N and denote by 

(T~, t~  . . . .  , t ~ ) ~ X k ,  (To, t ° . . . .  ) c X ,  

the optimal controls of Problems (P) and (Pk), respectively. 
Since 

and 

( T ~ , t ~ , . . . , t ~ , T ~ ) ~ X k + l ,  (T~, t~  . . . . .  t~ ,T~ . . . .  ) ~ X ,  

Ck+l(To k, t~ . . . . .  t~, Tok)= ~o(To k, t~ . . . . .  t~, To k . . . .  ) 

= ~k(To k, t~ . . . . .  tk k) ~ K, 

it follows that 

T~ i> T~ +1 ~>" • • ~> To for all k ~ N. (14) 

Now, we show that there is a subsequence of {To k } converging to To. For an 
arbitrary T >  To, Theorem 2.1 yields a bang-bang control with jumps at 

o 

t := (T, h , . . .  ) ~ X and with q~(t) c K. Since 

tim (T, t l , . . . ,  tk, T , . . .  ) = (T, h . . . .  ), 
k ~ o o  

and ~, is continuous on X, we obtain k'  e N such that 

,pk(T, tl . . . . .  t~) = ,p(T, t l , . . . ,  tk, T , . . .  ) e  K, (15) 

for all k >/k'. So (7, tl . . . . .  tk') is feasible for Problem (Pk'), i.e., 

T/> To k' I> To. (16) 

Because T was chosen arbitrarily, we get a subsequence of {To k } converging 
to To. This proves the statement. 
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It  is not  poss ible  to solve P r o b l e m  (Pk) numerical ly .  So we p e r f o r m  a 
second discret izat ion which allows us to c o m p u t e  a p p r o x i m a t e  solut ions of 
P r o b l e m  (Pk). The re fo re ,  we consider  the fol lowing p rob lem.  

Problem (P 7,): rain T, 

( r ,  t l  . . . . .  tk )~Xk,  

~ ~"(T, t l , . . . ,  t k )~K , ,  

with 

K .  := {v ~ C[O,  1]: max  Iv(si) - ko(si)l <~ eps, sl := (i - 1 ) / ( n  - 1)}, 
l ~ i ~ n  

~ :  xk-, c[0, 11, 

l ~o v ~o~"(t)(s) := ~ ~ 2 A  i cos (txis) u(t)(z) exp ( - / x ~ ( T -  r))  dr, 
/ = 1  

for  all t := (T, tl . . . . .  tk) e Xk. {l.} is a m o n o t o n e  increasing sequence  of 
posi t ive integers  with 

l im 1. = oo, 
n --~ oo 

As a p r epa ra t i on  for  the subsequen t  conve rgence  t heo rem,  we establish 
two l emmas .  

L e m m a  2.2. A s s u m e  that  there  is a v e C[0 ,  1] and a sequence  of 
funct ions  v~ 6 C[0 ,  1] converg ing  to v un i formly  on [0, 1]. Then ,  

lim max  v,(si)=llvH~, 

with 

si := (i - 1) / (n  - 1), i = 1 . . . .  , n. 

P r o o f .  Define  So, si, ~ [0, 1], by 

m a x  v(s) = V(So), (17) 
O ~ s ~ l  

max  v.(si) = Vn(Sin ). (18) 
l~ - i~n  
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Let  s* e [0, 1] be an accumula t ion  point  of {&,}; i.e., there  is a set M C N, 
IMI = oo, with 

lim si. = s * .  
h e m  

W e  show that  v has a m a x i m um  at s*. For  this, we assume that  there  is an 
s ' E  [0, 1] with 

Def ine  

v(s') > v(s*). 

8 := ½(v(s')- v(s*)). 

The  uniform convergence  of {vn} and the continui ty of v implies that  

So we have 

lira v.(si .)  = v(s*). 
n ~ M  

v ( s * ) >  v n ( s i . ) - 8  for  all n > n*, n e M .  

! 
For  s ,  we get a sequence  

si. := (].  - 1) / (n  - 1), l<~]n<~n, n e M ,  

lim si. = s ' .  
n ~ M  

with 

Since 

lim vn(si.) = v(s'), 
n E M  

there  is an n ' />  n* such that  

v(s')<v(sj°)+~ 

for  all n ~ M, n > n ' .  There fore ,  

o r  

v.(si .)  + 8 > v(s') = v(s*) + 28 > v,~(si.) + 8, 

v . ( s t . )>  v.(&.) = max v.(si). 
l ~ i ~ n  

This is a contradic t ion;  we get 

(19) 

(20) 

l i m  v(s,.) = IlVlloo- 
n ~ M  
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It  is easy to see that  now 

lira v,~ (si.) = Ilv IIoo. 

L e m m a  2.3 .  Le t  g, g , :  Xk ~ ~ be def ined by  

g(t) := Ilcck (t) - koG,  

g,(t) := ma~ ]~o~(t)(s,)- ko(s3], 

s i : = ( i - 1 ) / ( n - 1 ) ,  i =  1 , . . . ,  n. 

Then ,  the fol lowing re la t ion is valid: 

l im sup  tg( t )-g,( t ) l  = O. 

P roof .  g and gn are  con t inuous  on Ark, because  the funct ions  ~0k and  
~¢ ~ are  con t inuous  on Xk. Since Xk is compac t ,  the re  exists, for  every  n E N, 

t. := (T, ,  tT , . . . ,  t~)EXk 

with 

max  [g(t)  - g.(t)]  = I g ( t . ) -  g , ( t . ) l .  (21) 
t~Xk 

Let  t* E Xk be  an accumula t ion  point  of  {t,}, i.e., there  is a set  M C N ,  
[M[ = oo, with 

Def ine  

lira t. = t*. 
n~M 

v(s )  := t ~ k ( t * ) ( s ) -  ko(s)j,  

v.(s) := t,p b (t .)(s)-  ko(S)l, 

sE[O, 1], n o N .  

F r o m  

Iv(s) - v . ( s  )l <-[~,~ ( t*) (s )  - ,p ~ ( t . ) ( s  )f 

<- I ~  ( t*)(s)  - ~ ( t . ) (s) l  + I ~  (to)(s) - ~ ~ ( t . )(s)f  

<~ [[¢k ( t*) - ¢ ~ k  ( t,)[[m 

[a, ltz; for" + u(t.)('r) exp ( - ~  (T .  -"r ) )  d r  
j=ln+l 

(22) 
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and the existence of ~i~=1 IAiJ follows the uniform convergence of {v,},~m 
to v. 

L e m m a  2.2 shows that 

lim max v,(s~)=tlvl[~, 
n ~ M  l<~.i~n 

lira g~(t,,) = g ( t * ) .  
n s M  

Further,  

sup t g ( t )  - g .  (t)I = lg(t~) - g .  (t .) l  
tEXk  

n ~ M  
~[g( t , ) -g ( t* ) l+[g( t* ) -g , (&) l  ~ o. (23) 

Since this is valid for each accumulation point  of {t,}, the s ta tement  of the 
lemma is proved. 

Now, we are able to show the convergence of the optimal  value of 
Problem (P ~,) to the optimal  value of Problem (P). 

T h e o r e m  2.3. Let  To k~ be the minimal t ime of Problem (P~), with 
n, k ~ N, and To be the minimal t ime of Problem (P). Then,  

lim li--m To  k " =  lira lim T~ ~ =  To. 
k-~oO rl-'~oo k'-~2J n--*(x3 

(24) 

Proof.  Choose a k s N, and assume that there is an accumulation 
point  T* k~ of {To }~N with T* < To k, where To k is the minimal control t ime of 
Problem (Pk). Then,  there is a set M C ~ ,  IMI =oo, with 

lim To k" = T ~  < To k. 
n c M  

For  every n c M, we determine an optimal  bang-bang  control of Problem 
(P~), with jumps at 

to := (To  , t l k ° , . . . ,  t "t 

Xk is compact.  Therefore ,  a set M '  C M, fM'I = oo, and a 

t' := (T ' ,  t~ . . . . .  t~,) ~ Xk 

exist with 

lira to kn = t'. 
r l ~ M '  
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From Lemma 2.3, we see that 

k n  l im  g~(to ) = g(t'). 
~ E M  ~ 

Since 

it follows that 

g,(tok") 6 [0, eps] for all n ~M' ,  

g(t') ~ [0, eps]. 

So t' is feasible for Problem (Pk). This implies a :ontradiction, because 

lira To k n = T ' l > T o  k > T * = l i n  T~". 
n ~ M '  n~ M 

We conclude that, for every k ~ N, 

6k := lim To k~ >~ To k ~> 7 > 
n - + o o  

Let T > To be chosen arbitrarily. Theorem 2.1 shows that there is 

t := (T, tl . . . .  ) e X  with ~(t) e / ( .  

Define 

tk:= (T, tl . . . . .  tk, T , . . .  )EX,  

t k :=(T, h . . . . .  tk)EXk. 

(25) 

pk(t k) = ~p(i k) e / (  for all k ~ k (T) .  (27) 

Now, choose k >I k (T) .  Since g(t k) c [0, eps), we conclude from Lemma 2.3 
that there is an n(T, k) ~ N with 

g,(t  k) ~ [0, eps) 

for all n >I n(T, k). So t k is feasible for Problem (PT,), that is, 

r ro 

for all n >~n(T, k). This implies that 

T ~ , k : =  Iim k, To . (28) 

From l im k~7  k = t  and the continuity of ~p it follows that there is 
k (T) ~ N with 

(26) 
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The statement of the theorem follows now from the estimates 

T >~ yk ~ Sk ~ Tko ~ To 

for all k ~ k ( T )  and the fact that T could be chosen arbitrarily. 

(29) 

3. Algorithm 

In the last section, we succeeded in reducing the original problem (P) to 
a nonlinear optimization problem (PT,) in R k+~. We have seen that the 
optimal values of Problem (P~) are approximations of the optimal value of 
Problem (P). 

But, for the subsequent algorithm, it is necessary to replace Problem 
(P~) by a slightly modified problem with one more variable. 

Problem - n (Pk+l): rain T, 

(T, to, [1 . . . . .  f k )EXk+l ,  

with 

and 

where 

,~e+~ (7, to . . . . .  tk)e g . ,  

- In In f T  
~k+ l  ( t ) (S ) :=  ~[ 2 IzjAi cos(ms) a( t ) ( r )  exp (-/x~ ( T -  "r)) dr  

Jo i=1 

a(t)(z):= 
O, for r c [0, to), 

( -1)  i+1, for z e [t/-t, ti), 

( -1)  k, for zE Irk, T], 

i = 1 , 2 , . . . , k ,  

t := (T, to, tl . . . . .  tk) ~ Xk+l .  

--n Let us first show that Problems (PT,) and (Pk+l)  are equivalent. 

~ n  Lemma 3.1. The optimal control times of Problems (PT~) and ( k + l )  
are identical. 

Proof. Let 

to:= (T °, t o . . . . .  t°)  E X k  
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be  an  op t ima l  so lu t ion  of P r o b l e m  (P~). Then ,  

t ° := (T  °, 0, t o . . . . .  tO) C X k + l  

is feasible  for  P r o b l e m  - n  (Pk+l), i.e., 

ro~> ~o, 

where  7~o is the min imal  contro l  t ime of P r o b l e m  -n  (Pk+l). Now,  let 

~ 0 : =  (~O, ~0 0 . . . . .  ~O) C X k + l  

be  an op t imal  solut ion of P r o b l e m  -n (P~+I).  W e  assume  tha t  fo > 0 and  define 

-0 -0 -O -0 -O 
S := (7~0--7o°,0, t x - - t o  . . . . .  t k - - t o ) ~ X ~ + t .  

go is feasible  for  P r o b l e m  -~ " (Pk+~), since we can conclude f r o m  (4) tha t  

- 1 , i f 0 ,  - l . ~ 0 .  

But  the es t imate  

leads to a contradic t ion,  because  7~0 is the min imal  t ime of P r o b l e m  (P~+I), 
So we have  ~o = 0, and  the contro l  

t o := (7~o, i ° . . . . .  7 °) ~ x k  

is feas ible  for  P r o b l e m  (PT,), i.e., 

:P0~ to. 

Now,  we define, for  a T > 0, with n, k ~ IN, 

T 
f i (t) := ~ (  T, t)(si), 

ki := ko(si), 
with 

t : = ( h  . . . . .  tk)E~7~ k, O ~ t l  <~ " " " ~ &  <~ T, 

si := (i - 1) / (n  - 1), i = 1 , . . . ,  n. 

T h e  compu ta t i on  of a feas ible  control  re la t ive  to P r o b l e m  (PT,) for  a given 7" 
is equ iva len t  to the  fol lowing p rob l em.  
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Problem (DT). Determine t := (tl . . . . .  tk) ~ ~k, with 

I f~(t)-k~l<~eps,  i = 1 , . . . ,  n, 

0 ~< tl <~" • • ~< tk ~< T. (30) 

The  optimal control time To k" of Problem (P~) can be computed now by 
the following bisection method. 

Algorithm 3.1 

Step O. Start. Select Tx > 0 such that Problem (Dr1) is solvable. Set 

T r ~  := T1, Train := 0. 

For ] = 1, 2 . . . . .  determine T~+I from T~ as follows• 

Step 1. If (DT~) is solvable, set Tmax := T~. If (Dr,.) is not solvable, 
set Train := TS. 

Step2 .  Set Ti+l :=½(Tmax- Tmin). 

We stop the algorithm, if the difference Tm~x- T~in is small enough. 

Theorem 3.1. Let  {Tj} be any sequence generated by Algorithm 3.1. 
Then, 

lim Tj = To kn. 
i~c~ 

Proof.  The  convergence of {Tj} is obvious, if the following statement 
is valid: If Problem (DT) is not solvable for a T > 0, then 

T < k~ T o .  

Let  us assume that 

T >  To k". 

There  is an optimal control of Problem (P~), i.e., 
• k n  to.= (To , t  o . . . . .  t ° ) ~ X k ,  with ~ ( t o )  ~ K,.  

Displace to such that the right end of to coincides with T, that is, define 

to* :=(T, t° + r -  T~ ~, . . . .  t° + r -  T k " ) ~ X k .  

As shown in the proof of Lemma 3.1, we have 

q5 ~ (t*) = ~ ( t 0 )  c K.. 

So to* is feasible for Problem ( k ) .  This contradicts the assumption that 
Problem (DT) is not solvable. 
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It should be mentioned that the statement in the beginning of the last 
proof is in general not valid for Problem (P~,). 

Let  us now construct a method solving Problem (Dr)  for a given T > 0. 
We reduce Problem (DT) to a minimizing problem without restrictions. 
Therefore,  we define the penalty function 

where 

k+t 
h(t,r):= ~ t fT( t ) -keJ2-r  ~. [1/Q(t)], (31) 

i=1 ./=1 

t e fi2k, r > 0 ,  

ct( t ):--- t l ,  

ci(t) := tj-1 - t~, ] = 2 . . . . .  k, 

c~+l(t) : =  tk - T .  

h (t, r) is as a function of t continuously differentiable on Jl)~. For sufficiently 
small r > 0, the minimum of h (t, r) is a good approximation of the restricted 
problem 

min ~ t fr ,( t)-kd 2, 
i= i  

O<~tl <~. . .<~tk <T.  

In order  to define h (t, r) on Nk, we set 

k 

h(t, r):= E [ t i - T / ( k  + 2 - i ) ]  2+104 
i=I  

for every t~ J~k. 
For the numerical solution of the problem 

rain h (t, r), 
t ~ N  k 

we use a procedure of the program library, which can be characterized as a 
rank-two quasi-Newton method of Broyden, Fletcher, Goldfarb, and 
Shanno. This algorithm stops as soon as the relation 

max IfT(t) - ki} <- eps 
l ~ i ~ n  

is valid. If the above estimate is not fulfilled after a sufficient number of 
iteration steps, we suppose that Problem (Dr )  has no solution. It has turned 
out in practice that ten iteration steps are enough. 
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Table 1. Numerical  results for Algor i thm 3.1. 

k Tko "~° ,~.,o ( l ,o = 20) T~ "2° tko '2° (12o = 30) 

2 1.59-1.63 0.029, 1.37 1.53-1.56 0.033, 1.32 
4 1.69-1.72 0.040, 0.85, 0.87, 1.45 1.56-1.59 0.054, 0.798, 0.801, 

1.35 
6 1.69-1.75 0.046, 0.61, 0.63, 1.12 1.65-1.70 0.056, 0.60, 0.61, 1.10 

1.13, 1.49 1.11, t.45 
8 1.94-1.97 0.072, 0.52, 0.57, 0.97 1.94-1.97 0.072, 0.51, 0.57, 0.97 

0.99, t.41, 1.43, t.71 0.99, 1.41, 1.43, 1.72 

4. Numerical Results 

- r t  
F o r  t h e  n u m e r i c a l  s o l u t i o n  o f  P r o b l e m  (Pk), we  c h o o s e  the  f o l l o w i n g  

da t a :  

t e m p e r a t u r e  d i s t r i b u t i o n  ko(s)  := 0.5 - 0 .5  s 2, s s [0, 1]; 

a c c u r a c y  eps  := 0 . 0 1 ;  

h e a t - t r a n s f e r  coe f f i c i en t :  a := 1 

! 

0 

- I  

I 
' [53 i 

0 

I 

0 

- ~,20 
u(t o )(~: 

]1 - 

- ' t  ~ 2 0 ,  Uf e' ,/(7:) 

[ Ir 

' 1.56 i 

I ', "T 
i i 
w 

1 ,  

, 1 1.65 

11 ] i  I I 
i ]  I i ,~ k--__.A 

Fig. 1. Optimal controls for k = 2, 4, 6 and n = 20. 
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0,5 

7 

Fig. 2. Temperature distribution ~7(t~ '2°) and ko. 

penalty pa ramete r  r := 10-6; 
initial time T1 := 2. 

The computat ions have been per formed on the computer  T R  440 of the 
computing center of Wfirzburg University. 

Table 1 contains the numerical results for Algori thm 3.1 for n = 10 and 
n = 20, respectively. The values in the second column are bounds for Tok~; 
t~" denotes the jumps of the control computed with respect to the upper  
bound. Fur thermore,  Fig. 1 shows the controls for k = 2, 4, 6 and n = 20. 
The corresponding tempera ture  distribution LT(toZ'2% i e the comnuted 

T 2"20 2 2  • / ~  " " '  t" 
values for fi  o (to' 0), l =  1 . . . .  ,20,  and the deslred tempera ture  dis- 
tribution ko are illustrated in Fig. 2. 

Obviously, the control for k = 2 is optimal  for two reasons. First, for 
every k > 2, we get a greater  time. The second reason is that the controls t~" 
for k > 2 approximate  the control computed  for k = 2. As expected from 
L e m m a  3.1, the first jump of each control is close to zero. 

The increase of the computed  time To k" with k and the fact that no 
jumps of the control belonging to it are identical can be traced to the 
application of the penalty function h(t, r). The function values h(t, r) 
increase rapidly when approaching the boundary.  This causes an error  in 
determining the optimal solutions and is also the reason for which we get no 
feasible controls for k = 1, 3, 5 . . . . .  
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