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An Exponential Penalty Method for 
Nondifterentiable Minimax Problems with 

General Constraints 

J. J. S T R O D I O T  t A N D  V. U .  N G U Y E N  2 

Communicated by A. V. Fiacco 

Abstract. A well-known approach to constrained minimization is via a 
sequence of unconstrained optimization computations applied to a 
penalty function. This paper shows how it is possible to generalize 
Murphy's penalty method for differentiable problems of mathematical 
programming (Ref. 1) to solve nondifferentiabte problems of finding 
saddle points with constraints. As in mathematical programming, it is 
shown that the method has the advantages of both Fiacco and McCor- 
mick exterior and interior penalty methods (Ref. 2). Under mild 
assumptions, the method has the desirable property that a~l trial solu- 
tions become feasible after a finite number of iterations. The rate of 
convergence is also presented. It should be noted that the results 
presented here have been obtained without making any use of differen- 
tiability assumptions. 

Key Words. Exponential penalty method, saddle points, convex 
analysis, minimax problems, general constraints. 

1. Introduction 

Problems of finding saddle points form a large class of problems 
encountered both in various types of game situations and also in intrinsically 
mathematical  problems,  for example,  in the problem of nonlinear pro-  
gramming under Lagrangian formulations. 

Let  C0 and Do be subsets of Nn and Nm, and let f be a real function 
defined on R ~ x Nm We will be interested in finding (if it exists) a saddle 
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point of f with respect to Co × Do, i.e., a point (Y, 37) in Co x Do such that, for 
every (x, y) in Co × Do, 

f(~, y) <f(~, 37) <f(x, ;). 
Dem'yanov and Pevnyi (Ref. 3) give an excellent survey of different 

numerical methods for finding saddle points. One of these methods is the 
penalty method. The strategy is to transform the constrained problem into a 
sequence of unconstrained problems which are considerably easier to solve 
than the original problem. The penalty functions are constructed so that all 
convergent subsequences of solutions of unconstrained problems converge 
satisfactorily to a saddle point of f with respect to Co x Do. 

Sasai (Ref. 4) proposed an interior penalty method, and Auslender 
(Ref. 5) proposed an exterior penalty method. The disadvantages of these 
methods are the same as in nonlinear programming: the search of an interior 
starting point for interior methods and the unnecessary feasibility of the 
sequence of trial solutions for exterior methods. Fundamental results deal- 
ing with mathematical programming problems and a survey of the literature 
can be found in the monograph of Fiacco and McCormick (Ref. 2), which 
basically deals with the penalty method. 

In this paper, we propose and analyze some aspects of an exponential 
penalty method. The proposed method is a generalization of Murphy's 
penalty method for differentiable problems in nonlinear programming (Ref. 
1) to nondifferentiable minimax problems. 

Contrary to interior penalty methods, the method does not require an 
interior point (to the feasible inequality-constrained region) to initialize 
computations. On the other hand, we can guarantee that, after a finite 
number of iterations, the method does produce intermediate solutions that 
are feasible under mild assumptions. Hence, the proposed method has the 
advantages of the interior and exterior penalty methods without having their 
drawbacks. 

In Section 2, we formulate the problem; in Section 3, we show that, 
without the well-known Slater constraint qualification (Ref. 6, Section 
5.4.3), almost all trial solutions remain in a compact subset and prove a 
convergence theorem. Section 4 contains the main result: trial solutions 
become feasible after a finite number of iterations when the Slater condition 
is satisfied. The key of the proof is based on a boundedness property for the 
set of subgradients of a family of convex functions. This property enables us 
to give the proof without differentiability assumptions. Section 5 gives an 
estimation of the rate of convergence of the algorithm. The final section of 
the paper contains proofs of theorems and lemmas. 

All the definitions concerning convex analysis are those of Rockafellar 
(Ref. 7). 
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2. Problem Formulation and Assumptions 

Let f be a real function defined on N" x Nm, and let gi, i = 1 . . . . .  p, 
and hi, j = 1 . . . . .  q, be real functions defined on lt~" and on N'~, respectively. 
We introduce the following notation: 

~(x)~- max gi(x), /~(y)~ max hi(y), (1) 
l < i ~ p  l ~ j ~ q  

G ~{x e e"l~(x) < 8}, (2) 

D~ ~{y e ~ml/~(y) < ~}, (3) 

for 3 ~> 0. Then we consider the following problem. 

Problem (P). Find a saddle point of f with respect to Co × Do. 
We impose the following assumptions: 
(A1) [ is a convex-concave function (i.e., convex in the first argument 

and concave in the second argument); 
(A2) gi and hj are convex functions for all i = 1 . . . . .  p and]  = 1 . . . . .  q; 
(A3) Co and Do are nonempty bounded subsets. 
Note that Assumptions (A1) and (A2) imply that f(.,  y) and f(x, .) are 

continuous functions for all x, y and that gi and h~- are continuous functions 
for all i and ] (Ref. 7, Corollary 10.1.1). Hence, Co and Do, being bounded 
subsets, are compact; and, by the classical minimax theorem (Ref. 8, 
Chapter 6, Proposition 2.1), Problem (P) has at least one solution. 
Moreover, observe that C8 and D~ are bounded subsets for all ~ > 0. This is a 
direct consequence of (A2), (A3), and Ref. 7, Corollary 8.7.1. 

For solving Problem (P), we propose a penalty method. We replace the 
original problem by a sequence of problems which are easier to solve. More 
precisely, for each integer k I> 1, we solve a problem of the following form. 

Problem (PD. 
where 

Find a saddle point of Fk with respect to Nnx a m, 

is the function given by the relation 

Fk(X, y ) = f (x ,  y)+(1/s(k)){ ~. exp[r(k)gi(x)]- ~ exp[r(k)h,(y)]}, (4) 
i=1 j = l  

where r(k) and s(k) are real parameters satisfying 

r(k)-~+ooask-~+oo and r(k)>~s(k)>~t for alI k. 
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o r  

o r  

For example, one can take 

r(k) = k, s(k) = 1, 

r(k) = s ( k )  = a k, 

r ( k ) = b  k, s ( k ) = a  k, 

where a, b are real numbers such that 1 < a < b. By generating solutions of 
the sequence of Problems (Pk) which converge to a solution of the Problem 
(P), we obtain a new algorithm for solving a minimax problem subject to 
inequality constraints. 

3. Existence of Solutions for Problem (P~) and Convergence Theorems 

Before giving convergence conditions for the algorithm, it is important 
to see that each Problem (Pk) is well defined. This is stated precisely by the 
following two theorems. 

Theorem 3.1. If there exist Xo ~ R n and y0 ~ R"  such that 

lim f(xo, y) < +oo, lira f(x, Yo) > -oo, (5) 
Ilytl-'+~' IIHI-'+~" 

then Problem (Pk) has at least one solution for all k. 
The next theorem shows that Assumption (5) can be dropped for k 

sufficiently large. 

Theorem 3.2. Let  8 > 0 be given. If r(k) /s (k)  tends to infinity, then, 
for k sufficiently large, Fk has at least a saddle point with respect to R n x R '~ 
and all unconstrained saddle points of Fk are in C~ x Ds. 

Comment.  As C~ and D8 are compact subsets, the function Fk has a 
saddle point with respect to C~ × D~ by the classical minimax theorem. We 
first prove that this constrained saddle point is an unconstrained one and 
afterward we show that all unconstrained saddle points of Fk are in C~ x Ds. 
The key of the proof is based on the following lemma. 

Lemma 3.1. If C and D are compact subsets of R" and R m, then 
f ( C  × D)  is a bounded subset of g~ and 

~{Sf(x, y)Ix ~ (7, y ~D}  
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is a bounded subset of R ~, where Of(x, y) is the subgradient of the convex 
function f(., y) at x, i.e., 

Of(x, y) = {x* e N~ If(z, y) ~f (x ,  y) + (x*, z - x), Vz ~ R~}. 

This lemma enables us to give the proof of Theorem 3.2 without 
differentiability assumptions. Observe also that Theorem 3.2 requires no 
Slater condition. 

Introduce now the following subsets: 

C ° ~{x  ~ ff~n Igi(x)<O, i = 1 . . . . .  p}, 

D o -={y ~ g~"~ I hi(y) < 0, j = 1 . . . . .  q}. 

Observe that, by Ref. 7, Corollary 7.6.1, if C ° and D o are nonempty, then 

b~o = Co, D o = Do. (6) 

We are now in a position to present a convergence theorem. 

Theorem 3.3. For each k, let (xk, yk) be a saddle point of Fk with 
respect to Nn x R m. If r(k) / s (k)  tends to infinity, then each accumulation 
point (and there exists at least one) of the sequence {(xk, Yk)}k belongs to 
Co XDo. Moreover, if s(k) tends to infinity or if C O and D O are nonempty, 
then all accumulation points of {(xk, Yk)}k are saddle points of f with respect 
to Co x D0. 

Observe that, if s(k) tends to infinity, then all accumulation points of 
{(xk, Yk)}k are solutions of Problem (P) without requiring a Slater condition. 

We close this section by stating the following corollary, which is a direct 
consequence of Theorem 3.3. 

Corollary 3.1. Let the conditions stated in Theorem 3.3 be satisfied. 
Then, {f(xk, Yk)}k and {Fk(xk, Yk)}k converge to the saddle value f($, )7) of f 
with respect to Co × Do. Moreover, if the saddle point (~?,)7) of f with respect 
to Co x Do is unique, then the whole sequence {(xk, Yk)}k converges to (~, 37). 

4. Main Result 

In this section, we prove that the exponential penalty method has the 
advantage of interior penalty methods: after a finite number of iterations, 
the trial solutions are feasible. For this purpose, as for interior methods, we 
suppose that the feasible domain has a nonempty interior. 
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Theorem 4.1. If C ° and D O are nonempty and if r ( k ) / s ( k )  tends to 
infinity, then the trial solutions (xk, Yk) become feasible for k sufficiently 
large. 

Comment. By Theorem 3.2, the trial solutions (Xk, Yk) belong to 
C~ x Ds  for k sufficiently large, where 8 is a fixed positive scalar. Hence, Xk is 
a solution of the following convex problem 

minimize Fk(X, Yk),  subject to x ~ C8. (7) 

We show that the solution of (7) belongs to Co, provided k is large enough. 
The result was given in Ref. 1, Theorem 3, for nonlinear programming 
problems under differentiability assumptions. Differentiability of f is not 
assumed here. 

5. Rate of Convergence 

Note that, since the trial solutions (Xk, Yk) belong to C0xD0 after a 
finite number of iterations, we do need only to establish the rate of 
convergence for feasible trial solutions. 

Theorem 5.1. If (Xk, Yk) is an unconstrained saddle point of Fk and if 
(xk, yk) belongs to Co×Do, then 

If(xk, yk ) -  gl <- (p + q ) / s ( k ) ,  

where g is the saddle value of f with respect to Co x Do. 
Observe that the rate of convergence of the sequence {f(xk, Yk)}k 

depends heavily on the rate of convergence of the sequence {s(k)}k to 
infinity. A similar result is obtained for the sequence {(Xk, ya)}k, but under 
assumptions which are stronger than those of Theorem 5.1. 

We make use of a definition that was given in Ref. 9. 

Definition 5.1. A real-valued function K is uniformly convex 
(respectively, concave) on a convex set T if there exists a nondecreasing 
function 81(t) > 0 (respectively, 82(t) > 0) on (0, co) such that, for x, y E T:  

K ((x + y)/2) ~< ( 1 / 2 ) K  (x ) + (1/2)K(y) - 81(Hx - Yil) 

respectively, K ( ( x  + y)/2) >/(1/2)K(x) + ( 1 / 2 ) K ( x )  + 62(1tx - YlI)]. 

Then, we obtain the following theorem which gives the convergence 
rate of the algorithm, 
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Theorem 5.2. Let the conditions of Theorem 5.1 be satisfied. If f has a 
unique saddle point (:~, 37) with respect to Co x Do, if f ( . ,  37) is uniformly 
convex (with function gl), and if f(£, .) is uniformly concave (with function 
82), then 

0 ~< 61(I[£ - xklI) <~ (P + q)/s(k), 

For example, if 

0 ~ ~2(!137 - yk]1) ~ (p + q)/s(k). 

then, for all k, 

6a(t)=Sz(t)=t 2, 

max(llX - xkj], ]137 -- Ydl) ~< ((P + q)/s(k)) 1/2. 

Remark 5.1. Finally, by Theorems 4.1, 5.1, and 5.2, it seems that a 
good choice for the parameters r(k) and s(k) is as follows: 

{r(k)}k, {r(k)/s(k)}k, and {s(k)}k tend to infinity. 

6. Proofs of Theorems, Corollaries, and Lemmas 

Proof of Theorem 3.1. For each y e ~'~ we have, using (1) and (4), 

P 

Fk (Xo, y) ~<f(x0, y) + (1/s(k)) v exp[r(k)gi(xo)]- (1/s (k)) exp[r(k)/~(y)]. 
i = 1  

(8) 

As D8 is a bounded subset for each 8/>0, /~(y) tends to infinity when 
[]y]]-> +co. Hence, using (5), the right-hand side of (8) converges to -eo when 
Ilyll-" ÷oo and 

lim Fk(xo, y) =--oo. (9) llyll-~+oD 

Following a similar reasoning, one obtains 

lira Fk(x, Yo) = +c~. (10) 
!txll--,+oo 

So, by (9), (10), and Ref. 8, Chapter 6, Proposition 2.2, Problem (Pk) has at 
least one solution. [] 

Proof of Theorem 3.2. Let 6 > 0 be given. We shall first prove that Fk 
has an unconstrained saddle point belonging to C8 x D~ for k sufficiently 
large (Claims 6.1, 6.2, 6.3). Afterward, we show that all unconstrained 
saddle points of Fk are in C8 × D~ (Claim 6.4). 
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Claim 6.1. There  exists an integer kl such that, for all x e ~"\C~ and 
all y ~ Ds, 

- f ( x ,  y) < r(kl)~,(x). (11) 

Proof .  Since Co is nonempty,  we can find a point Xo such that 
~(x0) < 6. It then follows from Ref. 10, Lemma 3.1, that there exists e > 0  
such that, for all x ~ R"\Cs, there is a z on the boundary of C8 such that 

~(x) >i ellx - zll. (12) 

Let  x ~ ~ \C~ ,  y ~ D~, and z be the point corresponding to x. As f( . ,  y) is a 
convex function, for each c(z, y) e af(z, y), 

f(x, y ) > / ( z ,  y ) + ( x  - z ,  c(z, y)), (13) 

where Of(z, y) is the set of subgradients o f / ( . ,  y) at z (see Refs. 7 and 8, for 
example). Hence,  using Lemma 3.1 with C = Ca and D = Ds, (13) and (12), 
we see that there exist p~, p~>O such that, for all x e ~"1C8 and all y cDs ,  

- f ( x ,  y) < pl + IIx - zllp2 

<~ p~ + ~(x )p~/ e 

<<- K ~ ( x  ), 

where 

K = (pl/,3) + (pz/e) .  

Since r(k) tends to infinity, we easily obtain (11). ½ 

Claim 6.2. If r(k) / s (k)  tends to infinity, then there exists k2 such that, 
for all k/> k2, all x 6 N'*\C~, and all y ~ D~, 

Fk(x, y) ~ m i n  Fk(z, y). (14) 
z ~ C 8  

Proof.  Let  2 be a point in Co. As 

P 

exp[r(k )gi(2)] ~ p, 
i = I  

for all k and all y e D8 we have 

q 

rain Fk(z, y ) ~ f ( 2 ,  y ) + p / s ( k ) - ( 1 / s ( k ) )  ~ exp[r(k)hj(y)]. (15) 
z~C~ j = l  

Since r(k) / s (k)  tends to infinity and f(2, y) +p/s (k )  is bounded for all k and 
for all y ~ D~, we can choose k' such that k 11- k', x ~ Rn\Cs, and y ~ D~ imply 
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that 

f(2, y) +p/s(k) <~ r(k)8/2s(k) ~ r(k)~(x)/2s(k). (16) 

On the other hand, using Claim 6.1, we can choose k" such that k ~>k', 
x ~ R~\C~, and y ~D8 imply that 

- f(x,  y) -~ r(k)~(x)/2s(k). (17) 

Gathering (16) and (17) and using (t), we obtain, for k >i k2 = sup(k', k"), 

- f (x ,  y) +f(2,  y) +p/s(k) <~ r(k)d,(x)/s(k) -<-- exp[r(k)d,(x)]/s(k) 

P 
~(1/s(k)) ~, exp[r(k)gi(x)]. (18) 

Finally, from (18) and (15), we immediately deduce (14). 

Claim 6.3. For k sufficiently large, Fk has an unconstrained saddle 
point belonging to C~ x Ds. 

Proof. Let (xk, Yk) be a saddle point of Fk with respect to C8 x Da. 
Then, by the definition of a saddle point and Claim 6.2, we have, for k 
sufficiently large and for x ~ Nn\C~, 

Fk(Xk, yk)~< min Fk(Z, yk)~<Fk(x, Yk). 
z~Ca 

Hence, for all x c R ~, 

Fk(xk, Yk) <~Fk(X, Yk). (19) 

By a similar argument, for k sufficiently large and for y ~ N~, 

Fk(xk, y)<-Fk(xk, Yk). (20) 

Then, Claim 6.3 follows from (19) and (20). [] 

Claim 6.4. If Fk has an unconstrained saddle point belonging to 
Ce x D~, then all unconstrained saddle points of Fk belong to Ca x D~. 

Proof. Let (xl, y~) and (x2, Y2) be two unconstrained saddle points of 
Fk. Suppose that (xl, yl)EC~×D8 and that x2~C~. Then, there exists 
i ~ { 1 , . . . ,  p} such that 

g i (x2 )  i> 6 >t gi(Xl). (21) 
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Since g~ is convex and exp[r(k)x] is a strictly convex function, we have, using 
(21), 

exp[r(k )gi(z O] <~ exp[r(k )(Agi(xl) + (1 - A)gi(x2))] 

< A exp[r(k)gi(xl)] + (1 - A) exp[r(k)gi(x2)], 

where 

Hence, 

where 

z l = h x l + ( 1 - h ) x 2 ,  0 < h < l .  

Fk(Z~, z~)<AFk(X~, z2)+ (1--a)Fk(X2, Z2), 

z2 = hyl  + (1 - h)y2; 

and, (xi, yi) being saddle points, i = 1,2, 

[~(zl, z2)<hFk(Xl, y l )+  (1-h)Fk(X2, Y2). (22) 

On the other  hand, since Fk(Zl, ") is a concave function, we have 

Fk(zl, z2)~hFk(zl,  y l ) + ( 1 - h ) F k ( z l ,  Y2) 

>! hFk (Xl, Yl) + (1 -- h)Fk (x2, Yz), (23) 

contrary to relation (22). It follows that x2 ~ C8, and similarly Y2 ~ D~. D 

Proof of Lemma 3.1. For each y ~ D, we denote  

B~ = u {0f(x, y)[ x c c} .  

By Ref. 7, Theorem 24.7, By is a bounded subset of ~ .  Suppose now that 
w {By l Y ~ D} is unbounded.  Then, 

Vn, 3y,~ ~ D and cn c By, such that Hcn]] ~>n. (24) 

So we obtain a sequence {Yn}n contained in D. Since D is compact, there 
exists a subsequence {Ynk}k of {y~} converging to a point )7 ~D.  If we show 
that 

3k0 such that, Vk>~ k0 and x~C,  Of(x, ynk)~B,;+B, (25) 

where B is the Euclidean unit ball of N ~, then we obtain a contradiction with 
(24). Indeed, as By + B is a bounded subset of Nn, there exists 8 > 0 such that 
llzlI< 8 for all z c B~ +B.  Let  k be an integer such that k >/k0 and nk ~ &  
Then, by (24), there exist x s C and c,,~ ~ Of(x, y~)  such that Ilc~kl I ~ 8. On the 
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other hand, by (25), we have c , ~ B ; + B ,  and thus I]c,.~ll<& So, (24) 
contradicts (25). 

It remains to prove (25). For notational simplicity, we denote again by 
{y,}, the sequence {Y,~}k. Then, (25) becomes 

3no suchthat, Vn ~>no and x6C,  of(x, y,dc_B;+B. (26) 

To establish this result, suppose that the conclusion (26) is false. Then, there 
exists a subsequence {Y,~}k of {y,l} and a sequence {Xk}k in C such that, for all 
k, we have 

Of(Xk, Ynk) ~ B~ +B. (27) 

Since C is compact, there exists a subsequence {Xk~}j of {Xk}k converging to 
if ~ C, and consider the subsequence {Y-~}i of {Y,~}k. Then, since {Xk~}i 
converges to ~ and {f(. ,  Y-k~)}i is a sequence of finite convex functions on 
lt~" converging pointwise to f ( . ,  ;) ,  we obtain, by Ref. 7, Theorem 24.5, for f 
sufficiently large, 

Of(Xk,, Y-k~;) ~ of(if, y) + B c B; + B, (28) 

contrary to relation (27). It follows that (26) is true. This completes the proof 
of Lemma 3.1. 

Proof of Theorem 3.3. Since C~ and D~ are compact subsets and, by 
Theorem 3.2, (xk, Yk) belongs to C8 x D8 for k sufficiently large, the 
sequence {(Xk, Yk)}k has at least one accumulation point. Let (~,)5) be 
such a point. We denote again by {(Xk, Yk)}k the subsequence of {(Xk, Yk)}k 
converging to (Y, f). Then, (~, ~)s  Co×D0. Indeed, if if~-Co, there exists 
8 > 0 such that Y~ C~. 

On the other hand, we have xk -~ Y. Since xk ~ C~ for large k (Theorem 
3.2) and C8 is closed, ~ ~ C~. Hence, if ~ Co. Similarly, f ~ Do. We now prove 
that (2, 1~) is a saddle point of f with respect to Co x Do. For this purpose, let 
(x, y) be a point of Co x Do. Then, (Xk, Yk) being a saddle point of Fk, we have 

f(Xk, y) - (1/s(k))  2 exp[r(k)hi(y)] 
i=1 

p 

<- Fk(Xk, Yk) <~f(x, Yk) + (1/s(k)) Z exp[r(k)gi(x)]. 
i=1 

If s(k) tends to infinity, we obtain immediately 

f(2, y)<~f(x, ~). (29) 

If C~ and D O are nonempty, then (29) is satisfied for each (x, y) ~ C O x D °. 
Using (6) and the continuity of f in each argument, we obtain (29) for each 
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(x, y) ~ Co x Do. Hence,  in the two cases, (2, 17) is a saddle point of f with 
respect to Co x Do. 

Proof of Theorem 4.1. Let  6 be a fixed positive scalar. We must show 
that the solution of (7) belongs to Co for k sufficiently large, i.e., that for each 
x ~ C~\Co, one can find a point xB ~ Co such that 

G(xB, yD < G ( x ,  Yk). 

Let Xo be a point in C °. 

Claim 6.5. Let  bd(Co) denote  the boundary of Co. There is an integer 
kl such that, for all k t> kl, one has 

F~, (xB, Yk ; X0 -- XB) < 0 for all xB E bd(Co), 

where F'k (XB, Yk ; XO -- XB) is the directional derivative of the convex function 
Fk(' ,  Yk) at xB in the direction XO--XB. 

Proof.  Let  xB be a point in bd(Co). From the definition of Fk [see (4)], 

F}, (xB, Yk ; Xo- xB) 

P 

=f'(xs ,  Yk; X o - X s ) +  ~ exp[r(k)gdxB)]g~(XB; Xo-xB)r (k ) / s ( k ) ,  
i = 1  

(30) 

where f'(xB, yk;Xo--XB) and g~ (xB; Xo-Xs)  denote the directional deriva- 
tives of the convex function f ( . ,  yk) and gi at xB in the direction Xo-xB.  
Then,  using Ref. 7, Theorems 23.4 and 24.7, and Lemma 3.1, we obtain that 

g~ (x; Xo--XB) is bounded on Co for each i, (31) 

f '(x, Yk; XO --XB) is bounded on Co, uniformly in k. (32) 

We now examine the second term of the right-hand side of (30). For this 
purpose, we introduce the notations 

2~, =- ~(xo), 

and, for x ~ Co, 

I (x )  =-- {ilg,(x) = 0}, 

J ( x ) ~ { i l y < g ~ ( x ) < O } ,  

g ( x )  ~ {i I gi(x) <~ l,}. 

(33) 

(34) 

(35) 

(36) 
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Then, for x e Co with K(x)  ¢ 4~ and for i c K(x) ,  we have 

exp[r(k)gi(x)]]gl (x ; x o -  x)lr(k)/s(k) 
~exp[r(k)y] lg i (x ;  Xo-x ) I r (k ) / s ( k ) .  (37) 

Since s(k)/> 1 and exp[r(k)y]r(k) tends to zero when k-~ +oo, the right- 
hand side of (37) converges to zero. Moreover ,  by (31), the convergence is 
uniform for x ~ Co with K(x)  # ~. Hence,  there exists k'  such that, for any 
k/> k'  and any x 6 Co with K(x)  ~ ~, we have 

exp[r (k )g i (x ) ] [g~(x ;xo-x ) t r (k ) / s (k )<l  f o r a l l i e g ( x ) .  (38) 

On the other  hand, by (33), we have, for each x* sOgi(x) and each x ~ Co, 
that 

O> 2y~gi(xo)>~gi(x)+(x *, Xo-X),  (39) 

since gi is a convex function. Hence,  for x ~ Co with J(x)  ~ cb and for i ~ J(x), 
we obtain 

gl (x ; Xo - x) <~ 27 - gi(x) < y, (40) 

exp[r(k)gi(x)]gl (x; x o - x ) r ( k ) / s ( k )  ~ y exp[r(k)gi(x)]r(k ) /s(k)  < O, 
(41) 

where Ref. 7, Theorem 23.4, and (39) have been used. Finally, for any x E Co 
with I ( x ) #  ~ and any i ~ I (x) ,  the inequality (40) holds again, and hence 

g~ (x; Xo-x ) r ( k ) / s ( k )  <~ yr(k) /s(k) .  (42) 

To finish the proof, we observe that I(x)  is nonempty for each x E bd(Co). 
We can now invoke (32), (38), (41), (42) to deduce that 

F~ (xB, Yk; XO--XS) ~ M + p + yr(k )/ s (k ) (43) 

for k I> ko and xB E bd(Co). Since r(k) /s(k)  tends to infinity and y < 0, the 
conclusion of the claim is evident. []  

Claim 6.6. xk belongs to Co for k sufficiently large. 

Proof.  Since Xo belongs to C °, for each x c Ce\Co, there exists xB 
bd(C0) such that 

x = xB + q (Xo - xB) with q < 0. (44) 

Let  k be an integer greater than k!. Since Fk( ' ,  Yk) is a convex function, we 
see, using Claim 6.5 and (44), that for all x ~ C~\Co, there exists xB ~ Co such 
that 

Fk(XB, Yk) <Fk(x,  Yk). (45) 
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Since Fk(' ,  Yk) is continuous and Co is compact, the minimum of Fk(' ,  Yk) 
over Co exists and, by (45), is the global minimum of Fk (', Yk) on C~. That is, 
Xk belongs to Co for k/> kl. [] 

By a similar argument, we prove that Yk belongs to Do for k sufficiently 
large. Hence, the  trial solutions become feasible after a finite number of 
iterations. 

Proof of Theorem 5.1. 
Co x Do. Then, 

f ( ~ ,  ; )  = g. 

Moreover, as xk ~ Co, we easily obtain 

f(~, ;)  <~f(x~, 37) 

= Fk(xk, 37)--(1/s(k)){ ~/exp[r (k)& (xk)]-  ~ exp[r (k)/ ,  (37)] }. 

Since 

Let (~, 37) be a saddle point of f with respect to 

hi(37)~0, gi(xk)<~O, 

and (xk, yk) is a saddle point of Fk, it follows that 

f(£, 37) ~Fk(xk, 37)+q/s(k)<-Fk(xk, y k ) + q / s ( k )  

<~ f(xk, Yk) + (P + q ) / s ( k ) .  

By a similar reasoning, we obtain the other inequality. 

(46) 

(47) 

[] 

Proof of Theorem 5.2. Since ( 1 / 2 ) ( £ + x k ) ~ C o  and f( . ,  ~) is uni- 
formly convex, we have 

f(£, 37) ~< f((1/2)(~ + xk), )7) ~< (1/2)f(.g, f)  + (1/2)f(xk,  ~) - 61(li2 -xktl); 

consequently, 

61([[.£ -xk[t) <~ (1/2)f(xk, y) - (1/2)f(£-, 37). (48) 

On the other hand, using (46) and (47), we obtain 

f(xk, ~) ~ f ( x k ,  Yk) + (I2 + q ) / s ( k ) .  

Hence, (48) becomes 

~l ( i lx  - xkll) ~ 0/2g(xk,  yk) + (p + q ) / s ( k ) -  (1/2)d(X, f). 
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Applying now Theorem 5.1, we obtain the first part of Theorem 5.2. A 
similar reasoning gives us the second part. [] 

7. Conclusions 

This paper presents a new penalty method for solving nondifferentiable 
saddle-point problems with constraints. Our main result is Theorem 4.1. As 
in nonlinear programming, the exponential penalty method has the advan- 
tages of both the interior and exterior penalty methods without having their 
drawbacks. This theorem enables us to give a rate-of-convergence estimate. 
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