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Abstract. Many important Fredholm integraI equations have sepa- 
rable kernels which are finite-rank modifications of Volterra kernels. 
This class includes Green's functions for Sturm-Liouville and other 
two-point boundary-value problems for linear ordinary differential 
operators. It is shown how to construct the Fredholm determinant, 
resolvent kernel, and eigenfunctions of kernels of this class by solving 
related Volterra integral equations and finite, linear algebraic systems. 
Applications to boundary-value problems are discussed, and explicit 
formulas are given for a simple example. Analytic and numerical 
approximation procedures for more general problems are indicated. 
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1. A Classical Problem in the Theory of Integral Equations 

The equation 

y(x)-a I[ K(x, t)y(t)  dt = f(x),  0-x<-l, (1) 

for the unknown function y(x) is called a linear integral equation of second 
kind. Equations of this form arise in the solution of initial- and boundary-  
value problems for ordinary differential equations and in other areas of 
applied analysis. In (1), the function f(x), the kernel K(x, t), and the 
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parameter A are assumed to be given. In case 

K(x, t ) = 0  f o r t > x ,  

Eq. (1) is said to be of Volterra type, and the interval of integration is 
actually 0-< t-< x; otherwise, (1) is called an integral equation of Fredholm 
type. 

A central problem in the classical theory of linear integral equations of 
second kind is to determine the values of A for which the solution y(x) of 
(1) exists and is unique, and to express this solution in the form 

1 t "  

y(x)=f(x)+3`ja R(x,t;A)f(t)dt,  0-<x-< 1, (2) 

where R(x, t; A) is called the resolvent kernel of K(x, t) (see Ref. 1). The 
investigation of the unique solvability of Eq. (1) can thus be reduced to the 
problem of existence and construction of R (x, t; A). 

Using operator notation, the kernel K(x, t) may be taken to define the 
linear integral operator K on the space of functions considered. If I denotes 
the identity operator, then (1) can be written in the form 

( I -AK)y  =f. (3) 

The solution y of (3) exists and is unique if the operator I -  AK is invertible 
for the given value of A. To obtain the expression corresponding to (2), the 
inverse of I - A K  is represented in the form 

( I - A K )  -1 =I+AR(A) ,  (4) 

where the resolvent operator R (A) of K is the linear integral operator with 
kernel R(x, t; A). Equation (4) leads directly to the relationships 

R(A )= K + AKR(A ), 
(5) 

R(a )= K + aR(a )K, 

by the definition of the inverse operator. These are the so-called resolvent 
equations. In terms of the corresponding kernels, Eqs. (5) become 

1 p 

R(x, t; A)= K(x, t )+a  L K(x, s)R(s, t; A)ds, 

(6) 
t "  1 

R(x, t; 3,) = K(x, t)+A Jo g(x, s; A)K(s, t) ds. 

If K(x, t) is a Volterra kernel, then the intervals of integration in (6) reduce 
to t~-s<-x. 

In the classical setting of the theory of integral equations, one is 
concerned with kernels which are bounded and at least square-integrable. 
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The representation (4) allows one to eliminate the identity operator and 
obtain relationships (5) between linear integral operators with kernels (6) 
of this type. This simplifies the analysis considerably, as the identity opera- 
tor cannot be represented as a linear integral operator with a bounded 
kernel on the spaces of continuous or square-integrable functions (Refs. 
2-4). 

2. Volterra Resolvent Kernels 

In case that K(x, t) is a Volterra kernel, (1) takes the form 

f y (x ) -A  K(x, t)y(t) dt = f(x), 0 - -x  ~ 1. (7) 

It is well-known (Refs. 1 and 3-5) that the resolvent kernel R(x, t; h) of 
K(x, t) always exists, under the assumptions of the classical theory, and is 
given by the Neumann series 

R(x , t ;A)= ~ hn-lK(')(x,t), O<-t<-x<-l, (8) 
n=l  

where 

g(1)(x, t)= g(x ,  t), 

( ( K("+~)(x, t) = K(x, s)K(")(s, t) ds = K("l(x, s)K(s, t) ds, (9) 

n = l ,  2 . . . . .  

The convergence of (8) for all h with finite modulus is easy to establish by 
mathematical induction for bounded kernels K(x, t). If 

then 

IK(x,t)l<_M, O<-t<-x<-l, 

/K(")(x, t)I <-M. [M"-l/(n - 1)!], n = 1, 2 . . . . .  (10) 

from which the desired result follows. The kernels K(2)(x, t), K(3)(x, t) . . . .  
are sometimes called the iterated kernels' of K(x, t) (see Ref. 6). 

It will be useful later to consider also the transposed Volterra integral 
equation corresponding to (7), 

1 

z ( t ) - h  It z(x)K(x, t) dx = g(t), 0_<t<_l. (11) 
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The solution z(t) of (11) is given in terms of g(t), and the resolvent kernel 
R(x, t; A) of K(x, t) as 

r 1 

z( t)=g(t)+A | g(x)R(x, t ;A)dx,  0-<t-<l.  (12) 
at 

3. Fredholm Resolvent Kernels 

For the more general case of a Fredholm kernel K(x, t), an expression 
for the resolvent kernel is sought in the form 

R(x, t; A) = N(x, t; A)/zX(2t), (13) 

with the numerator and denominator having series expansions 

N(x, t; A) = A ,-1K,(x, t), (14) 
n = l  

and 

A(A)=1+ ~ c,1", (15) 
n = l  

respectively, which converge for all .~ with finite modulus. The resolvent 
kernel R(x, t; ,~) will then exist for all values of ;t for which the Fredholm 
determinant A(1) of K(x, t) does not vanish. This is analogous to Cramer's 
rule for the inversion of a finite-dimensional matrix. 

Formulas for the so-called associated kernels Kl(x, t), Kz(x, t) . . . .  of 
K(x, t) (Ref. 6) appearing in (14) may be obtained by substituting (13)-(15) 
into the resolvent equations (6). This gives 

K (x, t)= K(x, t), 
1 t "  

g n + l ( X ,  t ) = c ,K (x, t)+Jo K(x,s)K.(s ,  t)ds 

1 t "  

=c.K(x, t )+jo K.(x ,s )K(s , t )ds ,  n = l , 2  . . . . .  (16) 

a result which satisfies (6) formally, independently of the values assigned to 
cl, c2 . . . . .  For example, if 

C 1 = C 2  = . . . .  0 ,  

then (14) becomes the Neumann series (8), which does not converge in 
general for large. In order for (14) and (15) to be entire functions of )., 
one chooses 

1 t '  

c . = - ( 1 / n ) t r K . = - ( 1 / n ) J  ° K. (x ,x)dx ,  n = l , 2  . . . . .  (17) 

where the quantity trKn is called the trace of the kernel K.(x, t). The 
construction (16)-(17) of the resolvent kernel is in the form given by 
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Latesco (Ref. 5). Fredholm (Ref. 7) originally obtained the formulas 

K~(x, t)= [(-1)"-l /(n -1)'] fol " " I~ 

K(s, t) K(x, . . .  K(x, s,_,) 
K(sl, t) K(sl, sl) • • • K(Sl, s,-1) 

× d s 1  • • " d s n - 1 ,  (18) 

K(s~-l,t) K(s,-l, sl) "'" K(s,-I,s,-1) 

and the similar expressions corresponding to (17) for c,, n = 1, 2 . . . . .  The 
satisfaction of (16) is easily verified by mathematical induction. 

Using Fredholm's formulas, the convergence of the series (14) and 
(15) can be established on the basis of Hadamard's inequality for deter- 
minants (see Ref. 4 for an elegant proof) and the ratio test. If 

IK(x, t)l-- M, 

then Hadamard's inequality applied to (18) yields the estimates 

IK,(x, t)I <= M .  [g"-ln"/2/(n - 1)1], n = 1, 2 . . . . .  (19) 

and similar bounds for ]clt, Ic21 . . . . .  The rate of convergence which can be 
predicted for the series (14) and (15) on the basis of (19) is, of course, much 
slower than that given by the estimates (10) applied to the Neumann series 
expansion (8) of a Volterra resolvent kernel. For example, if given Volterra 
and Fredhotm kernels are bounded in absolute value by M, then, for 
n = 100, the right-hand side of (19) exceeds that of (10) by a factor of 
101°°. From a computational point of view, the relationships (16)-(17) 
would appear to be preferable to the equivalent expressions (18) involving 
determinants. It has been observed, however, that the formulas cor- 
responding to (16)-(17) for finite-dimensional matrices are unstable 
numerically (Ref. 8). 

Other important relationships which follow from the formulation (13) 
of the resolvent kernel and the resolvent equations (6) are 

r 1 

N(x, t; A)--- A(A)K(x, t)+A [ K(x, s)N(s, t; h) ds, 
(20) 

r 1 

N(x, X)= A(A)K(x, t )+a  J0 N(x, s; A)K(s, t)ds. t; 

These are immediately evident for A(h)# 0. In the framework of the 
classical theory, they can also be extended to the case that A = h* is an 
eigenvalue of the kernel K(x, t); that is, 

±(A*)=o. 
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Assuming that N(x, t; A*) does not vanish identically, a point (s c, ~-) in the 
square 0 <- x, t -< 1 exists such that the functions 

y*(x)=N(x,~';h*), 0--<x-<l, 
(21) 

z*(t)=N(~,t;A*),  0--<t-<l, 

are also not identically zero. Furthermore, y*(x) satisfies the homogeneous 
integral equation 

1 t "  

y*(x) = A* Jo K(x,t)y*(t)dt,  0-<x-< 1, (22) 

and is said to be a right eigenfunction of K(x, t) corresponding to the 
eigenvalue A*. Similarly, the function 2*(t) satisfies the transposed homo- 
geneous integral equation 

1 t "  

z*(t)=A* ] z*(x)K(x, t)dx,  0-<t-<l, (23) 
:0 

and is called a left eigenfunction of K(x, t) corresponding to h*. 

4. Symmetric Separable Kernels 

Attention will now be devoted to the construction of resolvent kernels 
of a special class of Fredholm kernels. In the symmetric case, a kernel of 
the form 

t)=S ~ u(t)v(x), 0 < - t<-x <- 1, 
G(x, (24) 

(u(x)v(t) ,  0-<x-<t-< 1, 

will be called a simple separable kernel. It is assumed that the functions u (x) 
and v(x) are linearly independent; otherwise, G(x,t)  would be a 
degenerate kernel of rank one (Ref. 3, pp. 37-40). In general, a symmetric 
separable kernel is a finite sum of linearly independent kernels (24). 

Before dealing with the general case, the resolvent kernel of the 
symmetric simple separable kernel (24) will be constructed. To do this, the 
Fredholm integral equation 

1 t '  

y ( x ) - h  Jo G(x, t)y(t) dt --f(x), 0-<x < 1, (25) 

will be solved. This is essentially the approach used by Drukarev (Ref. 9), 
Brysk (Ref. 10), and Aalto (Ref. 11). Using the definition (24) of G(x, t), 
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Eq. (25) can be written as 
x t "  1 t "  

y(x)-A Jo u~t)v(x)y(t) dt =/(x)+A Jx u(x)v(t)y(t) dt. 

Adding the quantity 

A u(x)v(t)y(t) dt 

to both sides of (26) gives 

where 

y(x) -A K(x, t)y(t) dt =f(x)+Acu(x), 

(26) 

(27) 

y(x) = F(x ) + AcU (x ); 

1 1 

c=fo v(t)F(t)dt+Ac fo v(t)U(t) dt. 

Thus, (32) has a unique solution for c if 
1 

•(A)-= 1 -A fo v(t)U(t) dt # O, 

(31) 

(32) 

(33) 

and, from (28), 

t~ 1 

= ]o v(t)y(t) dt (28) £ 

is to be determined, and K(x, t) is the Volterra kernel 

K(x, t) = u(t)v(x)- u(x)v(t), 0-- < t < - x <- 1. (29) 

The system of equations (27)-(29) is easily seen to be equivalent to the 
original integral equation (25). 

As was shown in Section 2, the kernel K(x, t) has the Votterra 
resotvent kernel R(x, t; A), given by (8) for all A. Define 

F(x)=f(x)+a R(x, t; a)f(t) dr, 
(30) 

fo • U(x) = u(x)+A R(x, t; A)u(t) dt, 

where the dependence of F(x) and U(x) on A has been suppressed for 
clarity of notation. From (27), 
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in which case 
1 / ,  

= [1/A(A)] J0 v(t)F(t) dr. (34) c 

The expression (34) for c may be written in terms of f(t) by introducing the 
function 

1 / ,  

v(t)= v(t)+~ ], v(x)R(x, t; a) dx. (35) 

It then follows from (30) and (34) that 
1 t "  

= [1/A(A)I Jo V(tg(t)  dt; (36) C 

and, from (31), 

fo ;o y(x)=f(x)+A R(x, t ;a) f ( t )dt+[aU(x)/A(A)]  V(tff(t)dt. (37) 

By definition, the resolvent kernel F(x, t; A) of G(x, t) can be obtained 
directly from (37) as 

I R(x,t;A)+[1/A(A)]U(x)V(t) ,  O<~t<x<l '  (38) 

V(x, t; A ) :  [ [1/A(A )]U(x)V(t), O<-x <- t < - 1, 

provided, of course, that 

a(a)  ¢ O. 

Another expression for F(x, t; A ) can be obtained by making use of the 
fact that the resolvent kernel of a symmetric kernel G(x, t) must also be 
symmetric in x and t; that is, 

F(x, t; A)= r(t, x; ,~). 
This gives 

I[ 1/A(A)]U(t)V(x), O<--t<--x<--l' (39) 

F(x ' t ;A)=~R(t ,x;A)+[1/A(A)]U(t)V(x) ,  O<_x<_t<l, 

which, when compared with (38), yields 

A(A)R(x , t ;A )=U( t )V(x ) -U(x )V( t ) ,  O<_t<_x<_l, (40) 

and finally, 

[1/h(A)]g(t)U(x), 0_<t_<x_< 1, (41) 
F(x, t; A)= [1/A(A)]U(x)V(t), O<_x<_t<_l. 

These results give rise to the following observations. 
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Remark 4.1. Equation (41) shows that if the resolvent kernel of a 
symmetric simple separable kernel (24) exists, then it is also a symmetric 
simple separable kernel. 

Remark 4.2. The expression (41) for the resolvent kernel F(x, t; A) 
of G(x, t) can be obtained without finding the Volterra resolvent kernel 
R(x, t; A) of K(x, t) explicitly; one need only solve the Volterra integral 
equation (7) with 

for 

/(x)-- u(x) 

y(x) = U(x), 

and the transposed Volterra integral equation (11)with 

g(t) = v(t) 

for 

z( t )= V(t). 

Remark 4.3. An equivalent expression for the Fredholm deter- 
minant A(A) of G(x, t) is 

1 t" 

k(a) = 1-A Jo V(x)u(x) dx, (42) 

which can be obtained directly from (33) by interchange of the order of 
integration and use of the definition (35) of V(t). It is easy to show that the 
above expressions give expansions of A(A) and N(x, t; A) in powers of a 
with coefficients satisfying the relationships (16)-(17) (see Refs. 11-12). 
The advantage of the present approach is that the rate of convergence of 
the series for A(A), 

U(x)= U(x; A), 

and 

v( t )=  v(t; ) 

can be predicted on the basis of (10), rather than (19). 

Remark 4.4. The definitions Of the Volterra kernel K(x, t) and its 
resolvent kernel R(x, t; A) extend to the entire square 0 - x ,  t -  1, with 

K(x,t)=O, R(x, t ;A)=O, O<-x<-t<-l. (43) 
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This will result in continuous kernels for u (x), v (t) continuous, as 

K(x ,x )=R(x , x ;A)=O,  0 - x - < l .  

In terms of these extended kernels, one may write 

G(x, t) = K (x, t)+ u(x )v(t), 
(44) 

F(x, t; h ) =  R(x, t; A)+[1/A(A)]U(x)V(t). 

Thus, the kernel G(x, t) given by (24) is the sum of the Votterra kernel 
K(x, t) and the degenerate kernel u(x)v(t) of rank one. If 

a(,~) ¢ 0, 

then its resolvent kernel F(x, t; A ) exists and is also a rank-one modification 
of the Volterra resolvent kernel R(x, t; A) of K(x, t). By symmetry, one 
also has 

G(x, t) = K (t, x ) + u(t)v(x ), 
(45) 

C(x, t; A)= R(t, x; h ) +  [1/A(A)]U(t)V(x). 

In some applications, the expressions (44) or (45) for G(x, t) arise more 
naturally than (24). 

The next case to be examined is that 

h = h *  

is an eigenvalue of G(x, t); that is, 

a(~*) = 0. 

Noting that 

U ( x ) =  U(x;h)  and V( t )=  V(t;Z) 

depend on A, define 

U*(x)=U(x;a*), 0 - x - l ,  
(46) 

V*(t) = V(t; A*), 0-<t--< 1. 

From (40), which can be extended easily to A =A*, it follows that the 
functions U*(x) and V*(x) are linearly dependent. Hence, for 

h =h* ,  

the Fredholm numerator N(x, t; A) of F(x, t; A) becomes 

N(x, t; h*)=  aU*(x ) V*(t), (47) 

where a # 0 is some constant. Thus, by (21)-(23), U*(x) will be a right 
eigenfunction of G(x, t) corresponding to h*, and V*(t) is a corresponding 
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left eigenfunction, As G(x, t) is symmetric, the distinction between left and 
right eigenfunctions is inconsequential. However, it will be shown later that 
a similar approach gives these as distinct functions in the nonsymmetric 
case. 

The implications of the above results for the solvability of the integral 
equation (25) may be summed up in the following familiar language. 

Theorem 4.1. Fredholm Alternative. If the transposed homo- 
geneous integral equation 

1 t* 

z ( t ) - h  Jo z(x)G(x,t)dx=O, 0<--t-<l, (48) 

has only the trivial solution z(t)= 0, 0 -  t--- 1, then Eq. (25) has the unique 
solution 

t "  1 

y(x)= F(x)+[hU(x)/z~(A )] Jo v(t)F(t) dt, O<x<_l.  (49) 

On the other hand, if (48) has the nontrivial solution 

z( t )= V*(t), 
then (25) has a solution only if fix) is orthogonal to V*(x), that is, 

1 

oV*(t)flt) dt = O. (50) 

If (50) is satisfied, then (25) has the solutions 

y(x )= F(x )+ aU*(x ), (51) 

where a is arbitrary, and 

y(x)= U*(x) 
is a nontrivial solution of the homogeneous integral equation 

1 / ,  

y(x)-h jo G(x,t)y(t)dt=O, 0 - < x -  1. (52) 

As derived above, of course, Theorem 4.1 applies only to simple 
kernels (24). The same technique, however, applies to general symmetric 
separable kernels. Suppose that 

t l ui(t)vj(x)' 0 <- t <- x <- 1, i 

G(x, t)= ~. G~(x, t)= (53) 
i = 1  

uj (x )v j ( t ) ,  0 <- x <- t <- 1. 
(i=1 
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Then, the integral equation (25) with the symmetric separable kernel (53) 
may be reduced to 

y(x)-A g(x, t)y(t)dt=f(x)+A _ ciui(x), (54) 
i=1  

where the numbers 
1 

ci=Jo v./(t)y(t)dt, / = l , 2 , . . . , n ,  (55) 

are to be determined, and K(x, t) is the Volterra kernel 

g(x, t)= ~ [ui(t)v./(x)-u./(x)v./(t)], O<-t<-x<- l. (56) 
i=1 

As before, let R(x, t; A) denote the Volterra resolvent kernel of K(x, t), 
and define 

1 I "  

F(x)=f(x)+A [ g(x, t; Aft(t) dt, 
(57) 

1 / *  

Ui(x) = ui(x)+,~ Jo R(x, t; A)ui(t) dt, i = 1, 2 , . . . ,  n .  

Equation (54) is then equivalent to 

y(x)=F(x)+A ~ ciUi(x). (58) 
i=1  

Multiplying (58) by Vl(X), v2(x) . . . .  , vn(x) in turn and integrating with 
respect to x from 0 to 1 gives the system of equations 

1 1 n / ,  

ci -h  ~ c./I vi(x)U./(x) dx= I vi(x)F(x)dx, i=  1,2 (59) n ,  
i=1  ~o Jo 

for the unknowns Cl,  C 2 , .  • . ,  Cn defined by (55). 

Remark 4.5. It follows from (55), (58), and (59) that the solution of 
the integral equation (25) with the symmetric separable kernel (53) is 
equivalent to solving the Volterra integral equation (7) with kernel (56) 
and right-hand sides f(x), u l (x ) , . . . ,  un(x) for F(x), Ux(x) . . . . .  U,(x), 
forming the n2+n coefficients of the system (59), and then solving this 
system of n linear equations for the n unknowns cl, Cz . . . .  , cn. 

It is also possible to obtain explicit expressions for the Fredholm 
determinant A(h) of G(x, t) and its resolvent kernel F(x, t; A) in terms of 
the determinant and the inverse of the coefficient matrix of the system (59). 
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It will be convenient to introduce the functions 
e l  

V~(t)=vi(t)+AJ v~(x)R(x,t;A)dx, i = 1 , 2  . . . . .  n, (60) 
t 

which are the solutions of the transposed Volterra integral equations (11) 
with right-hand sides v~(t), Vz(t) . . . .  , v.(t). Let the coefficients 

1 1 

o~j=fo v i (x )U/(x)dx=~ Vi(t)ui(t)dt, i , f = l , 2  . . . . .  n, (61) 

define the n x n matrix 

A = [~ii]. 
Then, the coefficient matrix of the system (59) has the form 

I - hA = (6; /-  A~ii), (62) 

where 81: is the Kronecker delta, 

8i:=0 

and 

if i ¢/', 8 i i  = 1, 

I = [~,;] 

is the n x n identity matrix. If the determinant 

A(A ) = det(I  - AA) (63) 

does not vanish, then the inverse of the matrix I - A A  exists, and can be 
written as 

( I  - A A )  -1 = [1/A(a )lB(a ) -- [~i:(a )/±(,~ )1, (64) 

by the use of Cram'er's rule. In this case, the system (59) has the unique 
solutions 

t t t  / ,  

= [ t /a (a ) ]  ~ ~ii(a) | v:(x)F(x) dx Ci 
j = l  a0 

(65) 
1 

= [1/2~(A)] ~ flii(A) I0 V~.(t)f(t) dt, 
/'=1 

for i = 1, 2 . . . . .  n. Thus, the integral equation (25) will have the unique 
solution y(x) given by (58), which may be written in the form 

y(x)=:(x)+a R(x,t;ag(t) dt 

i 

+A ~ ~ Ui(x)[~i(A)/A(A)]Io V:(t)f(t)dt. (66) 
i=1 j = l  
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From (66), it is possible to derive several expressions for the resolvent 
kernel F(x, t; A) of the symmetric separable kernel G(x, t), provided that 
the Fredholm determinant A(A) of G(x,t) is nonzero. Extending the 
Volterra kernel K(x, t) and its resolvent kernel R(x, t ;h )  to the entire 
square 0-< x, t-< 1, as before, one may write 

G(x, t) = K(x, t)+ ~ ui(x)vj(t), 
i=1 

F(x, t; A)=R(x, t; A)+[1/A(A)] ~. ~ Ui(x)~i~(A)Vi(t ). 
i=1 j = l  

(67) 

Remark 4.6, The symmetric separable kernel (53) is a rank n 
modification of the Volterra kernel (56). If 

the resolvent kernel F(x, t; A) is likewise a rank n modification of the 
Volterra resolvent kernel R (x, t;A) of K(x, t). 

Integral operators corresponding to degenerate kernels of rank n are 
sometimes called n-term dyads (Ref. 2). By symmetry, 

G(x, t)=K(t, x)+ ~ ui(t)vi(x), 
j= l  

F(x, t;A)=R(t,x;A)+[1/A(A)] ~ ~ Ui(t)flii(A)Vi(x ). 
i=1 /=1 

(68) 

Comparison of (68) and (67) gives 

A(AIR(x, t; A)= ~ ~ ~ii(Al[Ui(tlVj(x)- gi(xlVi(tl] , 
i=1 j=1 

(69) 

and thus F(x, t; A) may also be written in the form 

l ~ ~ [flijO,)/A(A)lUi(t)V~(x), 
F(x, t; ~ )=  i=1 j=l 

i = 1 / = I  

O<_t<_x<_l, 

O<_x<_t<_l. 
(70) 

Remark 4.7. If it exists, the Fredholm resolvent kernel F(x, t; A) of 
the symmetric separable kernel (53) is likewise the sum of n symmetric 
simple separable kernels. 
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For n > 1, there are a number of ways in which the kernel (70) may be 
written in the form (53). For example, defining the functions 

%(x)= E U,(x)&(a), / = 1, 2 . . . . .  n, 
i=1  

~i(t)= ~ f3q(A)Vi(t), 
/=1  

one obtains the equivalent representations 

i = 1 , 2  . . . . .  n, 

(71) 

[1/Mx)] ~ %(t )V i ( x ) ,  
/=1  

F(x, t; A ) = 

[I/A(*)] ~ ~ i (x )E( t ) ,  
j = l  

O<_t<_x<_ l, 

O_<x_<t_l ,  

(72) 

and 

[ [1/a(A)] 2 v,(t)eo,(x), 
i=1 

r(x, t; A)= 

[1/A(A)] ~ Ui(x)dPi(t), 

O<_t<_x<_l, 

O<_x<_t<_l, 
(73) 

for the resolvent kernel of G(x, t). 
Suppose now that 

A = h *  

is an eigenvalue of the kernel (53), that is, 

a(a*)= O. 

By the same method as used in the nonhomogeneous case, the homo- 
geneous equation (52) can be shown to be equivalent to the system 

y(x)=** 2 c~U~(x), 
i=1  

ci-h* ~ ai,vj=0, i = 1 , 2  . . . . .  n, 
/=1  

(74) 

corresponding to 

in (58) and (59). As 

F(x )  = 0 

±(A*) = O, 
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the homogeneous system 

(I  - A * a ) c  = 0 (75) 

has m -< n linearly independent solutions 

. . . .  c ,  ) ,  k = l , 2  . . . . .  m. (76) 

Corresponding to these solutions, which are right eigenvectors of the 
matrix 

A = [olij ] 
corresponding to the reciprocal eigenvalue A*, one obtains m linearly 
independent eigenfunctions 

y * ( x ) = a *  ~ c~k)U,(x), k = t ,  2 . . . . .  n, (77) 
i=1  

of the kernel G(x, t) corresponding to the eigenvalue a*. Similarly, the 
transposed homogeneous equation (48) for a = a *  has rn linearly 
independent solutions 

Zk*(t)=h* ~ dSk)Vj(t), k = 1 , 2 , . . . ,  m, (78) 
i=1  

corresponding to the m linearly independent solutions 

d (k)= (d~. k), d(2 k) . . . . .  d~)), k = 1, 2 . . . . .  m, (79) 

of the transposed homogeneous system 

d(I- A ' A )  = 0, (80)  

that is, 

di-a* Y. diaii=O, / = 1 , 2  . . . . .  n. (81) 
i=1  

It follows from (59) that the nonhomogeneous integral equation (25) 
will have no solutions unless the orthogonality conditions 

1 1 1 

dSk' Io v,(x)F(x)dx= fo ~ dSk'VJ(t)f(t)dt= fo z*(tff(t)dt=O (82) 
j = l  f = l  

hold for k = 1, 2 . . . .  , rn; that is, the right-hand side of (25) must be 
orthogonal to all solutions of the transposed homogeneous equation (48) 
with 
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If (82) holds, then (25) is satisfied by the family of solutions 

y(x)=f(x)+A* R(x, t;A*)f(t)dt+ ~ 3~ky~(x), (83) 
k = l  

with 3'1, 3'2, • • . ,  3'm arbitrary. 
The above results can be stated as the corresponding generalization of 

the Fredholm alternative theorem to kernels (53) with n > 1. Another 
method for computing resolvent kernels of separable kernels (symmetric or 
not) will be indicated in a later section. 

5. Applications to Boundary-Value Problems 

Symmetric separable kernels appear frequently as Green's functions 
for two-point boundary-value problems for ordinary differential operators 
(Ref. 13). More precisely, suppose that L[- ] is a linear ordinary differen- 
tial operator, and a solution y (x) of the differential equation 

L[y (x)]-- h(x) (84) 

is sought which, together with its derivatives of lower order than the order 
of L[ .  ], satisfies given conditions at 

x = 0 and x = 1. 

If this boundary-value problem has a unique solution y(x) which can be 
represented as 

¢, 1 

Y(x)= J0 G(x, t)h(t) dt (85) 

for all functions h(x) from some class such as continuous functions, then 
G(x, t) is said to be the Green's function for L[.  ] corresponding to the 
given boundary conditions. If 

h(x)= Ay(x)+g(x), (86) 

then the boundary-value problem for the differential equation (84) is 
equivalent to the Fredholm integral equation 

1 

y(x) -A f G(x,t)y(t)dt=f(x), 0---x<-l, (87) 
Jo 

where 
1 

f(x) = fo G(x, t)g(t) dt, 0 <-- x -- 1. (88) 
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Thus, the techniques of Section 4 apply to the solution of (87) if G(x, t) is a 
symmetric sep'arable kernel; they also apply to finding eigenvalues and 
eigenfunctions in the homogeneous case 

g(x)=--O. 

In many cases, it is possible to proceed directly from the boundary- 
value problem to representations for the Green's function, its Fredholm 
determinant, resolvent kernel, and eigenfunctions. For example, consider 
the Sturm-Liouville operator (Ref. 13) 

L[y (x)] = -(p(x)y'(x))', (89) 

with p(x)>  0, subject to the boundary conditions 

ap (0)y'(0) + by (0) = 0, 
(90) 

cp(1)y'(1)+dy(1)=O. 

A simple way to find the Green's function for this problem is to start 
directly from the differential equation 

(p(x )y'(x ))' = -h (x  ). (91) 

One integration gives 

I: p(x)y'(x) = p (0)y'(0)- h(t) dt. (92) 

Dividing (92) by p(x) and integrating again yields 

~o fo~;o ~ y(x)= y(0)+p(0)y'(0) [lip(t)] d t -  [h(t)/p(s)] dtds. (93) 

By defining 

F(x)= [1/p(t)]dt, (94) 

and noting that change of order of integration results in 

I0~S0 ' fo~/i ~ } Io ~ [h(t)/p(s)] dtds = [lip(s)] ds h(t) dt = [F(x)-F(t)]h(t) dt, 

(95) 

one obtains 

I: y(x) = y(O)+p(O)y'(O)F(x)- [F(x)-F(t)]h(t) dt (96) 
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from (93). The boundary conditions (90) will now be used to express y(0) 
and p(0)y'(0) in terms of integral transforms of h(x). From (92) and (96), 

1 f 

p(1)y'(1) = p(0)y'(0)- ~ h(t) dt, 

(97) 
1 t "  

(1) = y (0) + p (O)y'(O)F(1)- | [F(1)- F(t)]h (t) dt. Y Jo 

Multiplying the first equation of (97) by c, the second by d, and adding the 
results gives 

1 p 

0 = dy(0)+ 3,p (0)y'(0)- | [-/-dF(t)]h(t) dr, (98) 
Jo 

by the second of the boundary conditions (90), where 

V = c + dF(1). (99) 

Now, multiplying (98) by a and using the first boundary condition of (90) 
results in 

1 

0 = (ad - b3,)y(0)- J[0 a[y - d F ( t ) l h ( t )  dr; (100) 

or, if 

then 

= a d -  by # O, (101) 

1 

y(0)= fo (a /6 ) [v -dF( t ) ]h ( t )  dr. (102) 

Similarly, multiplication of (98) by b and use of the first boundary condi- 
tion gives 

1 t *  

p(0)y'(0) = - | (b/6)[3,-dF(t)]h(t) dt. (103) 
Jo 

Equations (102) and (t03) may be substituted into (96) to obtain 

x ¢ 1 P 

- tn [F(x ) -F( t ) ]h ( t )  dr+ ],, (1/6)[a - b F ( x ) ] [ ~ - d F ( t ) ] h ( t )  dt. y(x)= 
- k /  

(104) 

Comparison of (104) with (85) gives the following results. 
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Remark 5.1. 
Sturm-Liouville problem (89)-(90) is the rank-one modification 

G(x, t)= K (x, t)+ u(x)v(t)  (105) 

of the Volterra kernel 

g ( x ,  t )= - [ F ( x ) - F ( t ) l ,  0<- t<-x -- 1, (106) 

with 

If 8 ¢0 ,  then the Green's function G(x, t) of the 

u(x) = (1/8)[a -bF(x ) ] ,  

v (t) = 3' - dF(t). 
(107) 

Remark 5.2. 
metric simple separable kernel 

(1/3)[a - bF(t)][y - dF(x)], 
G(x, t) 

{(1/6)[a - bF(x)][y - dF(t)], 

If 8 ¢ 0, then the Green's function (105) is the sym- 

The boundary conditions 

from which 

and hence 

Thus, the evaluation of the Fredholm determinant A()~) of G(x, t) and the 
calculation of its resolvent kernel and eigenfunctions depends only on 
being able to calculate the functions U(x), V(t) either in terms of the 
Volterra resolvent kernel R(x,  t; A) of the kernel (106), or directly by 
solving the Volterra integral equations cited in Remark 4.2. 

For certain simple examples, it is possible to give explicit formulas for 
these results. Taking 

gives 

p(x)-I 

L[y (x)] = -y"(x), (110) 

F ( x ) = x ,  K(x,  t ) = - ( x - t ) ,  (111) 

R (x, t; ,~) = - sin['J~(x - t)]/.~Yh. 

y(0)= 0, y ' (1)=0  (113) 

(112) 

[ a - b F ( x ) ] [ y - d F ( t ) ] - S F ( x ) + 6 F ( t ) = [ a - b F ( t ) ] [ y - d F ( x ) ] .  (109) 

This follows directly from (105)-(106) and the simple calculation 

0_<t_<x_< 1, 
O<_x<_t<_ l" (108) 
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correspond to (90) with 

a = 0 ,  

and hence 

and thus 

b = l ,  c=1,  d = 0 ,  

T=I,  6 = - 1 ,  

u(x)--x, v( t )=  1. (114) 

It follows that the Green's function G(x, t) for the differential operator 
(110) with boundary conditions (113) is 

where 

or  

G(x, t)=-(x-  t)+ + x, 

(x - t)+ = 0 for O_<x_<t<_ 1, 

(115) 

t, O-- t - -x- -<l ,  
G(x, t) = (116) 

x, O<-x<-t<-l. 

Using (112) and (114), one obtains 

U(x) = sin(~/hx)/~/A, V(t) = cos[,/A(1 - t)], (117) 

from which the Fredholm determinant A(A) of G(x, t) is seen to be 

A(A)= cos -fh. (118) 

If 

•(A)¢ O, 

then the resolvent kernel F(x, t; A) of G(x, t) may be written as 

F(x, t; h ) = - sin[',/-A(x - t)+l/',/A + sin(,,/hx) cos[,/A(1 - t)l/'fA cos x/A, 
(119) 

corresponding to (115), or as the symmetric simple separable kernel 

A) = ~s in( ,~t )  cos[~fA(1-x)l/~/h cos , f  A, 0 < - t<-x -< 1, (120) 
F(x, t ;  sin(~/~x) cos[ A(1-  t)]/ 'fA cos~/A, 0 - < x < t - 1 ,  

of the same form as (116). It also follows immediately from (118) that the 
eigenvatues of G(x, t) are 

A* = {[(2n - 1)/2]rr} 2, n = 1, 2, 3 . . . . .  (121) 
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and the corresponding eigenfunctions are proportional to 

, /-~U*(x) = sin[(2n - 1)zrx/2], n = t, 2, 3 . . . . .  (122) 

It is also possible to write down explicit formulas for the more general 
second-order boundary-value problem 

by the use of (107), 
obtained from 

provided 

L[y (x)] = -y"(x) ,  

ay'(0) + by(0) = 0, (123) 

cy'(1) + dy (1)= 0, 

(111), and (112). The Green's function G(x, t) is 

u ( x )  = ( 1 / 8 ) [ a  - b x ] ,  
(124) 

v ( t )=  c +d(1  - t ) ,  

8 = a d - b ( c + d ) ¢ O ,  

the resolvent kernel F(x, t; A) of G(x, t) from 

U(x) = (1/8)[a cos(,/~x)- (b/~/2) sin(,/ax)], 

V(t) = c cos[V~(1 - t)] + (d/~/'A) sin[~/A(1 - t)], (125) 

and the Fredholm determinant is 

A(a )=(1/8)[(ad-bc)cos,/-A-(ac~/A +bd/V~)sin,fA]. (126) 

The eigenvalues of G(x, t) may thus be found by solving the simple tran- 
scendental equation 

tan -,~/,fA = (ad - bc )/(Aac + bd), (127) 

for A1, A2 . . . . .  and the results substituted into (125) to obtain the cor- 
responding eigenfunctions. To simplify these expressions, one may intro- 
duce the angles 

q~ = 4~(A ) = tan-l(b/a~fA), 0 = O(h) = tan-l(c']-A/d), (128) 

which gives 

and 

U(x) = (1 /8)4(a  2 + b2/h ) cos(,fAx + ~b), 

V(t) = 4(c 2 + d2/h ) sin[x/A-(1 - t )+  O], 
(129) 

A(A)--(1/8)x/[(a2h +b2)(c2A + d2)/h ] cos(,/-A+ ~ +O). (130) 
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Thus, 

I cos(',~t + q~) sin[,,/h(1 - x ) +  O ] / ~  cos(',/h + q~ + 0), 
O<_t<_x<_l, 

F(x, t; 1 ) =  cos(-/hx + ~ )  sin[,fh(1 - t ) +  O]/,/h cos(,/h+ 4~ +0), 

O<_x<_t<_l, 
provided, of course, that 

a(a)#o, 

From (130), the eigenvalues h 1, A2 . . . .  must satisfy 

(131) 

"~' h/~. + 4~(A.)+ 0(h.) = [(2n - 1)/2]zr, n = 1, 2 . . . . .  (132) 

o r  

x /~+  cot-l[(ad -bc)x[-~/(A.ac + bd)] = [(2n - 1)/2]zr, n = 1 , 2  . . . . .  
(133) 

K(x, t )=-(x- t )3 /3! ,  O<_t<-x<-l. (135) 

The functions Ul(X) . . . . .  u.(x) and Vl(t) . . . . .  v.(t) which give the Green's 
function G(x, t) as a finite-rank modification of K(x, t) are then found by 
solving for the initial conditions, in terms of integral transforms of h (x), to 
satisfy the given boundary conditions, it being assumed that the resulting 
system of equations has a unique solution. Of course, only self-adjoint 
boundary-value problems give rise to symmetric Green's functions. In the 
next section, nonsymmetric separable kernels will be discussed. 

For nonlinear boundary-value problems, 

h(x) =fix, y (x)), (136) 

the use of the Green's function G(x, t) leads to a Hammerstein integral 
equation 

1 ¢ ,  

y ( x ) - |  G(x, Of(t, y(t))dt = 0. (137) 
Jo 

one obtains 

which is equivalent to (127). 
The method given above extends readily to two-point boundary-value 

problems of arbitrary order. In general, the Volterra kernel K(x, t) is 
obtained by integrating (84) as an initial-value problem with zero initial 
conditions; for example, for 

L[y (x)] = -yiV(x), (134) 
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If G(x, t) is of the form (24), then (137) is equivalent to the nonlinear 
system 

y ( x ) -  g(x ,  t)f(t, y(t))dt = au(x), 

,1 ( 1 3 8 )  
! 

= J0 v(t)f(t, y(t)) dt. 

The first equation of (138) is a nonlinear Volterra integral equation. If this 
can be solved for 

y(x)= y(x; a), (139) 

then substitution into the second equation gives the single nonlinear scalar 
equation 

1 / ,  

= Jo v(t)f(t, y(t; a ) ) d t =  ¢ (a)  (140) 

for a. In general, this procedure for solution cannot be carried out expli- 
citly, as in the linear case, so various approximation methods, usually based 
on iterations, have been studied for this problem. In particular, it may 
happen that 

= y ' (0 ) ,  

in which case the iterative determination of a, and hence y(x), is some- 
times referred to as a shooting method (Ref. 14). If G(x, t) is of the form 
(53), then a similar construction leads to a single nonlinear Volterra 
integral equation for 

y ( x ) = y ( x ;  al  . . . . .  an) 

and the nonlinear scalar system 
1 t '  

ai = Jo v,(t)f(t, y(t; a l  . . . . .  oz,)) dr, i = 1, 2 . . . . .  n, (141) 

for ax, o~2 . . . . .  an. Further discussion of nonlinear boundary-value prob- 
lems is outside the scope of this paper. 

6. Nonsymmetric Case 

In certain problems, one may have to deal with separable kernels 
which are nonsymmetric, such as finite linear combinations of kernels of 
the form r(x)G(x, t)w(t), where G(x, t) is a symmetric, simple separable 
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kernel (24). As a prototype of separable kernels in the general case, 
consider the simple kernel 

G(x, t)=~ u(t)v(x)' O<-t<-x<-l' 
(p(x)q(t), O<-x~t<-l, (142) 

subject to the condition 

u(x)v(x)=p(x)q(x), 0<-x ~ 1, (143) 

which ensures that the traces of G(x, t) and its associated kernels are 
uniquely defined. Formulas will now be developed for the Fredholm 
determinant A(1) and the resolvent kernel F(x, t; A) of the simple separ- 
able kernel (142). The general separable kernel, which is a finite linear 
combination of kernels of the form (142), can then be handled by the 
technique given in Section 4, or by the method to be discussed in Section 7. 

Writing the Fredholm integral equation (25) as the system 

y ( x ) -  A K(x, t)y(t) dt =f(x)+Acp(x), 
.~ (144) 

c = ~ q(t)y(t) dt, 
d 0 

where 

K(x, t)= u(t)v(x)-p(x)q(t), (145) 

one obtains, as before, 
1 r 1 t~ 

A(A)= I - A  Jo q(x)P(x)dx= 1-A Jo O(t)p(t)dt, (146) 

with the functions P(x), O(t) given by 

P(x)=p(x)+a R(x, t;•)p(t)dt, 
(147) 

f* 1 

O(t)=q(t)+A J, q(x)R(x, t;;t)dx, 

in terms of the Volterra resolvent kernel R(x, t; A) of K(x, t). If 

±(*)S0 ,  

then Eq. (25) has the unique solution 
x 1 

y(x)=f(x)+A fo R(x, t;A)[(t)dt+[A/A(A)l Io P(x)Q(t)[(t)dt, (148) 
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from which it follows that the Fredholm resolvent kernel of the kernel 
(142) is 

F(x, t ;h)=l  R(x't;A)+P(x)o(t)/A(h)' O<-t<-x<-l' (149) 

( P(x)Q(t)/A(A ), O<--x <-t < 1. 

Alternatively, one may write 
1 t '  

y(x)+h I. K(x, t)y(t) dt =]'(x)+A dr(x), 
~x 

(150) 1 t "  

d = Jo u(t)y(t) dt. 

This leads to the expressions 
1 1 A(A)=I-Afo u(x)V(x)dx=l-a fo U(t)v(t)dt (151) 

for the Fredhotm determinant of G(x, t) in terms of the functions 

1 t "  

V(x)= v(x)-a ]x R(x, t; a)v(t) dt, 

g ( t ) =  u ( t ) - h  u(x)R(x, t;/l) dx; 

and, if 

(152) 

a(a)~0, 
this leads to the unique solution 

1 1 t '  / .  

y(x) = f ( x ) - h  Jx R(x, t; Aft(t) dt+ [A/A(A)] Jo V(x)U(t)f(t) dt (153) 

of (25). Thus, 

. [u(t)V(x)/a(a),  o<_t<_x<_l, (154) 
F(x't;~t)=t-R(x,t;a)+U(t)V(x)/A(,~), O<_x<_t<_l, 

provided that the Fredholm determinant does not vanish. In (152)-(154), 
use is made of the extension of the function R(x, t; A), defined by (8), to 
the triangle 0 - x -< t -- 1. 

Comparison of (154) and (149) yields 

A(A)R(x, t; h )=  U(t)V(x)-P(x)Q(t), 0-<x, t--- 1, (155) 
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and finally, 

U(t)V(x)/A(A ), 
r(x, t; ~)= 

/ P(x)Q(t)/A(A), 

O<_t_<x_< 1, 
(156) 

O<_x<_t<_l. 

Theorem 6.1. 
the Fredhotm resolvent kernel of the simple separable kernel (142). 

If 
A(a*) = 0, 

then it follows from (155) that 

U*(t) V*(x ) = P*(x)O*(t), 

If 2x(h)¢ 0, then the simple separable kernel (156) is 

(157) 

where 

U*(t) = U(t; h*), O*(t) = O(t; h*), 

V*(x) = V(x; h*), P*(x)=P(x;a*) 

are obtained from (147) and (152) with 

a =a* .  

(158) 

It follows from (157) that V*(x) and P*(x) are linearly dependent, and 
either may be taken as a right eigenfunction of G(x, t) corresponding to the 
eigenvalue h*; similarly, U*(t) and O*(t) are proportional and furnish a 
corresponding left eigenfunction of the kernel (142). 

Of course, the functions U(t), V(x), P(x), Q(t) may be found by 
solving the appropriate Volterra integral equations if it is desired to avoid 
the explicit computation of R (x, t; h). 

7. Alternative Computational Method 

Suppose that G(x, t) is a Fredholm or Volterra kernel with known 
resolvent kernel F(x, t; h); and suppose that it is desired to construct the 
resolvent kernel F, (x, t; A) of the modified kernel 

G,(x, t)= G(x, t)+ L ui(x)vj(t). (159) 
i=1 

In the special case that 

G(x, t) = K(x, t) 

is a Volterra kernel, one form of the solution of this problem is given by 
(67), which requires the inversion of an n × n matrix. It is also possible to 
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obtain the resolvent kernel by a step-by-step process simitar to an elimina- 
tion method for matrix inversion. First of all, consider the rank-one 
modification 

Gl(x, t )= G(x, t)+ ul(x )vl(t). (160) 

By applying the method of Section 4 [solving Eq. (25) with the kernel 
(160)], one obtains 

1 1 

A t ( h ) = l - - h l o  vl(x)Ux(x)dx= X-h  fo Vl(t)ul(t)dt (161) 

for the Fredholm determinant of Gl(x, t), where 
1 / -  

UI(x)= ul(x)+A L F(x, t; h)ul(t)dt, 
(162) 

t* 1 

V l ( t ) :  Vl(X)+/~ J0 /)l(X)I~(x' t; A) dx. 

Theorem 7.1. If A1 (h) # 0, then the resolvent kernel Fl(x, t; A ) of the 
rank-one modification Gl(x, t) of G(x, t) is 

Fl(X, t; h ) =  F(x, t; h )+  Ul(x)Vl(t)/A~(h), (163) 

which is a rank-one modification of the resolvent kernel F(x, t; h). 
This result has been exploited a number of times previously; see, for 

example, (38), (39), (44), (55), (119), (149), and (154). It is analogous to 
the Sherman-Morrison-Woodbury formula for finite matrices (Ref. 15, pp. 
123-124). Now, instead of (159), one may consider the sequence of kernels 

G0(x, t)= G(x, t), 
(164) 

Gk (x, t) = Gk-1 (X, t) + Uk (X)Vk (t), k = 1, 2 , . . . ,  n, 

each of which is a rank-one modification of the previous kernel. Taking 

F0(x, t; h ) =  F(x, t; A), (165) 

one may construct the corresponding sequence of resolvent kernels 

Fk(x, t; A)= Fk-~(x, t; A)+ Uk(x)Vk(t)/Ak(a), k = 1, 2 . . . . .  n, (166) 

where 
1 

Uk(x ) = Uk(X )+ A fo Fk-I(X, t; h )Uk(t) dt, 

1 

vk(t) = vdt)+ a Io v~(x)r~-l(x, t; ;t ) dx, 
(167) 
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and 
1 1 

Z~k(A)=I-Af0 vk(x )Vk(x)dx=l -A  fo Vk(t)uk(t)dt, (168) 

and obtain Fn(x, t; h), provided, of course, that 

Ak(h)¢O, k = 1 , 2  . . . . .  n. (169) 

8. Numerical Implications 

For a Fredholm integral equation with a separable kernel G(X, t), it 
has been shown that methods appropriate to Volterra integral equations 
can be used to obtain the Fredholm determinant, resolvent kernel, and 
eigenfunctions of G(x, t). As better estimates are available for convergence 
of the resulting expansions than in the general Fredholm case, effective 
analytic or approximate computations can be carried out. Although explicit 
formulas can be obtained only for very simple problems, it may be that the 
Volterra kernel K(x, t) is a polynomial or other simple function of x and t, 
in which case a computer can be programmed to find the coefficients in the 
expansion (8) of the resolvent kernel R(x, t ; h )  to obtain any desired 
degree of accuracy. Eigenvalues of G(x, t) can also be obtained by 
computing zeros of the entire function zX(h). This is a more difficult prob- 
lem, but can once again be done with any desired accuracy. 

If the analytic or semi-analytic approach appears fruitless or 
uneconomical, then strictly numerical methods based on numerical 
integration may be used. For the Volterra integral equations considered, 
these lead to lower triangular systems of equations which can be solved 
quickly and accurately, even if large (Refs. 16-17). As numerical integra- 
tion is usually much more accurate than numerical differentiation, this 
technique offers an alternative to finite-difference methods for two-point 
boundary-value problems for ordinary differential operators. 
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