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Confidence Structures in Decision Making 1 
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Abstract. Decision making is defined in terms of four elements: the set 
of decisions, the set of outcomes for each decision, a set-valued criterion 
function, and the decision maker's value judgment for each outcome. 
Various confidence structures are defined, which give the decision 
maker's confidence of a given decision leading to a particular outcome. 
The relation of certain confidence structures to Bayesian decision 
making and to membership functions in fuzzy set theory is established. 
A number of schemes are discussed for arriving at best decisions, and 
some new types of domination structures are introduced. 
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1. Introduction 

W e  consider  the process of  decision making  to be composed  of four  
elements:  

(i) the set of  all feasible al ternatives (decisions) X with e lements  
deno ted  by x ;  

(ii) the set of  all possible ou tcomes  Y ( x ) C R "  for  each feasible 
al ternat ive x 6 X ;  

(iii) the cri terion funct ion f ( .  ): x ~-~ Y(x), a set-valued funct ion that  
measures  the value of a decision; 

(iv) the decision make r ' s  value judgment or  preference for  each out-  
come.  
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The totality of all possible outcomes is 

Y =  u { Y ( x ) l x  ~ X } C R  r". 

The coordinates in R " may be used for indexing quantitative or qualitative 
(linguistic) outcomes. 

To illustrate these concepts, we consider a simple investment problem 
(SIP). The decision maker wishes to invest his savings $M, so that he may be 
well off in the future. Here, X includes all possible stock purchases including 
deposits in banks. Of course, X may be not well defined. In fact, generating 
good alternatives (elements of X) is a very important ingredient of the 
decision process. Let us suppose that the decision maker uses two criteria, 
growth rate of asset value and safety, to measure the desirability of an 

" investment (other criteria, such as liquidity, are important; but we shall not 
consider them here, for the sake of simplicity). Note that, depending on the 
economic situation, the outcomes of the decisions may be highly unpredicta- 
ble. For instance, buying stock may yield a high growth rate of asset value 
and great safety in a bullish market, and quite the opposite in a bearish one. 
The set of all possible outcomes of a decision x to buy a certain stock 
(measured in terms of growth rate of asset value and safety) is a set Y(x). 
Once each Y(x) is specified, the set containing all possible outcomes Y is 
known. 

The decision maker's value judgment of each element y ~ Y may be not 
simple. Various ways of forming such value judgments has been proposed; 
e.g., preference or utility construction, domination structures, etc. Subse- 
quently, we shall classify value judgment in terms of single or multiple 
criteria. 

Henceforth, we shall assume that the decision set X and the criterion 
function f ( .  ) are specified. We shall focus out attention on two questions: 
How can one define the outcomes of a decision? What are methods of value 
judgment for arriving at a good decision? 

In some of the literature (for instance, that quoted in Refs. 1 and 2), 
uncertainty of outcome is treated in terms of a priori probability distribu- 
tions. Usually, a single criterion is employed to define the outcome of a 
decision. For many complex decision problems, uncertainty of outcome 
cannot be adequately represented by an a priori distribution. In the next 
section, we shall introduce the concept of confidence structures for the 
purpose of treating uncertainty. It will be shown that this concept is closely 
related to Bayesian a priori probability distribution and to Zadeh's member- 
ship function (Refs. 3 and 4). In Section 3, we shall exhibit some methods for 
attaining good decisions with a variety of confidence structures and a 
number of representations of value judgment or preference, In Section 4, we 
shall present a hierarchy of general decision processes. 
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2. Confidence Structures 

Recall here that, given a decision x ~ X, the set of possible outcomes 4 is 
denoted by Y(x). Of course, Y(x) depends on the decision maker 's  prior 
belief. Loosely stated, a confidence structure is a collection of information or 
prior beliefs which specifies, for each feasible decision x ~ X, a set of prior 
probability measures for each y ~ Y(x) to be the outcome of x. 

To help the intuitive understanding of confidence structure, we give first 
a definition for the case of Y(x) consisting of discrete points only. 

Definition 2.1. Suppose  that, given any x ~ X, Y(x) consists of dis- 
crete points only. Let  J denote the set of all nonempty subintervals, 
including isolated points, of the interval [0, 1]. A confidence structure over 
X (the set of all feasible decisions) and 

Y= ~{Y(x)lx ~X} 

(a set that includes all possible outcomes of all feasible decisions) is a 
set-valued function s 

c( . , .  ) :Xx  Y - ~ .  

We interpret 

c(x ,y)=[a,b]~,  xeX ,  y c Y ,  

to mean that the decision maker has confidence in terms of prior probability 
from a to b that y will occur if he makes decision x. The interval [a, b] is 
called the confidence interval for y to be the outcome of x. 

Example 2.1. Suppose that the decision maker believes that his 
making a decision x will result in only two possible outcomes y a and ya, with 
probabilities in [0.2, 0.6] and (0.4, 0.7], respectively. Then, one can specify 
c ( . , .  ), where 

[0.2, 0.6] if y = y 

c(x,y)=l(0.4,0.7 ] i f y = y  2, 

[ {0} otherwise. 

Here,  

y ( x )  = {yl, y2}. 

4 That is, outcomes whose probability of occurrence is nonzero. 
s Since Y may include points in outcome space which are not possible due to a given decision x, 
one must allow zero probability. 
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Now, suppose that Y is an arbitrary, not necessarily countable, subset 
of R m. Prior probability is not as readily specified as in Definition 2.1; 
however, the concept of probability measure appears to be useful, even 
though the intuitive meaning of confidence structure may not be as 
apparent. 

Definition 2.2. Let  0~ be a collection of subsets of Y, and let J be the 
set of all nonempty subintervals, including isolated points, of the interval 
[0, 1]. A confidence structure over X and °2/is a set to set-valued function 

We interpret 

{( .  , : ) : X x ~ - * J .  

qg(x, U ) = [ a , b ] ~ ,  x ~X, U ~ ,  

to mean that the decision maker has confidence in terms of prior probability 
from a to b that the outcome of decision x will be in set U. 

Remark 2.1. Definition 2.2 is very general. To  be mathematically 
manageable, the set od may have to have structure such as a o'-algebra or 
Borel measurability, With this specification, for decision x fixed, a proba- 
bility measure 

satisfying 

~( . ) :v-~[o,  1] 

~(v)~  ~(x, v) 

for all U e ~¢ can represent a confidence structure for fixed x. Thus, a 
confidence structure induces, for each x ~ X, a class of probability measures 
which describe the decision maker 's belief in the outcomes of his decision; 
for further discussion see Example 2.4. From the point of view of informa- 
tion content, the smaller the confidence intervals c~ (x, U), U ~ ~¢, and the 
smaller the set ~,  the better. 

Since we allow zero measure, we can extend Y to R '~, and we can use 
the concept of probability distribution function to define confidence struc- 
tures. 

Definition 2.3. Let  ~ denote the set of all nonempty subintervals, 
including isolated points, of the interval [0, 1]. A confidence structure is a 
set-valued function 

~( . ,  • ):XxR~-~¢. 
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We interpret 

~g(x, y )=[a ,b]~¢ ,  x c X ,  y ~ R  ~, 

to mean that the decision maker has confidence in terms of prior probability 
distribution from a to b. that decision x will result in an outcome not 
exceeding y ; that is, 

Prob[{y' ~ R m [y '~y}]  ~ [a, b]. 

Remark 2.2. Definitions 2.2 and 2.3, while defining confidence struc- 
tures in terms of probability measure, are cumbersome for purposes of 
application. To alleviate this we introduce the following convention. 

Convention 2.1. Let ~ '  be the set of all nonempty subintervals, 
including isolated points, of the nonnegative real half-line. A confidence 
structure over X and Y is a set-valued function 

c(.,. ) :xx  Y-,J'  

such that, for each x ~ X, if y ~ Y(x) is an isolated point 6 with respect to 
Y(x), then c (x, y) is a subinterval of [0, 1] that specifies the range of the prior 
probability that y is the outcome of x, and such that if y is not an isolated 
point with respect to Y(x), then c (x, y) is an interval of [0, co) that specifies 
the range of the probability density that y is the outcome of x. 

Remark 2.3. Suppose that Y C R  2 and one of the coordinate axes is 
used for indexing qualitative (linguistic) outcome. Then, the probability 
density in Convention 2.1 is defined on a one-dimensional space. In general, 
if k axes k 6 {0, 1 . . . . .  rn - 1}, are used for indexing qualitative outcomes, 
then the density function is defined on (m -k)-dimensionaI  space. 

Example 2.2. In the SIP, f1( • ) and f2( • ) are the criterion functions for 
growth rate of  asset value and safety, respectively. Thus, the higher their 
values, the better. Table 1 gives a set of choices X, outcomes Y(x), and 
confidence intervals (in conformity with Convention 2.1). This is also 
illustrated in Fig. 1. This example will be used repeatedly hereafter. 

An important special case of confidence structures, and the one usually 
considered, is the one for which c (x, y) is exactly one point of [0, 1], so that it 
maps X x  Y ~  [0, 1]. To distinguish this from the general case, we state the 
following definition. 

6 That is, there is a neighborhood N of y such that Nc~ Y(x) = {y}. 
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Table 1. Example 2.2. 

Choice x Outcome set Y(x) Confidence interval c (x, y) 

x x {y[lly-y~]]<0.6} [1/2(l+[[y-yXl[), 1/(l+][y-yX[])] 
{~llly-y 111~> 0.6} {0} 

= (1.1, 0.9) 

x z y21 = (0.4, 0.5) (0.9, 1] 
y22 = (1.6, 1.2) [0, 0.05) 
y~ b,2~, y22} {0} 

x 3 y3= (1.05, 1) {1} 
Y ~ y3 {0} 

Definition 2.4. A confidence structure c ( . ,  • ) is called point-valued 
iff, for each (x, y) ~ X x Y, it contains exactly one point of [0, 1]. It is denoted 
by 

that is, 

M(.,. ) : X ×  Y-~ [0, 11, 

c(x,y)={M(x,y)}, V(x,y)cX×Y. 

Example 2.3. In the deterministic case, given any decision x°eX, 
there is one and only one outcome y0~ y.  Then, 

[{1} i fy  =yO, 

c(x°' Y)= [{0} otherwise, 

i i f y = y  °, 
M(x o, Y) = 0 otherwise. 

Example 2.4. Suppose that each decision x ~ X results in outcomes 
which depend on the occurrence of mutually exclusive and collectively 
exhaustive events {El, E2 . . . .  ,Eq}; e.g., in the SIP, E1 may indicate a 
bullish market, E2 a bearish one, etc. Let Pi be the prior probability for 
Ei, i = 1, 2 . . . . .  q, to occur. Let yi (x) denote the outcome of decision x when 
event Ei occurs. Then, we can give the confidence structure as 

c(x,y)=I{Pi} i fy = yi(x), 

[{0} otherwise; 

i = 1 , 2  . . . . .  q, 
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Fig. 1. Example 2.2. 

or, in terms of M ( - , .  ), 

(P~ if y = yi (x), i = 1, 2 , . . . ,  q, 
M(x, y) = t 0 otherwise. 

% 

More generally, M(x,. ): Y-~ [0, 1] can be a probability density func- 
tion for y ~ Y to be the outcome of x e X. 

If one considers the value (or loss) of y to be a given function 

V(.  ): Y-~ [0, oo) (or L (  • ): Y-+ [0, oo)), 

then the Bayes decision is the one that maximizes 

q 

E P, v(y, (x)), 
i = !  

or minimizes 
q 

E gL(yi(x)), 
i = 1  

over X. For the continuous case, the summation is replaced by integration; 
see Section 3.2. 

Example 2.5. Suppose that all possible outcomes are qualitatively 
(linguistically) described; e.g., in the SIP, the set of all possible outcomes can 
be: 

1 - very high return and very high risk, 
2 --- very high return and medium risk, 
3 --- high return and very high risk, etc. 

Then, Y can be an index set of outcomes. That  is, with each y ~ Y, there is 
associated a qualitative (linguistic) outcome. Now, suppose that c ( .  , .  ) is 
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point-valued, so that the causal relation between x and y is represented by 

M ( . , .  ) : X ×  Y-> [0, 1]; 

that is, M(x, y) represents a prior belief that y will be the outcome of x. Now, 
suppose that y is fixed, say 

Y =yO~ y. 

Then, 
M ( . ,  y°):X--)[0, 1] 

can be versed as a membership function in the sense of Zadeh (Refs. 1-2); 
that is, M(x, y o) gives the degree of membership of decision x in the 
qualitatively (linguistically) described outcome y o. Conversely, given a fuzzy 
set, one can construct a point-valued confidence structure. 

In practice, it may not be easy to specify c(x, y) as a point, but it may be 
less difficult to specify it as a subinterval of [0, 1]; see Sections 3 and 4. 

Remark 2.4. In the Bayesian case (Example 2.4), the confidence 
structure is represented by a family of prior probability distributions, one for 
each decision x ~ X. In the Zadeh case (Example 2.5), it is represented by a 
set of membership functions, one for each y ~ Y. The membership functions 
are not probability distributions, so the sum of the degrees of membership of 
a decision x need not equal one. 

Next, we consider a process of converting a general confidence struc- 
ture to a point-valued one. 7 

Definition 2.5. The principle of insufficient reason is the following: If 
one is completely ignorant as to which event among a set of possible events 
will take place, then one can behave as if they are equally likely to occur. 

If one applies the principle of insufficient reason to confidence struc- 
tures, then the complexity of decision is greatly reduced, albeit at the 
possible risk of obtaining a poor decision. Then, each a ~ c(x. y) is equally 
likely to be the true probability of x resulting in y. Thus, if 

c(x, y ) =  [a, b], 

then the expected value of one's confidence is (a + b)/2;  that is, one uses the 
expected value of the probability as a representation for c(x, y). More 
precisely, if 

c(x,y)=[a,b], 
then 

M(x, y ) =  (a +b ) /2  

7 See Ref. 5 for further discussion. 
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is used as a representation for c(x, y); of course, M ( . ,  • ) is a point-valued 
confidence structure. While 

M(x,. ): r - ~  [0, 11 

need not be a probability distribution, it can be normalized into one by 
dividing M(x, y)  by the sum (or integral) of M(x, y) over Y(x), provided it is 
defined (see Example 2.4). 

Example 2.6. Continuation of Example 2.2. We shall apply the princi- 
ple of insufficient reason to the confidence structure given in Table 1. For 
x = x 1, we have then 

) (3/4(l+11y-yll]) if [ly -y111<0.6, 
M(x 1, Y =) 

0 otherwise. 
Let 

= [ [3/4(1 + IIY - Y 111)] dy = (3rr/2) logO.6), Co 
J y  (x 1) 

so that 

M(xl, • ): Y(xl)-> [0, 1], 

0.95 

M(x2, Y)=I O0.025 

and, after normalization, 

(0 .95 /0 .975  
M(x2, y)= I~.025/0.975 

if y = y21, 

if y = y 22, 

otherwise; 

i fy  = yZl 
i fy  =y22, 

otherwise. 

To simplify our nomenclature we state the following definition. 

Definition 2.6. The process of converting a general confidence struc- 
ture into a point-valued one by means of the principle of insufficient reason, 
including normalization, will be called the reduction process. 

given by 

M(x 1, Y) = 3/4co(1 + HY - Y 111) 

is a probability distribution. 
In similar fashion, upon applying the principle of insufficient reason, 

one obtains 
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3. Decision Making with Confidence Structures 

In this section, we describe some methods for decision making with a 
variety of confidence structures. As mentioned before, the process of 
decision making depends not only on the confidence structures for the 
outcomes, but also on the value ]udgment or preference for the outcomes. 
We classify the situation according to these two elements and describe some 
methods for decision making. We begin with the simplest case. 

3.1. Deterministic Confidence Structures. In the deterministic case, 
each decision results in a unique outcome (e.g., see Example 2.3). Thus, we 
can use a function 

f ( - ) : X - >  Y 

to define the relation between decisions and outcomes. 
Value judgment may involve a single (scalar) criterion or a multiple 

(vector) criterion (multieritical)o 

3.1.1. Deterministic Confidence Structure with a Single Criterion. Here,  
the possible outcome set Y is a subset of the one-dimensional Euclidean 
space. The points of Y may be arranged according to a preference ordering 
or, in the case of qualitative (linguistic) outcomes, Y may be merely an index 
set. In either case, we shall suppose there is a real-valued function 

u( . ): Y-~ R, 

such that 

u(yl)>u(y 2) 
u(yl)=u(y 

iff yl  is preferred to y2, 

iff y 1 is indifferent to y2. 

If Y is already arranged in accord with a preference ordering, then u ( - )  can 
be the identity map. 

With the function u ( , )  so specified, decision making becomes a stan- 
dard optimization problem: 

max [u o f(x)]. 
x 

Generalizing u ( . )  to a total ordering over Y is feasible (e.g., see Refs. 6 
and 7). 

3.1.2. Deterministic Confidence Structure with a ~VIultiple Criterion. 
Here,  the possible outcome set Y is a subset of m-dimensional Euclidean 
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space with criterion function 

f ( .  ) : X ~  Y C R  m, m > 1. 

Some of the coordinates axes, that is, some components o f f ( .  ), may be used 
as indices for qualitative (linguistic) outcomes. 

Decision problems involving multicriteria are common in practice. For 
example, in the SIP, the decision maker is concerned with growth rate of 
asset value, safety, and probably other criteria, such as liquidity. In problems 
of national energy planning, decision makers are subject to considerations of 
self-sufficiency, cost of energy generation, unemployment, growth, etc. 

Many solution concepts have been suggested for making decisions with 
multicriteria. Some of these are outlined below (for a survey, see Refs. 8 and 
9). Except for (i) and (ii) of the listed methods, some monotonicity according 
to preference is assumed for each component f~(. ) of f ( .  ), including the 
case for which an f~(. ) indexes a qualitative outcome. For example, in the 
SIP, f~(. ) may assume values in an index set {1, 2 . . . . .  5}, with 

1 - v e r y  high growth rate, 
2 - above average growth rate, 
3 - average growth rate, 
4 -  below average growth rate, 
5 --- very low growth rate. 

(i) One-Dimensional Comparison. Here, the multicriteria problem is 
converted into a single-criterion one. In this category are goal programming 
(Refs. 10 and 11), the additive weight method, compromise solutions (Refso 
12 and 13), utility construction (Ref. 14), and lexicographic ordering. 

(ii) Ordering and Ranking. Instead of defining a real-valued func- 
tion over Y as in (i), one defines a binary relation which may be a partial 
ordering over Y. Then, one seeks the maximum or minimum elements over 
II, provided such elements exist. Among such methods are Pareto- 
optimality, efficient solutions, outranking relations (Ref. 15), and prefer- 
ence ordering (Refs. 6 and 7). 

(iii) Domination Structures and Nondominated Solutions. Here, for 
each y e Y, one defines a set of domination factors D(y)  such that, iff 

y 0 ¢ y  andyO y + D ( y ) ,  

then y 0 is dominated by y. An outcome that is not dominated by any other 
outcome is nondominated, and the final decision is to result in nondomi- 
nated ones. For a detailed discussion, including the relation to (i) and (ii), see 
Refs. 8, 16, 17, and 20. 

(iv) Satisficing Models. In this approach, the decision maker estab- 
lishes first either (a) a minimal satisfaction level for each criterion or (b) an 
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upper goal achievement level for each criterion. In the first case, a decision 
resulting in any criterion not meeting or exceeding the minimal satisfaction 
level is unacceptable and ruled out as a candidate for a final decision. In the 
second case, any decision that results in all criteria meeting or exceeding the 
upper goal achievement level is acceptable for a final decision. 

(v) lterative or Adaptive Procedures. In these methods, a final decision 
is obtained in a sequence of steps. In one such method, at each step one 
considers the (remaining) feasible decisions and their outcomes, and elimi- 
nates the dominated ones from further consideration. A final decision is 
selected from among those which cannot be eliminated by this process (Ref. 
8). In another method, one begins with a particular feasible decision and 
then finds a better one at each step until improvement becomes impossible. 
Such a technique, similar to a gradient search, is described in Ref. 18. 

Some of the methods listed above can be combined in solving a 
particular decision problem. For instance, a combination of (i) and (iv) may 
result in a mathematical programming or an optimal control problem. 

3.2. Point-Valued Confidence Structures. If the confidence structure 
is not deterministic, decision making is more complex. In this section, we 
consider decision making with point-valued confidence structures (e.g., see 
Examples 2.4 and 2.5). 

3.2.1. Point-Valued Confidence Structure with a Single Criterion. As 
in Section 3.1.1, we consider a real-valued function 

u(" ): Y-> R 
such that 

u (y l )>  u(y2)C:~y 1 is preferred to y2 

We shall suppose that the following are defined for each x ~ X (recall 
Convention 2.1): 

E(x)= E 
Y~ Y:t(x) 

V(x)= E 
y ~ Y l ( x )  

where 

u(y)M(x, Y)+fy~(x) u(y)M(x, y)dy,  (1) 

[u(y)-E(x)]2M(x, y)+Iy2(x) [u(y)-E(x)]2M(x, y)dy,  (2) 

Y1 (x) = {y ~ Y(x )IY is an isolated point w.r.t. Y(x )}, (3) 

Y2(x) = {y ~ Y(x)t Y is not an isolated point w.r.t. Y(x)}. (4) 
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If M(x,.  ) is a probability measure, 8 then E(x) and V(x) are the  
expected value and variance, respectively, of u ( . )  with respect to M(x,.  ). 

The following decision optimization methods may be useful. 

(i) Maximization of Expected Value. Here,  one seeks x * ~ X  such 
that E (x*) ~- E(x)  for all x ~ X. Suppose that u ( . )  is convex linear in terms of 
lotteries. That is, if 

y ° = a y l + ( 1 - a ) y  2, a ~ [ 0 , 1 ] ,  

represents an outcome with chance a to have outcome y 1 and chance (1 - a )  
to have outcome y2, then 

In this event, maximizing the expected value seems logically sound. Unfor-  
tunately, such a utility function is difficult to find. 

(ii) Two Criteria for Value Judgment. Here  we treat E(x) and V(x) as 
two criteria for value judgment in decision making. Since V(x) is the 
variance of u ( .  ), it may be regarded as a measure of fluctuation or risk. Such 
a two-criteria formulation has been used extensively in portfolio analysis 
(Ref. 19). Of course, the methods listed in Section 3.1.2 are applicable here. 
Note that a nondeterministic single-criterion problem has been converted 
into a deterministic two-criteria problem. 

(iii) Chance Constraint Formulation. Let 

Yv ={Y s Ylu(Y)~>7}, 

X(fl, y )={x~X[  Y~ M(x, y ) + ~  M(x,y)dy~f l } ,  

where Yl(x) and Y2(x) are defined in (3) and (4), respectively. 
Loosely speaking, X(B, y)  is the set of feasible decisions whose final 

outcome in terms of u(-  ) has probability, of at least B, of exceeding a 
specified level y. With y and/3 specified, the chance constraint formulation 
is th at of maximizing E (x) over X(B, y)  (e. g., see Ref. 21 ). This formulation 
combines the features of expected value maximization with those of a 
satisficing model. Again, combining two methods, such as (ii) and (iii), is 
possible. 

3.2.2. Point-Valued Confidence with a Multiple Criterion. If out- 
comes are specified in terms of a multiple criterion with a point-valued 
confidence structure, decision making is more difficult than in the case of a 
multiple criterion with a deterministic confidence structure (Section 3.1.2), 
or in the case of a single criterion with point-valued confidence structure 

8 That  is, the total measure of M(x , -  ) over Y(x) is one. Recall that,  by Convent ion 2.1, M(x,- ) 
on Ya(x) is a prior probability, whereas on Y2(x) it is a probabili ty density. 
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(Section 3.2.1). While it may be possible to combine the methods of Section 
3.1.2 and 3.2.1, the success of so doing wilt depend on the skill of the 
decision maker. Here, we merely list some possibilities. 

(i) Suppose that the problem can be converted into a single-criterion 
one as in (i) of Section 3.1.2. Then, it is a single-criterion problem 
with point-valued confidence structure, and the methods of Section 3.2.1 
apply. 

(ii) Suppose that the problem cannot be converted into a single- 
criterion one. Then, one can introduce a simple utility function for each 
outcome component. Namely, if a higher outcome value is preferred to a 
lower one, let 

y, i = 1 , 2  . . . .  , m .  

Then, one proceeds as in Section 3.2.1 by forming expected values and 
variances 

E~(x)= 2 ui(y)M(x,Y)+fr ui(y)M(x,y)dy, (5) 
Y~YI(x) 2(x) 

V~(x)=y~rl(x~2 [ui(y)-Ei(x)12M(x, y)+ Ir ~(~ [ui(y)-Ei(x)12M(x, y)dy, (6) 

with i = 1, 2 . . . . .  m, where Yl(x) and Y2(x) are defined by (3) and (4), 
respectively. 

Thus, by doubling the number of criteria, one converts a problem with 
point-valued confidence structure into one with deterministic structure as in 
(ii) of Section 3.2.1. Of course, one can also convert the problem into an 
m-criteria one, with m chance constraints as in (iii) of Section 3.2.1. In either 
case, the problem is reduced to one of multicriteria with deterministic 
confidence structure, so that the methods of Section 3.1.2 become 
applicable. 

In the remainder of this section, we describe a new type of nondomi- 
nated decisions (that is, decisions resulting in nondominated outcomes) for 
problems with point-valued confidence structures. 

(iii) As discussed in (iii) of Section 3.1.2, given yl and y2 in Y, if[ 

y2 ~ Y 1 + D ( y  1), 

then y~ is dominated by y~. Now, given decisions x I and x 2 in X with 
possible outcome sets Y(x 1) and y(x2), respectively, iff 

y 2 e y X + D ( y l )  for all yl s Y(xl)andy26 y(x2), 

then x 2 is dominated by x 2. Loosely speaking, the decision x 2 is dominated 
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by the decision xa if every possible outcome of x2 is dominated by every 
possible outcome of x ~. In Fig. 2, Y(x ~) and a constant domination cone 
D(y) are given. The decision x 2 is dominated by x 1 if Y(x 2) is contained 
in region B, whereas x 1 is dominated by x 2 if Y(x z) is contained in region 
A. 

The above definition of domination may be too restrictive. To make the 
concept less restrictive, let us introduce the following kind of domination. 
For each 

let 

x E x ,  ~ ~ [o, 1], /3 ~ [o, ~) ,  

Y~'(x) ={y e Yl(x)lM(x, y)~>a}, (7) 

Y~z(x) = {y e Y2(x)lM(x, y)~>/3}, (8) 

where Yl(X) and Y2(x) are given by (3) and (4), respectively. 9 Loosely 
speaking, Y°~(x)[Y~(x)] is the set of all outcomes of decision x having 
probability [probability density] equal to or greater than a [/3]. Now, given c~ 
and/3, and a domination structure 

D ( .  ): y ~->D(y)CR m, 

x 2 e X is dominated by x i E X with respect to (a,/3, D ( . ) )  iff 

y 2 ~ y l + D ( y l )  

for all 

y2e  y~(x2)u  y~2(x 2) a n d y l e  yO~(xl)u y~2(xl). 

9 Recall Convention 2.1. 

Y2 

D (y) 

I 
I l A 

>Yl 

Fig. 2. Domination structure. 
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A nondominated decision is one which is not dominated by any other 
feasible decision. Roughly speaking, the domination relation is defined over 
those outcomes which have high enough probability of resulting from the 
decisions considered. 

Example 3.1. Let 

M(x i, y), 

be as given in Example 2.6. Let  

a = 0.05, 

Then, 

i = 1 , 2 ,  

/3 =0.4.  

Y~'(x 1 ) = Y~(x z) = 0 ,  

and 

Y~z(xl)={ylliy-ylll<o.6}, Y~;(x2)={y21}. 

Figure 3 shows Y~(x 1) and Y~(x 2) together with a constant domination cone 
D(y) .  

For the given domination cone D (y), the decision x 2 is dominated by 
x 1, so that x 1 is nondominated. 

If 

a = 0.01, fl =0.4 ,  

then 

r?(x 2) = { /1 ,  y22}. 

Y2 

DI 
I 

' ) Y l  

Fig. 3. Example 3.1. 
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x 2 is not dominated by x i, nor is x 1 dominated by x 2. Thus, both decisions 
are nondominated in this case. 

In general, the larger a and/3 are, the smaller is the set of nondomi- 
hated decisions. If a and/3 are too large, YT(x) and Y~z(X) may be empty, 
and the domination relation ceases to be meaningful. 

3.3. General Confidence Structures. Recall Convention 2.1 for gen- 
eral confidence structures and Definition 2.6 for the reduction process of 
converting a general confidence structure into a point-valued one. 

3.3.1. General Confidence Structure with a Single Criterion. In this 
case, one can convert the general confidence structure into a point-valued 
one by the reduction process discussed in Section 2. Thereafter ,  the methods 
of Section 3.2.1 are applicable. 

There  is one special case that is somewhat equivalent to a multicriteria 
problem with deterministic confidence structure. This case is characterized 
by the fact that the number of possible outcomes of each decision is finite and 
fixed. For example, in the SIP, if asset value is the only concern, the 
outcomes of each decision may depend either on a bearish market  or a 
bullish one. Thus, the possible outcomes of each decision may be rep- 
resented by a pair of real numbers. In general, if the outcomes of each 
decision x depend on m possible situations, they then may be represented by 
m real numbers (fl(x) . . . . .  fro(x)). Now, let Ix be an interval of [0, 1] 
indicating the confidence that the ith situation will occur. More precisely, let 
the confidence structure be given by 

Now, let 

and 

= ~ L ,  i fy  = fi(x), 

c(x, y) [{0}, otherwise. 

= 

i=1 

Thus, each A ~ ~ represents a prior probability that is consistent with the 
confidence structure, because each )ti ~ Ii. Note that, given a ,~ e f~, the 
expected value of outcome for a given decision x is 

i~I 
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Maximization of the expected value over X is equivalent to maximizing the 
value of the additive weight function A • f(x) with A c fk Let 

A * = { d ~ R " l d  " a =  < 0, Va ~f~}; 

hence, A* is the polar cone of A. From Refs. 8 and 16, it is seen that the 
confidence structure induces a domination structure such that 

int A* C D ( y )  

for all y ~ Y, where 

Y={ f ( x ) l x~X} .  

As shown in Refs. 8 and 16, the advantage of using domination structures is 
that good candidates are not disregarded when Y does not possess suitable 
cone-convexity. 

3.3.2. General Confidence Structure with a Multiple Criterion. This is 
the most general as welt as the most common decision problem. It may be 
possible first to convert the multicriteria problem into one with a single 
criterion, and then apply the methods of Section 3.3.1. It may also be 
possible to use the reduction process of converting a general confidence 
structure into a point-valued one, and then to apply the methods of Section 
3.2.2. A combination of these steps may be possible depending on the 
particular problem. 

Another method may be an extension of that of (iii) of Section 3.2.2. 
Let a (x, y) and b (x, y) denote the greatest lower bound and the least upper 
bound, respectively, of the confidence interval c(x, y). Analogously to (7) 
and (8), define 

where 

f'~(x ) = {y ~ Yl(x )lP(a(x, y), b(x, y))~>a}, 

f'~(x) = {y c Y2(x)tP(a (x, y), b (x, Y))~>fl}, 

2> P ( ' , ' ) : R +  R+. 

(9) 

(10) 

For instance, if one applies the principle of insufficient reason, 

P(a(x, y), b(x, 1 y)) = ~[a (x, y )+  b (x, y)], 

or one may let 

P(a(x, y),b(x, y))=b(x, y). 
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Now, we introduce the following value judgment. Given P ( . ,  • ), a,/3, 
and a domination structure D( -  ), x 2 E X is dominated by x 1 E X with 
respect to (P(.  , .  ), oe,/3,D( • )) iff 

for all 

2 1) y ~ y l + D ( y  

y2E 17-~,(X2) w 92¢(x2) and y lE  i7,~,(X 1)L9 I7-2~(X a). 

The proper specification of P ( . ,  • ), a,/3, and D ( .  ) is clearly of great 
importance and remains a subject for further investigation. 

4. Hierarchy of Decision Processes 

In view of the discussion of Section 3, it appears reasonable to set up a 
hierarchy of decision processes. After the feasible decision set X is specified, 
a decision problem is characterized by its confidence structure and by the 
value judgment of tile outcomes. The process begins at the most common 
starting point, multicriteria with a general confidence structure, and ends 
with adoption of a final decision. During the process, consecutive simplifica- 
tion of confidence structure and value judgment takes place. Figure 4 shows 
the direction of simplification as indicated by the arrow. 

\ 

\ MULTICRITERIA SINGLE CRITERION 

GENERAL 

POINT- VALUED 

DETERMINISTIC 

START 

FINISH 

Fig. 4. Decision process, 
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5. Conclusions 

The concept of confidence structure has been introduced into decision- 
making problems. Various concepts and techniques for simplifying and 
solving such problems have been discussed, and a hierarchy of decision 
processes has been outlined. 
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