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Abstract. In this paper, we analyze the optimal skill mix in a model  
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individuals are trained according to optimal rules or  market  rules (with 
imperfect  expectations);  the length of each individual 's training period 
depends upon his innate ability. The  market  and optimal rules are 
characterized and compared,  and corrective policies are investigated. 
This model  represents a major  advance over  earlier models,  which are 
based on the following assumptions: (a) either unskilled and skilled 
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employment ;  (b) individuals are innately identical; (c) in most  cases, 
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1. Introduction 

A large number of the applications of control theory" to economics is 
concentrated in the area of economic growth. 4 In most of these ap- 
plications, labor is taken as an homogeneous good, exogenously supplied, 
and fully employed. Dobell and Ho (Ref. 2) were the first to treat labor 
training; the state variables in their model are per capita capital stock k 
and fraction of the population employed xo. Training is a necessary condi- 
tion for employment; training occurs instantaneously and is assumed to 
cost the same (d GNP units) for all individuals. Dobell and Ho solve the 
problem of maximizing the discounted sum of per capita consumption over 
a finite horizon subject to initial and terminal conditions on the state 
variables. In a later paper (Ref. 3), Dobell and Ho extend this model by 
making training cost an increasing function of fractional employment x0. 
An interesting consequence of this modification is that there does not exist 
a time-varying interest rate on education loans which adequately reflects 
the externality of rising training costs. Blackburn (Ref. 4) observed that the 
Dobell and Ho result rests on several implicit assumptions, and that 
equally plausible assumptions (within the framework of the Dobell and Ho 
model) lead to a full employment result. For example, if all individuals are 
trained to some level of skill, then the economy will have full employment, 
and the problem is to determine the optimal level of skill. In his reply to 
Blackburn, Dobell (Ref. 5) develops a model which distinguishes different 
vintages of labor and notes the level of training appropriate at the time of 
entry of each vintage into employment. The state x0 is changed to w, a 
productivity-weighted measure of the effective labor force; he also intro- 
duces an exponential decay in skills. With this model, Dobell confirms 
Blackburn's observations. 

Tu (Ref. 6) introduced a simple model which has two levels of labor, 
illiterate and educated, appearing in the production function. His analysis 
assumes a linear production function and balanced growth where the 
investment in physical capital is constant and the ratio of illiterates to 
those undergoing education is constant. 

Budelis (Ref. 7, Chapter 3) developed the dynamics of the model 
described in Dobell (Ref. 5). Since the number of years an individual is in 
the labor force is fixed, the resulting optimal control problem is one of 
constant lag. The control variables are the fraction of eligible population to 
be trained and the level of training. Training is considered to be instan- 
taneous with its cost depending on its level. Budelis uses a linear utility 
function; consequently, after an initial constrained arc, the optimal path 

4 See Ref. 1, for example. 
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approaches the equilibrium point along a singular arc. The golden-rule 
policy is obtained, and-its stability characteristics are examined. Since the 
population is assumed homogeneous, the model is characterized by the 
absence of unemployment in the economy following an optimal growth 
path, except in the extreme degenerate case where the optimal path is one 
of zero level of training, i.e., where all newcomers are left unemployed. 
Numerical solutions are carried out for finite horizon cases. The percentage 
gain of the optimal control path over the golden-rule path is computed. 
The gain is small for high initial capital stock and large for low initial 
capital stock. In most cases, the gain decreases as the horizon increases. 

The effect of the skill deterioration rate is also examined. For short skill 
deterioration time, the average equilibrimn output per worker reaches a 
maximum at a low retirement age; thus, the model suggests that retraining 
should be considered as a policy for investment in human capital. 

What we have described thus far includes only the models which treat 
training as instantaneous. The particular level of training is achieved by a 
proper intensity and quality of training and not by duration of training. In 
the following, we will discuss models with noninstantaneous training resul- 
ting in optimal control problems with delays. 

Lele, Jacobson, and McCabe (Ref. 8) extended the Dobell and Ho 
model (Ref. 3) by considering lags which may occur in the training sector in 
the adjustment of educational services and also between the demanded 
labor and the existing labor. In connection with educational services, they 
postulated a simple relationship involving a delayed adjustment. The 
actual change in the trained labor force and the desired change has a Koyck 
distributed lag structure. A golden-rule point requiring full employment 
does exist for their model. However, their objective function allows full 
employment to be attained almost instantaneously because of a quadratic 
penalty placed on deviations from some specified mean capital investment 
rate. A quadratic cost is also placed on the rate of change of the level of 
employment. They conclude that some kind of lag structure does exist and 
that it is qualitatively different from no lag. The policy implications may be 
the use of on-the-job training which may be considered instantaneous. In 
this case, one must, of course, have different skill levels in the model. Lele 
(Ref. 9) has computed the optimal path for the Lele-Jacobson-McCabe 
model. 

Budelis (Ref. 7, Chapter 4) extended the Dobell and Ho model (Ref. 
3) by taking the training delay into account. This introduces a delay in the 
control variable and introduces an additional state for labor in the training 
pool. A golden-rule point which is globally stable under the golden-rule 
policy is shown to exist. The optimal path is characterized by using the 
maximum principle. It is shown that control is optimal at its upper bound 



248 JOTA: VOL. 23, NO. 2, OCTOBER 1977 

until full employment is reached; then, full employment is maintained by a 
suitable singular control which will take the trajectory to the equilibrium 
point. 5 

1.1. Scope of This Paper. In the next section, we develop a model 
for analyzing labor dynamics which extends previous work in the following 
important ways. 

(i) Earlier models have assumed that all individuals are innately iden- 
tical; we assume a distribution of innate abilities. 

(ii) Earlier work has either assumed that training is a necessary con- 
dition for employment or has assumed that skilled and unskilled labor are 
perfect substitutes (although not, of course, on a one-to-one basis); we 
allow imperfect substitutability between skilled and unskilled labor. 

Because of our assumption of a distribution of innate abilities, our 
model leads to a continuous-lag optimal control problem; thus, it does not 
reduce to the fixed-lag optimal control problem like those of Lele, Jacob- 
son, and McCabe (Ref. 8) and Budelis (Ref. 7) or to a model equivalent to 
the various vintage capital models in the economics literature. Such models 
have not been discussed extensively in the control theory literature, and we 
know of no other economics paper in this framework. 

2. Model 

The model consists of a production function (which relates output to 
the labor inputs; we abstract from capital in this model), an exogeneous 
labor supply function, and equations describing the time rate of change of 
skilled and unskilled labor and trainees. 

2.1. Notational Convention. Let z i ( t )  be the value of the ith state 
variable, i = 1 , . . . ,  n, at time t, t -> 0. Then, 

z(t) = (Zx(t) . . . .  , zn(t)) ' ;  

Zi is the trajectory zi( t) ,  t>-O, and z is the trajectory z(t), t->0. Where no 
confusion arises, we may drop the time argument; thus zi = zl (t) but z, # zl. 

2.2. Labor Supply. It is assumed that new entrants into the labor 
force at time t occur exogenously at the rate i lL ( t )  and that retirements at 

5 The Budelis model (Ref. 7, Chapter 4) needs some revisions which we carry out in Ref. 10 
along with some simplifications and extensions, We do not describe this revised Budelis 
model here, since what follows is a generalization of it. 
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time t occur exogenously at the rate yL(t) (we shall at times refer to/3 and 
, / a s  the birth rate and the death rate, respectively). Letting 

n =/3 - Y ,  

the net rate of increase in the labor force is 

I~(t) = nL(t), L(0) = Lo; 

or, equivalently, 

L(t) = Lo exp(nt). 

2.3. Trainees, It is assumed that there is a time-independent uni- 
modal density function h(~), g-> 0, such that 

H(u) = h(~) d~:, H(0) = 0, H(oo) = 1, (1) 

is the proportion of the new entrants into the labor force at any instant that 
could be trained in no more that u years; we will call the value of 
associated with each individual his untrainability index. Let u = u(t) be the 
length of time (years) such that, at time t, any new entrant into the labor 
force with an untrainability index no more than u (t) will enter the training 
program. The number of workers who entered training at time ( t - r )  is 
thus 

f u(t-~) 
~ L ( t - ' r )  h(~) d¢ =~L(t- 'r)H[u(t-~ ' )] .  

aO 

The number of those workers who are still in training programs at time t is 
then 

f 
¢ b-,u (t-r)] 

flg(t - r) exp(-yr )  h(~:) d~:, 

where 

4~[w, u(t-~')] = max[r, u(t - r)]. 

Thus the total number of workers in training programs at time t is 

co f &[,r, u(t-r)] ( 
Y(t) = | ~ L ( t - r )  exp(-yr )  j. h(~) d~dr. 

do 

Since 

L(t - ~-) = exp[-(/3 - 7)~-]L(t), 

(2) 
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the fraction of the labor force in training at time t is 

y(t)-- Y(t) /L(t)=fi  f o  exp(-flT)f¢[~'"('- ')]h(()d~d.r 

=fi f j  exp[- /3( t -  a)] ~ 6t'-~'~¢~)1 h(~)d~da. 
# t - - t ~  

Then, the time rate of change of y (t) is 

(t) = fl{-y (t) - c + H[u (t)] 

f2 + exp[ -~ ( t - r ) ]h[¢ ( t - r ,  u(r))]¢~[t-r, uff)] dr}, 

y (t) = y(t), t ~ [-oo, 0], 

where 

and 

Note that 

(3) 

(4) 

C c = exp(-fl~)h (~) d~: (5) 

61(x, y)=~¢(x, y)/ax, x #y. 

1, ifx >y,  
¢1(x, y) = 0, ifx <y. (6) 

While the control variable u(t) may be highly artificial, it should be 
noted that it has a simple economic interpretation. First, of course, in a 
planned economy, the government could issue a decree that everybody 
capable of being trained in no more than u (t) years should enter a training 
program. Furthermore, if individuals behave so as to maximize the present 
value of their expected income streams, then there is a monotonic rela- 
tionship between u(t) and the wage ratio [whether determined by the 
market or by the planners, see Eq. (51)]. Thus, implementing the control is 
relatively straightforward. 

2.4. Unskilled Workers. The fraction of the new entrants to the 
labor force at time t that remains unskilled is clearly 1 -H[u(t)].  Thus, the 
stock of unskilled workers at time t is 

L~(t) = {1 - H [ u ( t - r ) ] } ~ L ( t - r )  exp(-Tr) dT. 
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Letting x~(t) represent the fraction of the labor force which is unskilled 
(and not in training) at time t, 

xoo(t) = fl exp(-flr){ 1 - H[u (t -'r)]} dr. 

The time rate of change of xoo(t) is 

2~( t )= f i {1 -H[u( t ) ] - x~ ( t ) } ,  xoo(t)=x~(t), t 6 [ - o o ,  0]. (7) 

2.5. Skilled Workers, Let Xo(t) be the fraction of the labor force 
which is skilled at time t. Since 

Xo(t) + x~o(t) + y (t) - 1, (8) 
it follows that 

2o(t) = - 2 ~ ( t ) - ~ ( t )  

= fi{c - Xo(t) - ~ exp[-/3 (t - r)]h [4~ (t - ~-, u (r))]4~l[t - r, u (r)] dr , 

(9) 

xo(t) = Xo(t), t ~ [-oo, 0]. 

Please note that the given past histories x~(t) and x0(t), t ~ [-co,  0], are not 
independent initial conditions. In fact, these can be obtained from any 
given past history _u(t), t c [-oo, 0]. A more convenient way of specifying 
the initial condition, therefore, is to simply specify 

u (t) = u ( t ) ,  t c [ - oo, 0 ]  

2.6. Production Function. We assume that the rate of output F(t) at 
time t is given by the production function 

F(t) = F[Lo(t), L~(t)]. (10) 

It is assumed that F is linear homogeneous, 

F(Ax, Ay) = AF(x, y), 

concave, and satisfies the usual neoclassical conditions 

f ( 0 ,  0) = 0, 

OF(x, y)/Ox > O, OF(x, y)/0y > 0, 

02F(x, y)/Ox2 <O, OZF(x, y ) / 0 y 2 <  0, O~F(x, y)/Ox 0y >0 .  

Defining output per capita (actually, per member  of the labor force) f(t) as 

f(t) =F(t) /L( t ) ,  
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then the per-capita-production function may be written as 

f( t)  = F[xo(t), x~(t)]. 

An important class of functions satisfying the assumptions listed above 
is the class of constant elasticity of substitution (CES) production functions 

F[xo(t), x~(t)] = {6 [~-~Co(t)] -~ + (1 - 6)[¢r~x~(t)]-~} -1/~, (11) 

where 6 is a distribution parameter independent of o. and 

(1 + o-) -t -> 0 

is the elasticity of substitution between skilled and unskilled workers (Ref. 
11); except for the case o-= 00, we always assume that the parameters 7to 
and rroo are equal to unity. When 

O. = - - 1 ,  

skilled and unskilled labor are perfectly substitutable and the production 
function becomes linear in the labor inputs: 

f( t)  = 8xo(t) + (1 - 6 )x~(t). (12) 

In this case, the contribution of any individual to output is independent of 
the number or composition of other workers. In other words, the relative 
unit of production is the individual. To anticipate some results, because of 
this independence, this is the one case for which a competitive market 
results in optimal dynamic training decisions. 

When o--+ oo, the production function becomes 

f ( t)  = min[~roxo(t), ~r~x~(t)]. (13) 

These two cases are qualitatively different from all other cases, i.e., 

- 1 < o - < o o .  

Another case, which deserves mention, because of its extensive 
treatment in the economics literature, although it is not qualitatively 
different from the general case for our purposes, is the celebrated Cobb- 
Douglas production function, obtained by taking the limit of (11) as o- ~ 0. 

2.7. Control Problem. The problem, then, is to choose the tra- 
jectory u(t), the critical untrainabitity level, such that all new entrants at 
time t with untrainability indices not greater than u(t) will enter the 
training program, so as to maximize the present value of future output: 

f? max+ o~(t)f(t) dt. (14) 
u(t)~R 
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The maximization procedure is subject to constraints on the rates of 
change of unskilled and skilled labor, (7) and (9), initial conditions on the 
state variables, nonnegativity of u (t), t-> 0, and the inequality constraints 

Xo(t) >- O, x~o(t) >-- O, Xo(t) + x~(t) -< 1, Vt. (15) 

The variable a( t)  is a discount factor satisfying the usual convergence 
assumption 

fo ~ a ( t )  < co. dt 

If the objective is to maximize the present value of the future stream of per 
capita GNP, then 

a (t) = exp(-rt),  

where r > 0 is the social rate of discount; while, if the goal is to maximize 
total GNP, then 

a ( t ) = L ( O ) e x p [ - ( r - n ) t ] ,  r > n .  

For convenience, we assume, with no loss of generality, that 

L0 ~ 1. 

3. Optimal Control 

In this section, we discuss the optimal control for the model presen- 
ted in Section 2. 

3.1. Necessary and Sufficient Conditions. Before stating the neces- 
sary and sufficient conditions for an optimal control, we show that any 
solution will satisfy the inequality constaints [or, equivalently, non- 
negativity restrictions on the three state variables xo(t), x~(t), and y(t), 
which must sum to unity] if the initial states are nonnegative. 

Lemma 3.1. Nonnegativity. If the inequality constraints (15) are 
satisfied at t = 0 by the initial conditions Xo, x~, then the solution of the 
integro-differential equation system (7), (9) will satisfy (15) for all t. 

Proof. When xoo(t) = O, 

2o~(t) = t3{1 - H[u  (t)]} ->- 0; 
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see (1) and (7). Sincex~o~-O, it follows immediately  that xo~(t)>-O for all 
t -> O. Similarly, when Xo(t) = O, 

2o(t)= /3 { Io  eXp(-fl')h(') d'  

- f o  exp(-/3~:)h [~b (so' u(t-~:))]thl[~, u(t-~)] d~} 

=/3 exp(-/3~){h(~:)-h[4~(~, u(t-~:))]~bl[~, u (¢ -~) ]}  d ; 

see (5) and (9). If ~ > u (t - ~:), 

h ( ~ ) -  h[~b(~, u (t-~))]~bl[~:, u ( t -~:)]  = h(s  c) - h(~)-  I = 0; 

see (2) and (6); while, if ~: < u (t - ~:), 

h (~c) _ h [4~ (~c, u (t - sc))]cb 1[~ U (/~ - -  ~ ) ]  = h (s c) - h [u (t - ~)] .  0 

= h ( ~ ) > - 0 ;  

see (2) and (6). Since x0 ~- 0, nonnegativi ty of Xo(t) is assured for t >- 0. 
To  prove that 

Xo(t) +x~(t) <- 1, 

note that, when 

xo(t) +x~( t )  = 1, 
t "  o ~  

2o( t )+2~( t )  = -flH[u(t)] +/3 Jo exp(-/3sc) 

x {h (~) - h [~b (~, u (t - ~:))]~b 1[~:, u (t - so)]} d~:; 

see (5), (7), and (9). Since 

y (t) = 0 

by (8), it follows that the integral above  is zero;  thus, 

ico(t) + 2~(t) = -flH[u (t)] -< O. 

Since 

Xo+Xoo- < 1, 

we have 

Xo(t) + xo~(t) ~-- 1 

for all t - O, thereby complet ing the proof  of the lemma. 
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The current-value formulation (Ref. 12) of the Hamiltonian 

Y( = ~ ( u )  

is 

Yg[u (t)] = F[xo(t), x~(t)] +,~ ~(t)fi [ 1 - H [ u  (t)] - xo~(t)] +,~ o(t)fi [c - Xo(t)] 

~t cx3 - f l  Ao(r)a (~" -- t) exp[--/3 (7" -- t)]h{~b[~r - t, u (t)]}¢ l['r 

- t,  u ( t ) ]  d7 

= BW[u( t ) ]+  F[xo( t ) ,x~( t )]+ Ao~(t) f l[1-x~(t)]+ Ao(t)fl[c -Xo(t)], 
(I6) 

where 

W[u  (t)] = -Aoo(t)H[u (t)] 

- /to(~')a (~"-t) e x p [ - f l ( ' r - t ) ] h { 4 [ ~ ' - t ,  u(t)]}¢l[~" 

- t ,  u(t)] dr. (17) 

The adjoint system is 

~ ( t )  = (q + fi ))t ~(t) - OF[xo(t), x ~(t) ]/Oxoo(t), (18) 

• ~o(t) = (q + f i )ao ( t ) -  aF[xo(t), x~(t)]/Oxo(t), (19) 

with transversality conditions 

A~(t) --> ~ = [1/(q +fi)][OF(Yo, 2oo)/OY~], (20) 

ao(t) ~ Ao = [1/(q +/3)][0F(Xo, 2oo)/02o], (21) 

where 20 and 2oo are the steady-state values of xo(t) and xo~(t) and 

q = - &  ( t ) /a  (t) = I r - n, with total GNP maximization, (22) 
t r, with per capita GNP maximization; 

see Section 2.7. 

Theorem 3.1. Necessary Conditions. If u* is an optimal control with 
corresponding trajectories x*  and x*, then the following results hold. 

(i) there exist nonzero trajectories , t*  and A* satisfying (18) and (19), 
respectively; 

(ii) W[u*(t)]-> W[u(t)] for all u and t ~ 0. 
The proof of this theorem follows from Lemma 3.1 and Refs. 12, 13, 

and 14. 6 

6 The proof in Ref. 14 assumes the existence of an optimal solution. 
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Lemma 3.2. Concavity. The function 

~°[x(t),  ~ (t), t] = max Yg[u (t)], 
u(t) 

defined by (16), is concave in x(t) for any given A(t), t. 

Proof. From (16), ~ is separable in x(t) and u(t). The production 
function is concave in x(t); all other terms in (16) are either linear in x(t) or 
independent  of x(t). Thus ~ o  is concave in x(t) for given l (t) and t. 

Theorem 3.2. Sufficient Conditions. If {u*, x*, l * }  is a Pontryagin 
path [i.e., if they satisfy the state transition equations (7) and (9) and the 
conditions of Theorem 3.1] with k* satisfying the transversality conditions 
(20) and (21), then u* is an optimal control. 

Proof.  This proof follows immediately from Section 5 of Ref. 15 and 
Lemma 3.2. Note that the term Pontryagin path comes from Ref. 1. 

3.2. Properties of the Optimal Control and Adjoint System 

Theorem 3.3. Necessary and Sufficient Conditions for Local Maxi- 
mization of ~g. For any trajectories A~(t) and A0(t) satisfying (18) and 
(19), respectively, for given trajectories xoo(t) and Xo(t), the control u*(t) 
maximizes W[u (t)] itt it satisfies the static efficiency condition 

o~ [u*(t)] exp[-f lu*(t)]  = I A~(t)/A°[t + u*(t)], A~(t) < Ao(t), 
/ 1, h~(t) >--ao(t). (23) 

Proof. Since 

a (t) = exp(-qt), 

condition (23) can be expressed equivalently as 

u *(t) = / (/3 + q)-  l{l°g> {A°[t + u*(t)]} -log[A ~(t)]}, 
10, Aoo(t)-Ao(t). 

A necessary condition for u to maximize W is that 

OW[u*(t)]/Ou (t) = 0, if u*(t) > 0, (25) 

OW[u*(t)]/Ou(t)-<-- O, if u*(t) = 0. (26) 
Now, 

0 W[u (t)]/Ou (t) = -A oo(t)h [u (t)] + A o[t + u (t)]or [u (t)] exp[-/3u (t)]h [u (t)]. 
(27) 

(24) 
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Clearly, a positive solution to (25) for u*(t) exists if 

A~o(t) <Ao(t). 
Furthermore, since 

a[u( t ) ]  exp[-/3u(t)] = 1 

for u (t) = 0, (27) is negative for 

,~o(t)>A0(t), 

thereby establishing the necessity of (23) or (24). 
To prove sufficiency, we examine the second derivative of W with 

respect to u: 

d 2 W /  du 2 = -2 t~(  t )h '(u ) + 2~o( t + u )~(u  ) e x p ( - f i u  )h (u ) 

+ A o(t + u)a  '(u) exp(-f lu)h (u) -/3A 0(t + u)a  (u) exp(-f iu )h (u) 

+,~o(t + u )o~(u ) e x p ( - f l u  )h ' (u  ). 

If u * > 0  we can replace A~(t) with a ( u * ) e x p ( - f i u * ) A o ( t + u * ) ;  see (23). 
Thus, 

d 2 W ( u  *) /du  2 = exp(-flu*)o~ (u *)h (u *)[Ao(t + u *) - (fi + q)Ao(t + u *)], 
(28) 

since 

Since 

q = -d~/a. 

exp(-flu*)ot (u*)h (u*) > 0 for u* > 0, 

one has 

sign [d 2 W ( u  *) /du  2] = sign[/£o(t + u *) - (fl + q)Ao(t + u *)] 

= sign{-OF[xo(t + u*), x~o(t + u*)]/OXo(t + u*)} < 0, 

since F was assumed to have positive first partial derivatives; see (19). But 
this result is the second-order condition for a relative maximum. This 
completes the proof of the theorem. 

The important result (23) or (24) has a simple economic inter- 
pretation. If the object is to maximize the discounted stream of total GNP, 
then 

ee (t) = exp[- ( r  - n)t], 

and (23) may be written as 

A~(t) = exp[ - ( r  + y)u*(t)]Ao[t + u*(t)]. (29) 
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Since the adjoint variables are current-value multipliers, Ao~(t) is the 
present value of an extra unskilled worker at time t, while Ao[t + u*(t)] is 
the present value at time t+u*(t)  of an extra skilled worker at time 
t+u*(t).  However,  because of the assumed exponential retirement 
process, one worker today reduces to exp ( -yu )  workers in u years. Thus, 
the present value at time t + u*(t) of a worker who enters training at time t 
and completes it (if he survives) at time t + u*(t) is only exp[-yu*(t)]Ao[t + 
u*(t)]. Discounting this back to time t, the present value at time t of a 
worker who enters a training program at time t which is to be completed at 
time t + u*(t) is exp[ - ( r  +y)u*(t)]Ao[t + u*(t)]. Condition (23) states that 
u*(t) should be chosen such that society is indifferent to whether or not an 
individual with an untrainability index of u*(t) chooses (or is forced) to 
become trained. 

Lemma 3.3. Upper Bound on Rate of Increase of ~ (t). Along any 
optimal path, 

,~ (t + 8) < exp[(q +/3)8t]~ (t), Vt, V 8t > 0, i = 0, oo. (30) 

Proof. From (18) and (19), 

A~(t +St) = exp[(q +/3)(t +St)] 

I- f t +~t 
× [a i (O) - jo  [OF[xo(~-),x~(~)]/Oxi(~')]exp[-(q+/3)r]d'r] 

= exp[(q +/3) St]A, (t) 

i 
t + ~ t  

-exp[ (q  +/3)(t +St)] OF[xo(~r), x~(~')]/Oxi(~') 
t 

× exp[-(q  +/3)~] dr. 

Since the last term on the right is positive, the lemma follows. 
This result also has a simple economic interpretation. As noted before, 

A~(t +St) is the present value at t +St of the discounted stream of future 
earnings of a worker of type i, i = 0, oo, at time t + St. Due to the assumed 
exponential retirement process, exp(y 60 workers at time t reduce to one 
worker at time t + St. Now, suppose that we take exp(,/6t) workers at time 
t. Their marginal product for the next 6t year must exceed zero. Further- 
more, the present value at time t of their marginal product from t + 8t to co 
must be exp( - r  8t)A~ (t + 6t). Thus, 

exp(y 6t)Ai (t) > exp( - r  8t)Ai (t + St), 
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whence 

A~ (t + St) < exp[(r + y) 6t]A~ (t) = exp[(q +/3) 6t]A~ (t). 

There is an alternative simple interpretation of this lemma. Define 
)tst(t) as the present value at time t of a trainee with 6t more years of 
training remaining. Clearly, 

A~t (t) = exp[-(q +/3) 6t]Ao(t + 6t). 

But, given the nature of the retirement process, obviously 

a~,(t) <A0(t). 

Thus, 

exp[-(q +/~) 8t],~o(t + 6t) <,~ o(t), (31) 

which is the result given by (30). tn fact, the result (31) is also equivalent to 

Aat~ (t) > A~2(t), Vt, 6tl < 6t2, 

which implies that trainees with less time until completion of the training 
program are worth more than trainees with more time. 

Theorem 3.4. Along any optimal path, the control satisfying the 
static efficiency condition (23) is unique. 

Proof. First, we prove that, if u satisfies (23), then u +6u cannot 
satisfy (23) for any 6u >0;  this will be proved by contradiction. Given u 
satisfying (23), suppose that u +au also satisfies (23); then, 

exp[-q (u + 6u)] exp[-/~ (u + 6u)] = 2t ~(t)/2t o(t + u + 6u). 

From lemma 3.3, we have 

,~o( t + u + 6u ) < exp[(q +/3) 6U ]Ao(t +u);  

thus, 

But, 

exp[-(q +/3)(u +/~u)] > A oo(t)/A o(t + u). 

exp[-(q +/3)u] = A oo(t)/~o(t + u)  

by Theorem 3.3, since u is an optimal control by hypothesis. Consequently, 

exp[-(q + fl)  6u] > 1, 

which is impossible since q +/3 and 6u are positive; this contradiction 
establishes the result that, if u is an optimal control, then u +6u  cannot be 
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an optimal control for 6u > 0. If 6u < 0, let 

v = u +6u, 6v = -6u.  

By the above result, both v and v + 6v cannot be optimal controls, com- 
pleting the proof of the theorem. 

Note that Theorem 3.4 does not imply that there is a unique optimal 
control path. 

Theorem 3.5, Necessary and Sufficient Condition for Global Maxi- 
mization of ~£. On any optimal path, the static efficiency condition (23) is 
the necessary and sufficient condition for u* to maximize globally the 
Hamiltonian ~ in (16). 

Proof .  The proof follows immediately from Theorems 3.3 and 3.4. 

Theorem 3.6. Sufficiency. If u*(t), x*(t), A*(t) satisfy the state 
dynamics (7) and (9), the adjoint dynamics (18) and (19), the transversality 
conditions (20) and (21), and the static efficiency condition (23) almost 
everywhere, then u*(t) is an optimal control. 

Proof.  The proof follows immediately from Theorems 3.2 and 3.5. 

Theorem 3.7. On a converging optimal trajectory, 

ti*(t) = exp[(q +/3)u*(t)] 

[ OF[xo(t),x~o(t)]/Oxo~(t) ] - 1 .  
x OF{xo[t + u*(t)],xo~[t + u*(t)]}/aXo[t + u*(t)] 

(32) 
Proof.  Differentiating the static efficiency condition (23) with respect 

to time, we have 

-(q +t3) exp[-(q +fl)u*(t)]f~(t) 
Ao[t + u *(t)])~(t ) -A ~(t)~(o[t + u*(t)][ 1 + fi *(t)] 

{Ao[t + u *(t)]} 2 

Multiplying both sides by A o[t + u*(t)] and subtracting 

(q +/3) exp[-(q +/3) u*(t)]a o[t + u *(t)]  

from both sides gives 

-(q +/3) exp[-(q +/3)u*(t)]Ao[t + u*(t)][1 + fi*(t)] 

= - (q  +/3) exp[-(q +/3)u*(t)]Ao[t +u*(t)]+Xoo(t) 

- {A o~(t)/A 0[t + u *(t)]})~o[t + u*(t)][  1 + ti *(t)]. 
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Applying (23) to the first and third terms on the right and grouping terms in 
1 +ti*(t),  we have 

exp[ -  (q + fi)u *(t)]{,(o[t + u *( t ) ] -  (q + fl)A 0[t + u *(t)][ 1 + ti *(t)] = J(~(t ) 

- ( q  + fl),~o~(t). 

Applying (19) to the left-hand side and (t8) to the right-hand side, we have 

exp[- (q  + 13)u *(t)][-OF{xo[t + u *(t)], x~[t + u *(t)]}/Oxo[t + u *(t)]] 

× [1 + fi*(t)] = -OF[xo(t), x~o(t)]/Ox~(t), 

from which (32) follows directly, completing the proof. 
An immediate consequence of this theorem is the following corollary. 

Corollary 3.1. On a converging optimal trajectory, 

ti*(t) >- -1 ,  t_>0. 

Proof. The proof follows immediately from Theorem 3.7 and from 
the assumed nonnegative first partial derivatives of the production func- 
tion. 

This result is very important; it guarantees that the trajectory u will 
intersect any line with a slope of - 1  at most once, as illustrated in Fig. 1. 
Trajectories such as that illustrated in Fig. 2 are necessarily nonoptimal. 
The stock of trainees at time t consists of those new entrants at the time 
t - z  with untrainability indices at least equal to ¢, but not greater than 
u * ( t - z ) ,  if any, who survive until time t, integrated over r - 0 ;  see (3). 
This quantity is simply an integral over all values of z>-0  for which 
u*(t - z) exceeds ~-, i.e., over all values of ~- under the areas in Figs. 1 and 2 
indicated by diagonal lines. The importance of Corollary 3.1 is that it 
guarantees that, if ¢* is the smallest value of z with 

u*(t - -r) = z, 

then 
u*(t-7)<-~: for all ~'> ~-*. 

An immediate consequence of Corollary 3.1 is that 

u*(t +at) >- u *(t)-at .  

This means that if, at any time t, all individuals requiring no more than 
u*(t) years of training enter training programs, then, for all 

t < ' r < t + u * ( t ) ,  

at least, all individuals with untrainability indices less than or equal to 
u*(t)+ t - ' r  [that is, at least all individuals able to complete their training 
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u*(t) 

t=O t 

÷T=O 

Fig. 1. A possible optimal control scenario. 

by time t +  u*(t)] will be trained. That is, once one optimal decision has 
looked forward to a point t', all future optimal decisions must look forward 
at least that far. 7 

3.3. Optimal Long-Run Stationary Equilibrium. In this section, we 
prove the existence and uniqueness of the stationary optimal control, or 
long-run stationary equilibrium (Ref. 1, pp. 50-51) and examine the nature 
of the influence of the various parameters on the stationary optimal con- 
trol. 

7 This important  property is most easily seen by noting that 

(d/dt)[t + u*(t)] = 1 + ti *(t) -> 0, 

by Corollary 3.1. 
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u-~ (t) 

t 

*T=0 

Fig. 2. An impossible optimal control scenario. 

t=0  

Theorem 3.8, Unique Stationary Optimal Control. For CES 
production functions with -1-<-o-<c e, there exists a unique stationary 
optimal control ti which is the solution to 

[I2t(a)/{1-H(a)}]l÷"(exp(Cla)/.(a)]=8/(1-8), (33) 

Proof. 

where 

/~r (t7)= exp(-/3sC)h (~ :) dr. 

Under stationary conditions, 

(34) 
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Since u is optimal only if it satisfies the static efficiency condition (23), we 
have 

ot (a) exp(-/3ti) = X~/Xo = [Of(~o, Y~)/Og~]/[OF(~o, ~)/0~o] 

= [(1-6)/6](,2o/~)~+°'; (35) 

see (20)-(21) and (12). Equating 2~(t) and 2o(t) in (7) and (9) to zero and 
solving for the steady-state values of 2~ and 20 gives 

~= 1 - H ( a ) ,  ~o =/-it(iT); (36) 

see (34). Substituting these results into (35) gives (33). 
As t7 increases from zero to infinity, the left-hand side of (33) 

increases monotonically from zero to infinity for 

and from unity to infinity for 

Since 

- l < o - < a o  

o" = -1.  

i.e., skilled labor is more productive than unskilled labor, there exists a 
unique li satisfying (33). This completes the proof of the theorem. 

Theorem 3.9. If there is more than one converging Pontryagin path, 
then they all converge to {ti, g, A} defined in (33), (36), (20), and (21). 
Furthermore, a (t) > 0, Vt along these paths. 

Proof. The first part of the theorem follows immediately from 
Theorem 3.8 and the definition of a Pontryagin path. The second part of 
the theorem follows from the fact that, if 

at some time z, then 

h~(z)---O, for i = 0  or oo 

A~(t)<0, t>_z, 

by (19) or (18); therefore, A (t) cannot converge to X, which is positive. This 
contradiction with the first part of the theorem completes the proof. 

In economic terms, this means that, at each point of time, the present 
value of the marginal product stream of any worker (or, equivalently, of 
the earnings stream of any worker) is strictly positive along any converging 
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Pontryagin path. In fact, it is easily shown that, along any such path, 

fit °° Ai(t) = exp[-(q +/3)(~- - t)]{OF[xo(~), xo~('c)]/Oxi("r)} d~, 

where 

OF[ xo('r ), xod'r ) ]/ Oxi & ) 

is the marginal product of x~ at time ~'. 

i = O, co, 

Theorem 3.10. The stationary optimal control ti is an increasing 
function of 6 and a decreasing function of q and/3. 

Proof. The left-hand side of (33) is a strictly increasing function of ~/. 
Since the right-hand side of (33) is a strictly increasing function of 6, 
0 <- 6 -< 1, and since the left-hand side of (33) is a strictly increasing func- 
tion of q and fl (specifically, q +/3), the theorem follows immediately. 

Theorem 3.11. 

then, 

Let a be the solution of the equation 

/~(8) = t - H ( ~ ) ;  

sign(&i/0o-) = sign (fi - t~). 

(37) 

Proof. Replacing a(~)  with exp(-qt/)  in (33), taking natural 
logarithms, differentiating partially with respect to o', and solving for Oa/&r 
gives 

log[/4(ti)/{1 - H(ti)}] -/ ,  
aa/ao- (38) |q +/3 + (1 + o-)[(/~ (~-//~r 02)) + (h 02)/{1 -H(a )} ) ] J  

where 

fi(a) = a (a)/aa. 

Since the denominator of (38) is positive, the sign of 8a/ao- is determined 
by the numerator. Thus, the proof follows immediately from the definition 
of ff in (37). 

The golden-rule control a is defined as that control satisfying 

F[-fo(~), )~o~(a)]->F[Xo(a), £~(~)], V~. (39) 

Corollary 3.2. There exists a unique golden-rule control t~; fur- 
thermore, ~ > ti for - 1 <- o" < co. 
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Proof. The golden-rule control is the special case of a stationary 
optimal control for which the discount rate r = 0 ;  thus, existence and 
uniqueness follow from Theorem 3.8 for -1---or < oo. For the remaining 
case cr = co, static maximization of the production function gives the unique 
golden-rule control t~ which satisfies 

o r  

xoo(a)/~o(a) = ~o/~oo, 

[I -H(a)]/ /q(t~) = rro/~-oo. (40) 

Thus, existence and uniqueness are established for - t  _o-_<oo. The 
inequality fi > a follows immediately from Theorem 3.10. 

Theorem 3.12. For perfectly substitutable labor inputs [the linear 
production function (12)], the unique, converging optimal control is 

u*(t) = t7 = [1/(q +/3)] log[6/(1 -- 6)], Vt, (41) 

for any arbitrary initial conditions. 

Proof. The adjoint system (18), (19) reduces in this case to 

,~oo(t) = (q +/3)aoo(t)- (1-6) ,  

,~o(t) = (q + / 3 ) ) t o ( t ) - 6 .  

The solutions of these differential equations are 

)t ~(t) = Coo exp[(q +/3)t] + (1 - 6) / (q  +/3), (42) 

ao(t) = Co exp[(q +/3)t] +6/ (q  +fl) ,  (43) 

where C~ and Co are constants to be determined by the transversality 
conditions 

)t~(t)-+ ~oo = (1 -6) / (q  +/3), 

)to(t) "* ~o = 6/(q +/3); 

see (12), (20), and (21). Applying these conditions to (42) and (43), we get 

Coo=Co=0; 

therefore, 

)too(t) = ),~o, )to(t) =~o, t>-0. 

Applying this result to the static efficiency condition (23) gives (41). Thus, 
by Theorem 3.3, u* given by (41) is an optimal control. Uniqueness follows 
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from the instability of (42) and (43): any perturbation of &(t) from ),i will 
cause hi (t) to diverge from that point on. This completes the proof. 

The economic interpretation of this result is simple. As noted in 
Section 2, for linear production functions, the marginal productivity of any 
individual is independent of the level or composition of employment, 
either at present or in the future. Thus, the critical untrainability level ti is 
constant over time. In particular, for the total GNP maximization case, it is 
exactly that value for which expected discounted lifetime income (marginal 
product) is independent of whether the individual is trained (see the 
discussion following Theorem 3.3). 

Theorem 3.13. Global Stability of Dynamics. For any constant 
control ~ with corresponding steady states £o and £~ given by (36), 

xo(t)~Yo and x~(t)~£,~. 

Proof. 

where 

Replacing u(r) with ti and t - r  with {: in (9) yields 

2o(t) =/3 { c - x o ( t ) - J 5  exp(-N:)hD 1(~, /~)dsC 1 

= ~ {C-Xo(t)-  I S  exp(-~ ' )h( ' )  d '  } 

= ~ { c - xo( t ) - [ I o  e X p ( - ~  )h (~ ) d~ - f ; e x p ( - ~  )h (~ ) d~] } 
A 

= ~ {c - Xo(t) - [c - H(a)]} = -/3co(t), (44) 

Ei(t) = xi(t)-£i, i = 0, oo; (45) 

see (2) and (6), and see (5) and (34). Also, replacing u (t) with a in (7), we 
have 

x~(t) = ~ [ 1 - H (a) - x~(t)] = -flew(t); (46) 

see (36) and (45). Since 0</3 < 1, (44) and (46) imply globaI stability, 
completing the proof. 

Since 

~, (t) = ~i (t),  

see (45), we have the following result. 

Corollary 3.3. Exponential Damping of Perturbations. Any pertur- 
bation of equilibrium dies out exponentially at a rate/3. 
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3.4. Competitive Market Dynamics. In this section, we describe the 
dynamics under competitive market conditions. We also compare the 
market solution with the optimal solution and discuss various govern- 
mental policies for inducing the market to behave optimally. We assume 
static expectations: 

wf(t+'r)=wi(t) ,  i =0,  oe, 0_<r<oe,  (47) 

where wff(t +~-) is the value of w~(t +~-) that each individual expects as of 
time t. 

If a new entrant to the labor force at time t decides not to be trained, 
then the present value of his lifetime earnings is 

¢ *  c¢3 

W~(t) = Jo exp[-(r + y)~-] w~ (t + ~') dz. (48) 

If an individual with untrainability index u decides to get trained, the 
present value of his expected earnings stream is 

Wo(t) = exp[-(r  + y)T]WoE(t + ~') dr 
u 

=exp[-(r +y)u] exp[-(r +y)~]woE(t +u +r) dr. (49) 

If new entrants to the labor force make the training decision so as to 
maximize the present value of expected lifetime earnings, then, at each 
instant t, there will be a critical value urn(t) satisfying 

Wo(t) = Wo~(t), (50) 

such that all individuals with untrainability indices less than urn(t) will 
choose to be trained, while those with untrainability indices in excess of 
u(t) will choose not to be trained [those with indices identical to urn(t) are 
indifferent]. Now, if individuals knew all future wage rates [i.e., wo~(t +~) 
and Wo(t +~-) for all ~->0], then the market control would be optimal; see 
(23). However, the market does not know future wage rates. Applying the 
static expectations assumption (47) to (48)-(49) gives 

W~(t) = w~(t)/(r + y) 

Wo(t) = exp[-(r + y)u ]Wo(t)/(r + y); 

applying these results to (50) gives 

exp[-(r  + y)u m (t)] = w~(t)/wo(t), (51) 

where urn(t) is the market control at time t. Thus, we can state the 
following theorem. 
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Theorem 3.14. Under dynamic conditions, the market (with static 
expectations) is in general not optimal. 

The one case for which the market solution is always optimal is the 
linear production function (12); this is summarized in the following 
theorem. 

Theorem 3.15. With the linear production function (12), the free 
market solution maximizes the present value of total GNP. 

Proof. Since we(r)=6 and wo~(t)= 1 - 6  for all t->0, the market 
control (51) becomes 

u " (t) = [1/(r + 7)] log[6/(1 - 6)], 

which is identical to the optimal control; see (41). 
Since the linear production function has been discussed earlier, addi- 

tional elaboration is not required. We do note, however, that the market 
will not maximize the present value of per capita GNP unless individuals 
use the discount rate r + n, rather than r, or act as if the death rate is really 
fl, not 7. 

Theorem 3.16. Stationary Optimality of Market Solution. Under 
stationary conditions, a control is optimal (it maximizes the discounted 
total GNP) iff it is the market solution. 

Proof. From (51), under stationary conditions, 

exp[-(r + y ) t i ' ]  = woo/w0 = F~/ko = A~/Ao, 

by marginal productivity conditions and by (20) and (21). This is the 
condition for a stationary optimal control; see (35). 

3.4.1. Tax Subsidy Scheme. Let To(t) be the hourly tax rate for 
skilled workers and Too(t) be the hourly tax rate for unskilled labor. Then, 
from (51), 

exp[-(r + y)u " (t)] = [w~(t) - T~(t)]/[wo(t)- To(t)]. 

By reference to (23), it is seen immediately that the market will behave 
optimally iff 

A~(t)/Ao[t + u*(t)] = [woo(t)- To~(t)]/[Wo(t)- To(t)]. (52) 

We impose the condition that the tax rate be purely redistributive: 

- To(t)xo(t) = T~(t)xoo(t). (53) 
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Solving (52) and (53) for To(t) and To(t) gives 

To . . . .  ~ A~(t)Wo(t)-Ao[t + u*(t)]w~(t)] 

and 

-x°(t)|l Ao~(t)wo(t)- A o[/+ u*(/)] woo(t)], T=(t) 

Since this tax-subsidy scheme simply adjusts market wages so that the net 
market rate is equivalent to the appropriate A in the optimal control 
solution, the net rates are necessarily nonnegative. This analysis leads to 
the following theorem. 

Theorem 3.17. There exists a stable tax-subsidy system which makes 
the optimal control policy controllable 8 (i.e., which induces the market to 
behave optimally under dynamic conditions). 

3.4.2. Monetary Policy. It may be possible to find a time-varying 
interest rate which induces the market to behave optimally. Let q(t) be the 
time-varying short-term interest rate, assumed known for all t + ~-, z -> 0, to 
each individual entering the labor force at time t, with q(t)--> r. Then, the 
market efficiency condition becomes 

exp l - y u " ( t ) -  J, q(,) d~'} = w~(t)/wo(t). 

The problem, then, is to find a trajectory q, with q(t)-~ r, that satisfies this 
equation for 

um(t) = u*(t); 

i.e., 

exp{ - f'+"*(t) ~t dr-yu  *(t) jl = wo~(t)/Wo(t) q(r) 

OF[xo(t), x~(t)]/Oxoo(t) 
OF{xo[t + u *(t)], xoo[t + u*(t)]}/OXo[t + u *(t)] 

s A policy is said to be controllable by a given set of instruments if there exist values of the 
instruments, varying over time in general, which cause the private and governmental sectors 
together to realize the policy. If the values of the instruments converge to finite values, then 
the policy' is said to be controllable with stable instruments (see Ref. I, pp. 120-121). 
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o r  

~ t+.*~,) q (r) d~r = - y u  *(t) 

OF[xo(t), xoo(t)]/Ox~(t) 
- (OF{xo[t + u ~  x-~'~[t--~u ~ o [ t  + u*(t)]] = b (t). 

Let 

fhen, 

a(t) = t+ u*(t); 

i a~,~ q ( r )  d r  = b ( t ) .  

Differentiating with respect to t, we have 

q[a (t)]d (t) - q (t) = b (t), 

o r  

q [a (t)] = [q (t) + b (t)]/a (t). 

Note that 

since 

also, 

a(t)>-t, 

u*(t)_>0; 

(54) 

while 

see (13); in this case, 

a F ( t ) / a x ,  ( t ) -  = 

OF(t)/Ox,(t) + = O, 

i = 0, 0o. Consequently, the Hamiltonian also is not differentiable when 

~(t)_>0 

by Corollary 3.1 (and the equality can occur only when tr = 0o). 

3.5. Nonsubst i tutable  Inputs.  When cr = 0o in the production func- 
tion (11), the production function is not differentiable along the ray 

~roXo(t) = ~ r ~ ( t ) ;  (55) 
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(55) holds. This difficulty is extremely relevant, since, if the stationary 
optimal control exists, it is on this ray. We present some results for this case 
below. 

Theorem 3.18, The following relation holds. 

lim ~. = ~, 
t r ~ o o  

where ~ satisfies 

~roH(a) = 7r.[1 - H(a ) ] ,  

and where the subscript or has been added to a to show its dependence on 
0". 

Proof. Modifying (33) to take account of ~ro ~ ~r~ gives 

[/-1( ~ )/{ 1 - H(t2 )}]i+, [ e x p ~ a  ) /a (a)3 = & r j / (  1 - 6 )Trio °. 

Multiplying both sides by (~0/Troo) 1+" and raising both sides to the (1 + 0") -1 
power gives 

~(~7)rro exp[a (q + fl)/(1 + o-)]/[1 - H(a)]zro~ = [6~-o/(1 -6)~r~] 1/~1+"~. 

Taking the limit as cr ~ oo gives 

B(a)~o/ [1 -H(a) ]~ -~  = ~; 

this completes the proof. 

Theorem 3.19. For the case of nonsubstitutable labor inputs (or = 
oo), ~ is a stationary optimal control. 

Proof.  Let x(u) denote the steady state corresponding to a constant 
control u. Let the functional Jo-[u,x(u)] be the value of the objective 
function (14) if x(u) is the initial condition and u is any control trajectory, 
By telescoping, we have 

1.[u, x ( a ) ] - J d a ,  x(a)] = J~[u, x(a) ] -J . [u ,  x(a.)] + J.lu, x(a.)] 

- J~ [ i . ,  x(a.)] + J . [a . ,  x(a . ) ] -yoJa,  x(a)]. 

Now, we examine the right-hand side as o" becomes large. The first 
difference is small because of the continuity of J,, in x(u) and because 

l im x ( a . )  = x(~) .  
0"-->O{3 



J O T A :  VOL.  23, NO.  2, O C T O B E R  1977 2 7 3  

The second difference is negative by the optimality of ~ from Theorem 3.8. 
The third difference is small because the functional J ,  converges uniformly 
to the functional J~ and its arguments 

f ~ f i  and x(a~)-~x(tT). 

Hence, 

J~[u, x(~)] -J~[a, x(~7)]_< 0, vu, 

implying that t~ is a stationary optimal control with the initial condition 
x(fi). 

4. Extensions 

4.1. Horizontal Heterogeneity. The model of vertical heterogeneity 
of labor (i.e., skilled and unskilled workers) examined herein extends 
directly to horizontal heterogeneity (equal but nontransferable skills, e.g., 
plumbers and electricians). For example, suppose that we allow two types 
of skilled labor Xo (I) and xo (a), with output per worker given by 

f ( t )  = {~l[XO(1)(t)]  - '~ + ~2[xo(Z)( t )]  - '~ + (1 - -  81 --  ~2)[Xoo(t)]-~} -1/'~. 

Let v(t) be the fraction of the flow of new trainees [i.e., of u(t)L(t)] being 
trained for Skill Class 1. Then, the optimal control v*(t) is the bang-bang 
control 

v*(t)=O if x (o2)[t +u*(t)]/x (ff)[t +u*(t)] - - (z) ' - (1)  <-Xo /Xo , 

V *(t) = 1 if x(oZ)[t + u *(t)]/X(o~)[t + u *(t)] - -(2). -(~) ~>Xo /Xo , 

with the singular control 

/)~g(t) = ~ = [ ] - ~ - ( ~ 1 / ~ 2 ) 1 + ° ' ]  -1  

once 

x (o2)[t + u *(t)]/x to~)[t + u *(t)] - r. (2)/r, (1) --.~0 I .~0 • 

In other words, horizontal imbalances within any skill level are corrected in 
minimum time, since, by assumption, any worker being trained to a parti- 
cular skill level is equally capable of being trained for any occupation at 
that skill level. 

All of the results reported herein hold for this extended model. 

4.2. Capital. When capital is introduced into the model as an 
argument in the linear homogeneous production function, all of the results 
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reported above hold with obvious modifications. The additional state 
equation is 

l~(t) = s(t)F[xo(t), xoo(t), k(t)] - i~k(t), 

where k(t)  is the capital-labor ratio, s(t) is the savings rate, t~ is the 
constant depreciation rate. The optimal control s*(t) is a bang-bang con- 
trol with the singular control 

= Iz£/F(~o, ~o~,/~), 

which is the familar result for Ramsey models (see Ref. 1, Chapter 3). 
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