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The Game of Two Identical Cars 1 

A. W. MERZ 2 

Communicated by Y. C. Ho 

Abstract .  This paper describes a third-order pursuit-evasion 
game in which both players have the same speed and minimum 
turn radius. The game of kind is first solved for the barrier or 
envelope of capturable states. When capture is possible, the game of 
degree is then solved for the optimal controls of the two players as 
functions of the relative position. The solution is found to include 
a universal surface for the pursuer and a dispersal surface for the 
evader. 

1. I n t r o d u c t i o n  

The  two-car differential game problem was originally defined and 
examined by Isaacs in Ref. 1. In  this pursuit-evasion game, the pursuer P 
and the evader E both have positive min imum-turn  radii and constant 
speeds, and motion is restricted to a plane. The  state vector of the game 
has three components,  which are chosen as the Cartesian coordinates 
x, y of E's position relative to P and the angle 0 between the two velo- 
cities. The  game terminates when E's separation from P becomes less 
than a specified capture radius, and it is the termination time that  P 
seeks to minimize and E to maximize. The  general two-car probtem 
has three independent  parameters: the speed ratio and the two ratios of 
capture radius to min imum-turn  radius. 

The  present s tudy is a specialization to the case of two identical 
cars; i.e., both P and E have unit  velocity and unit  maximum turn rate, 
so that  only one parameter remains, which is the ratio fi of capture 
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radius to the common minimum-turn radius. It is assumed that the roles 
of P and E do not change during the game, so that, when capture can 
occur, a necessary condition to be satisfied by the saddle-point controls 
of the players is the Hamiltonian (which can be derived as in Ref. 1) 

min max[V,.~? @ PLjj, @ V00 @ t] ==: 0. (t) 

Here, the controls are the normalized turn rates of P and E, % and e~, 
where ! ~ I ~ I, which are to be found as functions of the state vector, 
Ix, y, 0]. The adjoint vector [Vx, Vy, Vo] is known in terms of the 
terminal conditions of the game, so the overall game can be viewed 
generically as a two-point boundary-value problem. 

1.1. P r e l i m i n a r y  R e m a r k s .  Isaacs' treatment of this problem 
is restricted to the case of a faster pursuer, and is further limited to a 
study of the optimal strategies and trajectories on the barrier. This is 
a surface in xyO-space representing solutions to the game of hind. Across 
the barrier, the optimal time-to-go is discontinuous, and on this surface 
the optimal paths contact the capture circle tangentially, without pene- 
trating, as shown in Fig. 9.2.3 of Ref. 1. For arbitrary parameter values, 
the barrier may be open or closed; and, when it is closed, capture or 
termination of the game is possible under optimal play only for those 
initial states bounded between the capture circle and the barrier. 

In the specialized case analyzed here, capture does not necessarily 
occur, because the players' speeds and maximum turn rates are equal. 
If  the initial velocities are parallel (for example, 0 = 0), the equations 
of relative motion show that E can maintain the initial radial separation 
forever, by simply duplicating P's strategy. The barrier is therefore 
closed, and the game of kind is concerned with the determination of this 
surface. 

The calculation of the barrier begins with the determination of a 
terminal relation among the state components, which expresses the 
tangential relative velocity condition. Values of the normalized adjoints 
are also known in terms of the state at this time. The controls of both 
players at termination are thus known. Retrogressive integration of the 
state equations is then possible in terms of the terminal states. Sketching 
a typical pair of trajectories in realistic space, however, shows that, when 
E is sufficiently far from P on this path, E could avoid P entirely 
by adopting a different policy, despite the fact that neither player's 
switch function has changed sign at this retrograde time. This initially 
puzzling feature of the solutions was found to have a precedent in the 
second-order homicidal chauffeur game. In this game, for certain para- 
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meter values, the right and left barriers intersect ahead of the capture 
circle at an evader's dispersal point, and the barrier loci beyond this 
point are discarded (Ref. 1, p. 235). In the present third-order problem, 
the two barrier surfaces are found to intersect along an evader's dispersal 
line, and the retrograde solutions beyond this line are no longer optimal. 
The determination of this line is simple, in principle, though it requires 
consideration of rather complex simultaneous equations in practice. 
In the analysis to follow, important relations will often be given in func- 
tional form only, to avoid the explicit algebraic details involved in the 
barrier calculation. 

When capture is possible, termination must occur with E entering 
the capture circle between the two barrier surfaces. Solutions to the game 
of degree are then found by first determining strategies for P and E as 
functions of the state at the time of capture. This results in four possible 
sets of terminal controls, each of which is optimal in a specific area of the 
terminal region of the state space. As with the game of kind, the corres- 
ponding sets of terminal conditions can be integrated retrogressively, 
away from the capture circle, so as to fill the capture volume with optimal 
trajectories. This procedure is complicated by the presence of a dispersal 
surface for E and a universal surface for P, but these surfaces intersect 
the capture circle along the lines which subdivide the terminal area, as 
mentioned above. Consequently, their influence on the shapes of the 
various strategy regions can be predicted qualitatively as these surfaces 
are generated away from the capture region. The actual calculation of 
these surfaces is by simultaneous numerical solution of a set of trans- 
cendental equations, which are the general solutions, in retrogressive 
time, to the differential equations of the game. 

These surfaces essentially provide the solution to the game, by giving 
those states from which capture is possible, and by specifying optimal 
strategies for both players as functions of the state when capture is 
possible. The results are finally shown as 0 = const sections of the three- 
dimensional state space, because this seems to be the simplest and clearest 
way of presenting these strategy volumes. 

1.2. Equations of Motion and Terminal Conditions. With 
the notations shown in Fig. l, the equations of relative motion of the game 
are found to be 

2 = --~lY ~ sin 0, ~ ........ 1 + ~lx -~ cos 0, 0 ~ --~1 ~ ~2. (2) 

Terminal conditions of the states are expressible as the vector 

xo = [fi sin ¢o, fi cos ¢o, 00], (3) 
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J / "  0 ¸ 1 

1 E 

center, ~2=+I 

L P'S minimum-turn 
center ~ ~i=+i 

Fig. 1. Notations and coordinates. 

where the polar coordinate 4o must  be such that the radial velocity at 
termination is nonpositive. Tha t  is, 

~0 = cos (0o  - S0) - c o s  40  <~ o, (4) 

The  terminal condition of the game of kind is given by the equality in (4), 
so that: a safe-contact trajectory which touches the capture circle tangen- 
tially must  satisfy either 

eo .... 2~o ( 5 )  

o r  

Oo - O .  (6) 

These terminal conditions denote the boundary of the usable part (or 
BUP),  as shown in Fig. 2, and the game of degree terminates on the 
portion of the capture circle between these lines, where f0 < 0. Note  

/ 
BUP 

UP 

Fig. 2. Terminal strategies on capture circle. 
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that, because the speeds of the players are equal, the BUP does not 
intersect the xy-plane at ¢o = ~r/2, as is the case when P is faster (Ref. 1, 
Fig. 9.2.2). 

The  main equation or Hamiltonian for the game of kind is written as 

min max[v~2 -t- vup + vo0] = 0, (7) 
0"i if2 

where the adjoint vector in this case can be initially normalized to unit 
magnitude as in Refs. 1 and 2. Substi tuting (2) into (7) and performing 
the indicated operations yields 

~i = sign S G sign(v~y -- vyx q- Vo), % ..... sign vo. (8) 

The  adjoints in turn satisfy the equations V~, = --OIt/c~x or 

Px = - - e l P Y  , l )y  - - -  a l ? ~ x ,  1)0 = --V~ COS 0 + % sin 0, (9) 

where the values at termination of the game of kind are writ ten vectorially 
as 

V% = [sin ¢0, cos ¢0,0]. (10) 

The  terminal states in the game of degree are as given by (3), where 
Ineq.  (4) holds. Strategies are given in terms of the adjoints I/~, Vv, Vo, 
which are the gradients given in (1). The  adjoints satisfy the equations 

17~ = --alVy,  l~y == %V~, 170 = --Vx cos 0 @ Vy sin 0, (11) 

and the terminal values are easily found in terms of the radial relative 
velocity; i.e., at termination, the main equation can be expressed in 
terms of polar coordinates, so that 

V~o = --1/%, (12) 

where ro is given by (4). Hence, denoting the retrograde derivative by a 
superscript circle, we have 

V~o = sin(~o)/fio, Vvo = cos(¢o)/fio, Vo, = O,  (13) 

where ro is positive when ¢o < 20o- 

1.3. T e r m i n a l  S t r a t e g i e s .  When  the barrier ends with 0 o ....... 0, 
two cases must  be distinguished. For ¢o ~ 0, the terminal state vector is 

x o = [fi sin¢o ,/3 cos¢o , 0], (14) 
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which, with,(8) and (10), shows that  both switch functions are zero at this 
time. T h e  retrograde derivatives, however,  give 

dS/d(--t) = So -- vx~ = sin6o, dvo/d(--t) = ~oo = sin6o, (t5) 

so that, just  before tangency, % = % = sign x o . T h a t  is, P and E are 
turning in the same direction. 

The  second possibility when 00 = 0 is that q5 o -= 0, and here (15) 
shows that the first derivatives are also zero. T h e  second retrograde 
derivatives, however,  show that the strategies just  before terminat ion 
are % = s i gn% and % = s i g n % .  Consequently,  three possible 
strategies for each player (ei = - -1 ,  0, @ 1) satisfy the necessary con- 
ditions, and fur ther  tests of these nine possible strategy pairs wilt be 
made using the retrograde solutions of the next section. 

For  barrier terminat ion when 00 = 2~b 0 =/= 0, the terminal state is 

Xo = [5 sin 6 0 , 5  cos 4,o, 26ol, (t6) 

while the terminal adjoint is as given in (10). Again, both switch functions 
are zero at termination,  and the retrograde derivatives yield 

= sin 60, ~oo = sin@o -- 0o) = --sin 60. (17) 

These  results imply that,  if E is not directly in front  of or behind P,  
al = sign No = sign Xo; that is, P is turning toward E just  before 
tangency, as might  be expected. Fur thermore ,  % = - - % ,  so that E is 
turning in the opposite direction, or toward the outward normal to the 
capture circle. This  is also physically appealing; and it may be noted that, 
in the homicidal chauffeur game, E's  velocity is parallel to the terminal 
radius vector;  analogies between these two games are often useful. 

For  the game of degree, the switch functions are identical in form 
to (8); i.e., the strategies are determined by 

~1 = sign(Vxy --  V,~x + Vo), % = sign Vo, (is) 

and (3) and (13) show that both switch functions are zero at termination.  
T h e  retrograde derivatives, however, are 

= V. o = sin(6o)/*~o, ~7oo = --sin(Oo -- 6o))~o . (19) 

For  x o > 0, these imply that P ' s  strategy is ~i = q- 1 (P  is turning right), 
while E 's  switch function is % . . . . . . .  sign sin(0 o --q~o). T h a t  is, % = 
--1 if 2~o < 0  o <q50q-~r ,  and % = q- t if q5 oq-~r  < 0 0  < 2 r r .  T h e  
line 00 .... ~o @ rr on the capture circle (see Fig. 2) thus represents a 
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dispersal line for  E (or E D L ) ,  and ei ther  ex t reme s t ra tegy is op t imal  here.  
O n  the  o ther  hand ,  if  x 0 = ¢0 = 0, the  second  re t rograde  derivat ive 

gives P ' s  s t ra tegy  as 

%o 

e 1 --  sign So = sign G1, (20) 

wh ich  implies tha t  el  = 0 or  ± 1. For  this same condi t ion ,  E's  s t ra tegy 
is un ique ,  % = - - s i g n  sin 00 , while  the mul t ip le  strategies for  P are a 
consequence  of  the  universal surface which  intersects  the  f ron t  o f  the  
cap tu re  circle a long the  line x = 0, y = / 5 .  P's  s t ra tegy  changes  for 
t e rmina t ion  on ei ther side of  this line, as s h o w n  in Fig. 2. 

1.4. G e n e r a l  S o l u t i o n s .  We  have shown  tha t  opt imal  controls  
are at ex t reme  values,  unless  a swi tch  func t ion  is identical ly zero.  F o r  
reference  purposes ,  the  solut ions  co r r e spond ing  to these controls  are 
g iven here.  W h e n  % = - - %  = ± 1, so tha t  E is t u rn ing  in a d i rec t ion 
oppos i te  to P ' s ,  the  re t rograde  solut ions to (2) are f o u n d  in t e rms  of  the  
te rmina l  state as 

x == x o cos r + ~![1 - -  cos r + Y0 sin r + cos 0 - -  cos(0 o + elf)], 

Y = Yo cos r + sin r - -  %[x o sin r + sin 0 - -  sin(0 o + %r)], 

0 = 0 o + 2~1r. 

Similarly,  w h e n  % = e 1 -• :i: 1, the re t rograde  solut ions are 

(21) 

x = x 0 cos r + crl[1 - -  cos r + Y0 sin r + cos(00 + ~IT) - -  cos 00], 

Y = Y0 cos r + sin r - -  e1[Xo sin r + sin(0 o + ~xr) - -  sin 0o], 

0 = 00 . 

(22) 

W e  will f ind tha t  s ingular  arcs for  P are somet imes  optimal ,  such  
tha t  ~1 = 0 and  % = ± 1. Fo r  this case, the  pa ths  are given b y  

X = X o  .... ~ 2 ( c o s 0 - c o s 0 0 ) ,  

Y = Y 0  °+ r + % ( s i n  0 - s i n 0 o ) ,  

0 = 00 - - % r .  

(23) 

Whi le  it is no t  ha rd  to write solut ions to the  adjoint  equa t ions  (11), it 
is f o u n d  tha t  d iscont inui t ies  in the  adjoints  occur  in the  re t rograde  pa ths  
before  the  swi tch  func t ions  change  sign. T h i s  is due  to the  dispersal  
surface for  E (Ref. 1, Chap t e r  6), wh ich  intersects  the  cap tu re  circle at the  
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E D L  shown in Fig. 2. The  implication is that strategies (and resulting 
solutions) can be found without  explicit knowledge of the adjoint vector 
components. 

2. G a m e  of  Kind 

We have shown that the barrier encloses the capture circle, and we 
have mentioned that  an evader's dispersal line intercepts the retrograde 
solution for the barrier. Consequently, as mentioned in Section 1.3, the 
general retrograde solutions can be used, with the various terminal 
conditions (14) and (I 6), to determine possible trajectory surfaces and the 
associated switching lines for the two players. 

2.1. T e r m i n a t i o n  w i t h  0 o = 0. We have determined in (15) 
that, unless q5 o = 0, cq = % = sign x 0 . Using the general solutions 
(22) for x 0 := 13 sin 40 > 0 yields the retrograde motion as 

x ..... 5 sin(So + *), y = 5 cos(Co + ~), (24) 

which shows that the radial separation remains constant in this safe- 
contact motion (Fig. 3a). The  real-space interpretation is more easily 
understood (Fig. 3b). I t  is readily shown that, when E is initially behind 
P, it is E who chooses the direction of travel on the capture circle. Tha t  is, 
the point x = [0, --/3, 0! is an evader's dispersal point, since, if 1% ! =~ 1 
and ~1 = ~ 1, the equations of motion will show that ~ < 0. Therefore,  
E must  choose % = ± 1 to avoid penetrating the capture circle, and P 's  
strategy must  be % = % in order to keep i -- 0; that  is, if % ~ % ,  
then i > 0, and P would then lose contact with E. 

In the special terminal case 0 .... 40 = 0, as mentioned in Section 
1.3, nine possible sets of strategies satisfy the necessary conditions. The  
retrograde solutions of Section t .4 can be used to show that r(r) >~ 13 for 
six of these strategy pairs (namely, % = ± 1  and % = 0 or ± 1). 
The  case cr 1 = % ...... 0 obvious!y leaves r(r) = 13, and the remaining 

Fig. 3a. 
d? 

Safe contact with a l == % = -b I (relative space). 
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1 
Fig. 3b. Safe contact with ~1 = e2 = -t-1 (real space). 

two  cases are re la ted  to the  s t ra tegies  a~ = 0 and  a 1 = i l .  T h e  
so lu t ions  c o r r e s p o n d i n g  to these  s t ra tegies  show tha t  r0 .... ~o = 0 and  
tha t  the  th i rd  r e t r o g r a d e  der iva t ive  is negative, which  impl ies  tha t  these  
s t ra tegies  c anno t  be  o p t i m a l  for  the  t e rmina l  cond i t ion  be ing  examined .  

W h e n  the  ba r r i e r  t e rmina t e s  at  0 o = ¢o = 0, wi th  ~1 = 0 and  az = 
q- 1, the  pa ths  in relat ive and  real space  will r e s e m b l e  those  s h o w n  in 
Figs.  4a and  4b for  cr 2 := q-1.  He re ,  P is fo l lowing a singular arc, and  
E ' s  t r a j ec to ry  in relat ive space  is t e r m e d  a un iversa l  l ine (or U L ) .  As 
m e n t i o n e d  in Sec t ion  1.1, the  r e t r o g r a d e  ba r r i e r  pa ths  t e r m i n a t e  at an 
evade r ' s  d ispersa l  point .  T h i s  m e a n s  that ,  at  a cer ta in  po in t  on the  
r e t rog rade  p a t h  s h o w n  in Figs.  4a and  4b, E can ins tead  choose to t u r n  
left, caus ing  P to t u r n  right and  resu l t ing  in safe contact ,  as will be  
d iscussed  in the  nex t  sect ion.  

T h e  final poss ib i l i ty  for  t e r m i n a t i o n  of  the  ba r r i e r  at x - [0,/9, 0] is 
g iven  b y  the  s t ra tegies  e l  = - - a  2 = q-1.  He re ,  P and  E are t u r n i n g  
in oppos i t e  d i rec t ions  be fo re  t e rmina t ion ,  and  aga in  the  r e t rog rade  

Safe contact with ~r 1 = 0, an = + I (relative space). Fig. 4a. 
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Fig. 4b. 

J 

S 

Safe contact with el = 0, cr~ = + 1 (real space). 

so lut ions  g iven  b y  (21) are cur ta i led  at an  evade r ' s  d ispersal  line. T h e  
de t e rmina t i on  of  this  E D L  will be  d iscussed  in Sec t ion  2.3. 

2 .2 .  T e r m i n a t i o n  w i t h  0 o = 24o • W h e n  the  bar r ie r  in tersects  
the  cap tu re  circle at  a nonze ro  angle  ~bo, we  have  seen  in (5) t ha t  the  
angu la r  s tate  m u s t  be  0 o = 2~b o . T h e  s t ra tegies  at t e r m i n a t i o n  were  f o u n d  
in (17) to be  e 1 ~- - - e 2  = s ign x o ; so, if x o > 0, the  r e t rog rade  so lu t ions  
are g iven  by  (21) as 

x == 1 - -  cos r q-/3 sin(60 + r) - -  cos(00 @ r) q- cos 0, 

y - -  sin r + / 3  cos(60 + r) q- sin(00 + r) - -  sin 0, 

0 = 00 @ 2r. 

(25) 

As in the  o ther  ba r r i e r  t ra jec tor ies  discussed,  a d ispersa l  po in t  m a r k s  the  
end  of  this t ra jec tory ,  as is sugges t ed  b y  Fig. 5. T h i s  is an i l lus t ra t ion  
in real space  of  the  d ispersa l  po in t  p h e n o m e n o n ,  d r a w n  for  [3 = 0.5. 
I n  this  typ ica l  case, E con tac t s  the  c a p t u r e  circle at the  angu la r  coor -  
d ina te  ~b o b y  choos ing  cr 2 = - -  1, or  at  the  coord ina te  q~0 = 0 b y  choos ing  
c~ 2 = q - 1 .  P ' s  s t ra tegies  will be  % = q-1 for  the  first choice,  whi le  the  
second  choice  entai ls  a t w o - p a r t  s t r a t egy  for  P @1 = - - t ,  0), the  
t e rmina l  po r t i on  of  wh ich  inc ludes  the  U L  d iscussed  in Sec t ion  2.1. 

T h i s  e x a m p l e  i l lus t ra tes  t ha t  ba r r i e r  t e r m i n a t i o n  po in t s  at the  E D P  
requ i r e  s i m u l t a n e o u s  cons ide ra t ion  of  the  var ious  c o m b i n a t i o n s  of  



334 JOTA: VOL. 9, NO. 5, 1972 

gDP 

? 

Fig. 5. Evader's dispersal point, 0 = - -3~r/4. 

safe-contact strategies determined in Section 1.3. T h a t  is, the retrograde 
paths given by  (25) are optimal only until  an EDP  is reached, and the 
adjoints and both  switch functions are discontinuous at this point. 
Notice that  the t ime-to-go f rom the EDP  is different for the two paths 
in Fig. 5, but  that  this characteristic applies only to dispersal points on 
the barrier. 

2.3. B a r r i e r .  By combining the notions of the two previous 
sections, the barrier (or envelope of capturable states) can be constructed. 
We first consider the determinat ion of a point  on the barrier for which 
x =~ 0 and 0 ~ ~. Here,  the players are initially moving toward each 
other, and obviously E must  choose either extreme strategy, cr 2 --~ ~ 1 .  
P ' s  initial strategy is a I = - - a  s , and this strategy holds until the time- 
to-go is ~ = ~'1, when P ' s  velocity is tangent  to E's  min imum- tu rn  
circle. Subsequent  relative mot ion is along the UL,  and P maintains 
a 1 = 0 until  tangential contact at x o ~- ¢o = 0 (Fig. 6a). T h e  symmet ry  
here  implies that  the optimal t imes-to-go are equal for either choice of a s . 
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/ 

Fig .  6a. B a r r i e r  s t r a t eg ies ,  0 = % x =~ 0. 

T h a t  is, at this point  on the E D L ,  r + = r - ,  where the superscripts 
correspond to E's choice of turn  rate, ~2 = ± i.  Also shown in the 
figure are the points at which ~1 = 0; these are labelled r l  + and r l - .  
T h e  superscript  notation is used to distinguish two optimal strategies 
and paths which begin at a dispersal point. A process of elimination 
shows that, for this initial condition, barrier terminat ion must  occur 
at ¢0 = 0, to be in accord with the various possibilities discussed in 
Section 2. t .  

For  a nearby point on the barrier, where E's  initial velocity is oriented 
by  the same angle 0 ...... ~r, the terminal state x o == [0,/9, 0] will be the 
same, as shown in Fig. 6b. This  nearby point is shown for x > 0, and 
E 's  strategy here  is unique,  since the E D L  at 0 = rr is located at x ......... 0. 

F ig .  6b.  B a r r i e r  s t ra teg ies ,  0 = rr~ x > 0. 
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T h e  small changes in ~-1 and ~- due to this small change in x can be noted 
by comparing Fig. 6b to the r ight-hand paths of Fig. 6a. 

As P's  switch t ime ~'1 is reduced,  the locus of barrier  initial conditions 
at 0 = ~ will change; and, when this t ime-to-go is 71 = 0, P does not 
use G~ = 0. E's  initial condit ion for this circumstance is x = [fi, 2, 7r], 
as can be seen by sketching the real-space paths of P and E for the 
strategies el =- @ 1 and e~ = --1.  T h e  subsequent  barrier locus at 
0 = ~r is given by a vertical line in relative space, which is tangent  to 
the right edge of the capture circle. For  initial conditions on this vertical 
line, E contacts the capture circle with the terminal state given by (16) of 
Section 1.3, that is, q~o = 00/2 > 0. 

Thus ,  a section of the barrier at 0 - -  7r has the Gothic  arch shape 
shown in Fig. 7. For  0 = rc and for other values of 0 not too far f rom 
7r, P 's  path will include a U L  (e I == 0) for either of E's strategies f rom 
the E D L .  T h e  calculation for such two-par t  strategies begins by fixing the 
initial value of 0 and solving two simultaneous equations for -c+ and 7-. 

Fig. 7. Cross sections of the barrier,/3 = 0.5. 
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Thus ,  using (21) and (23) successively for the left-hand path, we have 

O+(rl+ , r+) =: rx+ -- 27 + = 0, (26) 

where rl+ is the t ime-to-go when P switches f rom cq = --  1 to ~i = 0. 
T h e  r ight-hand path, for which E chooses % = --1 at the E D L ,  also 
ends at x == [0, /3, 0], but  different switch and termination times are 
implied; i.e., (22) and (23) give 

0-(71-, r-) = --r  1- 4- 27- = O. (27) 

These  two equations are solved for %+ and %-,  and the coordinates of 
the dispersal point are given by equating x + = x -  and y+ ..... y - .  Thus ,  
using (21)-(23), we have 

x+(71+ , r+) ........ 1 -- (/~ 4- 71+ ) sin(7 + -- 7~ +) 4- 2 cos(r + -- 71+ ) -- cos(27 + -- 71+), 
(28) 

x-(%-,  7-)=: 1 4- (fl ' ,  % ) sin(T- -- %-) -- 2 COS(r- -- 71- ) 4- COS(2r- -- 7,-). 

Substi tut ing f rom (26) and (27) for r ,  + and r , -  then gives 

x+(r +, 0) = --1 --  cos 0 q- (fi 4- 0 + 2r +) sin(0 4- r +) if- 2 cos(0 + r+), 

x-(r- ,  0) .... 1 + cos 0 + (t3 -- 0 4- 27-) sin(O -- r ) -- 2 cos(O --  7-). (29) 

Similar equations are found for y+(r +) and y - ( r - ) ;  and, when the coor- 
dinates are equated, a numerical  solution is possible for 7 + and r - ,  and 
the dispersal point  x(O) and y(O). 

When %-  ~ 0, the implication is that, for this value of 8, E does 
not arrive at the UL,  and % ~ 0. In  place of (27), we then have, using 
(25), 

0-(40,  r - )  ...... 24° + 27-  = O. (30) 

For  ,~ ...... 0.5, this change in the terminal condition turns out  to be 
required when 0 is in the interval - -123 ° < 0 ~< 0 °, approximately,  
and here both P and E have constant strategies f rom the E D L  to ter- 
mination. 

T h e  result of the barr ier -computat ion procedure  which has been 
described is shown in Fig. 7, and the following details are noteworthy:  
(i) the sections of the capture region are shown for --rr  ~ 0 ~ 0, and 
symmet ry  can give the contours  for 0 ~< 0 ~< % (ii) when E is on the 
UL,  shown as a dashed line intersecting several of the P-contours, P ' s  
control is el = 0, while E takes % = q-1 until  terminat ion at 
~0 = 00 = 0, as in Fig. 4; (iii) when E is initially on the curved 
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portion of a 0 = const section, the resulting two-stage trajectories 
include the UL,  and terminate at ~o = 00 == 0; (iv) when E is initially 
on the straight portion of a section, P's  control is cr 1 = ~ 1 until 
termination at ~b o = 00/2 ~ 0. 

This  figure also implies the barrier strategies of both P and E. 
Tha t  is, if E is on the barrier to the left (counter-clockwise) of the 
E D L ,  then ~ = -}- 1; and, if E is to the right of the E D L ,  ere = --1. 
P ' s  strategy is 0" 1 = @ 1 when E is below the UL,  and ~r 1 = --1 if E 
is above this line. The  U L  trajectories can be preceded by paths for 
which a 1 = ± 1. However, since cr 2 = q- 1, tr ibutary paths are shown 
in Fig. 7 only for a 1 = @ 1, such that 0 is constant. The  tr ibutary paths 
which join the U L  from above are not shown, since for these paths 0 is 
changing with time. 

3. Game of Degree 

When x is inside the barrier, capture of E is possible, and the 
minmax strategies of P and E are required as functions of x. Retrograde 
solutions will be used to locate a dispersal surface for E and a universal 
surface for P, such that  the capture region is subdivided into various 
subregions. The  result is that  the players' controls are known as functions 
o f x  = [x, y, 0]. 

3.1. E v a d e r ' s  D i s p e r s a l  S u r f a c e .  As in the game of kind, it is 
intuitively clear that, when E is initially on the y axis and headed toward 
P, E must  choose ~2 = ± 1. Tha t  is, the y axis coincides with the 
evader's dispersal surface (or EDS) when 0 - - ~ r .  P's  minimizing 
strategy is to turn in E's direction (c h = --a2), then switching to al = 0 
such that capture occurs with E at the most forward position of the 
capture circle, but  with 00 % 0. These strategies are optimal, according 
to the implications of (19) and (20). Tha t  is, if P did not switch to a 1 = 0, 
capture would occur with ~1 = --s ign x 0 , which contradicts the terminal 
condition of (19). 

For  other nearby values of 0, the EDS is located by using the 
equations which are implied by the equal times-to-go (r) through use of 
two different strategies. Tha t  is, 7 + = 7- = % and 

x+(rl +, 0o+ , r) = x-(r1-, 0o-, r), y+(rl+ , 00+ , r) ...... y-(r , - ,  0o- , r), (31) 

where " r l +  and 7" 1- are the times-to-go when P ' s  strategy becomes 0-1 = 0. 
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U s i n g  the  so lu t ions  to t he  two angu la r  equa t ions  c o r r e s p o n d i n g  to these  
two s t r a t egy  pairs ,  we have  

0 + - :  0o+ - -  2 r  q-  r l +  , 0 -  = 0 0 .  -k  2 r  - -  r l - .  ( 3 2 )  

T h u s ,  00+ and  0 o- can  be  e l imina ted  f r o m  (31), so that ,  wi th  0 + = 0 ....... O, 

x-  - -  x + = 211 -~ (1 - -  cos r) cos O] -47 (/3 q- r~-) sin(r - -  r~-) 

- -  (5 -t- r~ +) sin(r - -  r ,  +) ,-- cos(r - -  r~-) - -  cos(r - -  r~ +) = O, 

y -  ---y+ = - -  2(I - -  cos r) sin 0 -~ (/~ -+ %-) cos(r - -  r l -  ) 

- ( 5  + ~ , + )  c o s ( ,  - ~ , + )  + s i n ( ~  - ~ , - )  - s i n ( ~  - , 1 + )  = 0 .  

N u m e r i c a l  so lu t ion  of  these  equa t ions  for  %+ and % -  as func t ions  
of  (0, r )  t h e n  p r o d u c e s  a dispersal  po in t  locus  (x ,y) ,  as long  as b o t h  
swi tch  t imes  t u r n  out  to fall in the  in te rva l  0 ~< rj. +, %- ~ r. Otherwise ,  
P m a y  init ial ly t u r n  r igh t  regard less  of  E ' s  s t ra tegy  f r o m  the  E D S ,  t h e n  

Fig. 8a. 
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Optimal strategies in the capture region, fl = 0.5, 0 = --165 °. 
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Optimal  strategies in the capture region, ~ = 0.5, 0 = --  I50 °. Fig. 8b. 

switching to cr 1 == 0 or not, depending on whether  or not r 1 > 0. T h e  
numer ica l  calculations in these various cases are essentially the same, 
however .  T h a t  is, they all use the equalities x + = x - ,  y+ = y - ,  and 
0 + = 0- = 0 as required on the EDS,  and it is only necessary to use the 
proper  sets of solutions with ~-+ = r -  to eliminate the intermediate  
unknowns ,  which are 0o+, 0o- and either r l  ± o r  6o ±. 

3.2.  P u r s u e r ' s  U n i v e r s a l  S u r f a c e .  A universal  surface (or US) 
for P exists at those points for which P ' s  opt imal  s trategy is cr I - -  0. 
On this surface, the equations of relative mot ion  have the solutions given 
in (23). But  we have shown that  the terminal  conditions when  cq --~ 0 
m u s t  be  x o = 0, Yo = / 3 ,  with 0 o arbitrary.  Restrict ing at tent ion to 
~2 =: 1 (since for --~r < 00 ~ 0, this US originates to the left of the 
E D S ,  as in Fig. 2), we see that  the re t rograde solutions are 

x = c o s 0  o - c o s ( 0  o - r ) ,  y = ~ + ~ - - s i n 0  o + s i n ( 0  o-~- ) ,  0 = 0  o - %  (33) 

and these paths  are opt imal  f rom terminat ion at 0 o back to the E D S  or 
the  barrier.  
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Fig. 8c. 
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Optimal  strategies in the capture region,/~ = 0.5, 0 = - -120 °. 

In order to display the intersection of the US with planes of constant 
O, as was done for the EDS, 0 o is eliminated from Eqs. (33-1) and (33-2). 
The resulting line x(O, -r), y(O, -r) can then be drawn through each section 
of the capture region between the capture circle and the EDS or the 
barrier. When E is above the US, P turns hard left, and conversely if 
E is below the US. When E arrives at the US, a 1 = 0, and the resulting 
path (a singular arc in the game of degree) remains on the US until 
capture at x 0 = 0. 

Fig. 8d. 

?+ 
Optimal strategies in the capture region,/~ = 0.5, 0 = - -90  °. 
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Fig. 8e. Optimal  strategies in the capture region,/3 = 0.5, 0 = - -60  °. 

3.3. S t r a t e g i e s  o f  the  G a m e  of  D e g r e e .  Results of the previous 
calculations are presented as 0 = const sections of the state space. As 
shown in Figs. 8a-8f for [3 = 0.5, the EDS and US are smooth surfaces 
which vary continuously with 0. Across the EDS, e2 switches, and across 
the US, ~1 switches. 

Certain interesting features of the surface may be noted. Thus,  for 
00 near 7r, the US extends from the point [0,/3, 00] only to the EDS, as 
shown in Figs. 8a and 8b. At 0 =- ~, the US has length zero, and the 
EDS coincides with the y axis, as noted earlier. The  EDS extends from 
the E D L  shown on the capture cylinder in Fig. 2 to the vicinity of the 
upper corner of the capture volume. This  corner is the E D L  in the game 
of kind. For 0 o between 0 ° and --140 °, approximately, the US and EDS 
no longer intersect, as shown in Fig. 8c. Trajectories, of course, can be 
shown in these sectional figures only when al = ~2 = 1, such that 
0 = 0; representative paths for these strategies are shown in Fig. 8d. 
The  sharp curve in the EDS for 0 near --60 ° is an unexpected result 
which can be verified by plotting real-space trajectories of the players, 
when E's initial condition is on this line. 

Fig. 8f. 

tJS 

Optimal  strategies in the capture region, 13 = 0.5, 0 = - -30  °. 
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4. Conclus ions  

The game of two identical cars represents a first step in the general- 
ization of the second-order homicidal chauffeur game. The present study 
shows that optimal strategies for P and E can be determined as functions 
of the three-dimensional state, and that the higher order of the problem 
does not require the introduction of any new types of exceptional surfaces. 
Thus, when the capture region is finite, the only exceptional surfaces 
appear to be a universal surface for P and a dispersal surface for E. This 
is exactly the result found for the homicidal chauffeur game, when the 
capture region is finite and the speed ratio is between ~/(1 --fi2) and 
1 (Ref. 2). 

Many of the exceptional lines which occurred in the homicidal 
chauffeur game were in fact possible only because of the pedestrian's 
unlimited maneuverability. It is conjectured that the general solution 
to the smoother game of two cars will involve fewer exceptional surfaces, 
even when P and E have different speeds and turn radii. 
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