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Abstract. Recently developed Newton and quasi-Newton methods for 
nonlinear programming possess only local convergence properties. 
Adopting the concept of the damped Newton method in unconstrained 
optimization, we propose a stepsize procedure to maintain the 
monotone decrease of an exact penalty function. In so doing, the 
convergence of the method is globalized. 
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1. Introduction 

Consider the nonlinear programming problem 

rain f (x) ,  (1) 

s.t. g(x)-<0,  

where.f:  R ~ -> R and g: R "  -> R ~. A great deal of attention has been paid to 
extending Newton and Newton-l ike methods to solving (t). With the efforts 
of many  authors, this a t tempt  has recently achieved some success. One 
approach on this line is to generate  a sequence {x k} converging to the desired 
solution by means of solving iteratively the quadratic programming problem 

min Vf(xk)T(x --X ~) + ~(X --Xk)THk (X --Xk), 
x 

s.t. g(Xk) + Vg(xk)T (X -- xk) <-- O, 
(2) 
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where the n x n matrix Ilk is intended to be an approximation of the Hessian 
of the Lagrangian 

L(x, u) =f(x) + u~ g(x). 

Some results on the convergence and the rate of convergence have been 
published (Refs. 1-3). However, as in the Newton method for unconstrained 
optimization, all the results are local. In this work, we show that the direction 
generated by (2) turns out to be a descent direction of the exact penalty 
function Or: R"  -> R, 

Or(x)=f(x)+r ~. g,(x)+, (3) 
i=1 

where 
gi (x)+ = max{0, gi (x)} 

and r is a positive number. Consequently, we introduce a procedure by 
which stepsizes are determined to maintain the monotone decrease of this 
function. With this stepsize procedure, the method can be shown to be 
globally convergent. In this sense, our approach can be viewed as an 
extension of the damped Newton method to constrained optimization. 

For convenience, we shall restrict ourselves to problems with inequality 
constraints only. The inclusion of equality constraints causes no difficulties, 
and all of the results go through with minor modification. 

We state the method in Section 2 and present global convergence 
theorems in Section 3. Some comments are given in Section 4. 

It is noted that all vectors are column vectors. A row vector is denoted 
by the superscript T. The notation ]1-11 denotes a vector norm and also its 
induced operator norm. 

2. Algorithm 

Before the statement of the algorithm, we first define the following 
quadratic programming problem Q(x, H): 

minVf(x)Tp ~ r +~p Hp, 
P 

s.t. g(x) + Vg(x)Yp -< 0, 

which can be associated with any x in R"  and any n x n matrix H. 

Algorithm. Starting with a point x ° in R ", an n x n  matrix Ho, 
and two positive numbers r and 6, the algorithm proceeds, for k = 0, 1 . . . . .  
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as follows. 

Step I. 

Step 2. 

Havingx k and Hk, find a Kuhn-Tucker pointp k of Q(x k, Hk). 

Set 
k + l  k X =xkq-Akp 

for any Ak in [0, S] satisfying 

Or(xk+l)- < - min G(Xk +ApX)+ek, 
0--~A ~ 8  

where Or is defined in (3) and {ek} is a sequence of nonnegative numbers 
satisfying 

Ck ~ o 0 .  

Step3. Update Hk+l by some scheme. 

Remark 2.1. It has been shown by Han (Ref. 3) that, when the 
sequence {Hk} is generated by some well-known quasi-Newton updates, 
such as the DFP update, the algorithm without the stepsize procedure 
converges locally with a superlinear rate. 

Remark 2.2. The function Or is nondifferentiable at some transient 
surfaces. Since efficient methods for one-dimensional minimization of such 
nondifferentiable functions are available (e.g., Ref. 4), the algorithm is 
computationally implementable. 

Remark 2.3. From a different viewpoint, the algorithm can also be 
considered as a descent method for finding a minimum point of the function 
Or. It is noted that, for minimizing nondifferentiable functions like Or, the 
steepest descent method, even with the exact line-search, may fail to work. 
The cause of the failure is that the sequence generated may jam into a 
corner. We refer to Ref. 5, p. 75, for an example. However, in our case, the 
direction generated by solving Q(x k, Hk), though different from that of the 
steepest descent, is adequate enough to avoid the jamming situation. 

3. Global Convergence 

For establishing global convergence theorems, the concept of direc- 
tional derivative and some of its properties are needed. Recall that a 
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directional derivative of a real-valued function h at a point x in the direction 
p is defined as 

Clearly, if 

then we have 

Dph(x) = lim [(h(x +tp) -h (x ) ) / t ] .  
t --~0+ 

Dph(x)<O, 

h(x + tp )<h(x )  

for all sufficiently small but nonzero t. The existence of directional deriva- 
tives for the function Or is ensured by the following lemma. We will not give 
the proof for this lemma, but refer to Dem'yanov and Malozemov (Ref. 5) 
for a more general and detailed discussion of this result. 

Lemma 3.1. If hi, i = 1 , . . . ,  k, are continuously differentiable func- 
tions f rom R ~ into R and 

cI)(x) = max{hi (x)}, 
i 

then, for any direction p, the directional derivative DpCb(x) exists and 

Dp Cb(x ) = max{Vhi (x)Tp}, 
i~l(x) 

where 

I(x) = {i: h,(x) = ~(x)}. 

Theorem 3.1. Let  f and &, i = 1 , . . . ,  m, be continuously ditIerenti- 
able at x and H be a positive definite n x n matrix. If (p, u) is a Kuhn-Tucker  
pair of Q(x, H)  with p # 0 and 

lluil <-r, 

Proof.  Let  

then 

OpOr (x) < O. 

I = {i : gi (x )  > 0},  

~[ = {i : gi (x) --- 0}, 

-- {i : gi (x) < 0). 
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By Lemma 3.1, we have that 

DpOr(x)=Vf(x)rP +r 2 Vg~(x)rP +r 2 (Vg/(x)rP)+ - 
i ~ l  i s i  

Since (p, u) is a Kuhn-Tucker  pair of O(x, H),  we have, for i = 1 . . . .  , m, 

gi(x)+ Vgi(x)rp<-O, 

which yields 

Hence, by taking 

2 (vg,(x)~p)+ = 0. 
l e t  

u,(g~(x)+ Vg,(x)~p)=o 
into account, we obtain 

DpG(x)=Vf(x)Tp+ ~ l~iVgi(x)Tp+ ~ uig,(x)+r 2 Vg~(x)rP. 
i = I  i=1  i ~ I  

By the Kuhn-Tucker  equality 

Vf (x ) + V g(x )u + ½ (H + Hr)p = O, 

and by observing that 

we have 

uig~(x)<-O, 
ie f IJ i  

1 T T DpOr(x)<---sp (H +H )p+ 2 (uigi(x)+rVg~(x)Tp) 
i c l  

-~P~(H +H~)P + 2 (ul -r)gi(x) <0,  
i e I  

since H is positive definite and 

tt"tl~<r. D 
Before establishing the global convergence theorems, we need a temma 

concerning the perturbation of quadratic programs. The proof can be found 
in Ref. 6. 

Lemma 3.2. Let x'  minimize 

=~x Hx +b Tx q(x) ~ 
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over 

and let 2'  minimize 

over 

S ={x:  Ax <-a}, 

q(x ) = ½x~Ftx + U x  

g={x:~x---a}, 
where A and A are m × n matrices, H and/-I  are n × n matrices, a and d are 
in R m, and b and 6 are in R n. If H is positive definite and 

S°={x:Ax <a}~¢,  

then, for any fixed norm II" II, there exist positive numbers c and g such that 

whenever 

and 

IIx'-2'[l<_cE 

e~g  

= max{[IH-I-)ll, IIA -~11, [la -all ,  lib -611} 

Theorem 3.2. Let  f and gi, i = 1 , . . . ,  m, be continuously differenti- 
able, and assume that the following conditions are satisfied: 

(i) there exist two positive numbers o~ and/3 such that 

,~x~x <_ xTHkx <_ /3x~x 

for each k and any x in R n ; 
(ii) for each k, there exists a Kuhn-Tucker  point of Q(x k, Hk) with a 

Lagrange multiplier vector bounded by r in w-norm.  
Then, any sequence {x k} generated from the algorithm either termi- 

nates at a Kuhn-Tucker  point of (1) or any accumulation point 2 with 

s°(~) = {p: g(x) ÷ Vg(~)~ < o} ~ 

is a Kuhn-Tucker  point of (1). 

Proof.  By assumption (ii), we have (pk, u k), which is a Kuhn-Tucker  
pair of Q(x k, Hk ) with 

Ilu~lloo-<r. 
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If 

k p =0,  

then (x k, u k) satisfies the Kuhn-Tucker conditions of (1), and the sequence 
terminates at the Kuhn-Tucker point x k of (1). Suppose that 

pk #O 
k+l for each k. From Theorem 3.1 and the way we choose x , it follows that 

x k+~ exists and 
k+l k O,(x )<0r(x )+ek. 

Let X be an accumulation point of {x k} with 

S°(x) # ~. 

Without loss of generality, we may assume 
k x -~X and Hk~/-I.  

The existence of/-I folloWs from assumption (i). Furthermore,/4 is positive 
definite. It follows from 

S°(x) ~ 4 

and the positive definiteness of/-)  that O(~,/4) has a unique Kuhn-Tucker 
point P. If 

p - -0 ,  

then £ is a Kuhn-Tucker point of (1) and the theorem follows. Suppose that 

p#o. 

By Lemma 3.2, we have that 

pk ~/5. 

Since {u k} is uniformly bounded, there exists an accumulation point u of u k 
From 

X k ">X, pk  ~f i ,  

and the continuity of gradients of f and g, it follows that ~ is a Lagrange 
multiplier vector of O(Y,/-t) and 

iJall -<r. 
Let ,~ ~ [0, 6] be chosen such that 

0,(£ +i/~) = rain 0,(x+ap). 
O~A~8 
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By Theorem 3.1, we have 

Set 

Since 

o~(~ +dO) < or(x). 

/3 = or(x)- or(y, +dfi). 

xk + dp~ --, x + dp, 

it follows that, for sufficiently large k, we have 

Or(x k +Ap k) +/3/2 < 0~(£). 

However, by 

O,(xk'+l)<Or(xk)+ek and ~ ei</3/2,  
i = k  

for sufficiently large k we have 

Or(g)<OAxk+l)+ ~. e~ 
i = k + l  

-< min Or(xk +Apk)+Ek + ~ ~ 

< Or(x k +dp k) +/3/2, 

which contradicts (4). Hence, 

p = 0 ,  

(4) 

and £ is a Kuhn-Tucker  point of (1). [] 
Assumption (ii) of Theorem 3.2 is not as restrictive as it might appear. 

In the rest of this section, we will give a sufficient condition which ensures the 
satisfaction of this assumption. First, we introduce the following lemma. 

Lemma 3.3. L e t f  and gi, i = 1 . . . .  , m, be continuously differentiable, 
and let the following conditions be satisfied: 

(i) gi's are convex; 
(ii) X ° = { x :  g ( x ) < 0 } ~ t h ;  

(iii) for some positive numbers a and/3 and for any y in R n, 

o~yVy <_ yTHy <-- /3y ~ .  

Then, for any compact set U C R n and for any vector norm it" ]1, there 
exist r > 0  such that, if u in R m is a Lagrange multiplier vector of the 
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quadratic program Q(x, H) with x in U, then 

It~tt-<-r. 

P r o o f .  We can assume that H is symmetric. If not, we can replace it by 
½ (H + H T) without affecting the results. 

From assumption (ii) of this lemma, there exists at least one point, say2, 
in X °. Let 

n = min{-gi(2)}, (5) 
i 

~: = max{ltx -2112: x ~ U}. (6) 
x 

We assume further that o- is an upper bound of IIVf(x)ll2 on U and also an 
u p p e r  bound of IIHll2 and IIH-Xll2. 

From the assumptions, it follows that a Kuhn-Tucker  point p of 
O(x, H) exists and is unique. Let u be a Lagrange multiplier vector of 
O(x, H) and 

A p=x--x. 

By the convexity of the g~ 's, we have that, for i = t . . . . .  m, 

gi (x) + Vg~ (x)'rp _< g~ (~) < o. (7) 

Hence, tO is a feasible point of O(x,H); and, from the Kuhn-Tucker  
saddle-point theorem (Ref. 7), it follows that 

Vf(x)7]v +½prHp _<V--ytx)'r-+ 5q-r"-ttp + ~ ui(gi(x)+Vgi(x)rfi). 
j = l  

Thus, by (8), (7), and (5), we have 

(8) 

(9) 

Now, consider the dual problem of O(x, H) 

max - (Vf(x) + Vg(x)v )TH-:l(Vf(x ) + Vg(x )v ) + v T g(x ), 
v E R  m 

s.t. v ~ 0 .  

Since v = 0 is dual feasible, by Dorn's duality theorem (Ref. 7) we have 

Vf(x)~p + ~p~ne ~-W(x)~H-lVflx) .  (10) 
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From (9) and (10), it follows that 

Ilull, ~ (1/rl)(Vf(x)rp + ½pTHp + Vf(x)TH-1Vf(x)) 

- < ( 1 / n ) ( ~ + ½ ~ 2 + 3 ) ,  

which, by the equivalence of norms, implies the desired result. 

sets. 

[]  

We also need the following lemma on the compactness of some level 

Lemma 3.4. If 

X = {x : g (x) -< O} 

is compact and the g~'s are lower semicontinuous and convex, then 

X ~ = { x :  ~ gi(x)+<--c} 
i = 1  

is compact for any finite real number c. 

Proof. Define 

¢,(x)= Z g,(x)+. 
i = 1  

By the lower semicontinuity and convexity of the g~'s, the function • is 
closed and convex. Since X0 = X is compact, it follows from Ref. 8, I .emma 
4.1.14, p. 13 9, that Xc is compact for any finite c. []  

A global convergence theorem is given below. 

Theorem 3.3. Let  f and gi, i = 1 , . . . ,  m, be continuously differenti- 
able, and let the following conditions hold: 

(i) f is bounded below; 
(ii) gi's are convex; 

(iii) the set 

is compact and 

X = {x : g (x) <- 0} 

X°={x: g(x)<O}~4,; 

(iv) there exist positive numbers a and/3 such that, for each k and for 
any x in R n, 

~x ~x <- x THkx <--/3x Tx 
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Then, for any starting point x °, there exists a positive number f such 
that, if 

r -> max{L 1}, 

then any sequence {x k} generated from the algorithm either terminates at a 
Kuhn-Tucker  point of (1) or any accumulation point of this sequence 
is a Kuhn-Tucker  point of (1). 

P¢oof. It is evident that such a sequence exists. By (ii) and (iii), we also 
have that, for any x in R n, the set 

S°(x) = {p: g(x) + Vg(x)'~p < 0} ¢ ,b. 

Therefore, we need only to prove that assumption (ii) of Theorem 3.2 holds. 
Let x ° be a given starting point, and let f be bounded below by -o-. 

Define 

c =fix o)+ 
/=1 i=o 

By Lemma 3.4, the set 

X~ = {x: i~=igi(x)+~c } 

is compact. Hence, it follows from Lemma 3.3 that there exists an f > 0 such 
that, if 

x~X~ 

and 

o~y'r y <_ yrHy <~fiyTy 

for any y in R ~, then a Lagrange multiplier vector u of O(x, H) exists and 

llulloo<f. 
Therefore, it is only necessary to show that 

x k CXc 

for each k. It is clear that 

Assume that 

x°  EXc. 

xk ~Xc 
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and 

Then, 

k - 1  

O,(x~)<-o,(x°)+ ~ E,. 
i~O 

Ilukll --- e; 
and, by Theorem 3.1 and the choice of x k÷l in the algorithm, we have 

f(xk+l)+r ~. gi(xk+l)+<<-f(xk)+r ~ gi(xk)÷+Ek 
i = 1  i = 1  

k 

<-f(x°)+r g,(x°)++ E ,,. 
i = 1  i = 0  

Thus, 

g,(xk+l)+~(1/r)(f(x~-f(xg+~))+ ~ g,(x°)++(1/r) ~ e~ 
i = 1  i = 1  i = 0  

i = 1  i = 0  

Therefore, 

and the proof is complete. 

X k+l C X c ,  

If we further assume f to be strictly convex, then (1) has an unique 
Kuhn-Tucker point which is actually its optimal solution. Therefore, we 
have the following result. 

Corollary 3.1. Let all the assumptions of Theorem 3.3 hold. Further- 
more, if f is strictly convex, then any sequence {x k} generated from the 
algorithm converges to the optimal solution of (1). 

4. Conclusions 

We conclude this paper with the following comments. 

(i) It has been shown by Han (Ref. 3) that the algorithm converges 
locally with a superlinear rate when the Davidson-Fletcher-Powell update 
is used to generate the matrices {Hk} and the stepsizes Ak are set to be one. 
For this reason, if the DFP update is used, we suggest that the stepsize 
procedure be discarded to achieve a superlinear rate when the points have 
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moved close to the solution and the matrices have become a good approxi- 
mation to the Hessian of the Lagrangian. 

(ii) A different way to generate the direction pk is to solve the dual 
problem of O(x k, Hk): 

rain ½ (Vf(x k) + Vg(xk)u)rH;~(Vf(x k) + Vg(xk)lg) --g(x)ru, 

s.t. U --> 0,  

and, with u k as its solution, set 

pk = __H~l(Vf(x k)+ Vg(xk)uk). 

A study of the local convergence of this algorithm without stepsize proce- 
dure is contained in Ref. 9. We note that all the analysis in this paper can be 
carried through for this case and the global convergence theorems are also 
valid. 

(iii) An approximate line-search procedure (like Armijo's search and 
Goldstein's search) is desirable. Since the function Or is nondifferentiable, 
these procedures do not work in our case. It is of some practical value to 
develop a workable one. 
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