
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS: VoL 11, No~ 4, 1973 

An Existence Theorem for a Fractional Control Problem t 

S. K. B ~ r r "  

Communicated by G. B. Dantzig 

Abstract .  Computational algorithms in mathematical program- 
ming have been much in use in the theory of optimal control (see, 
for example Refs. 1-2). In the present work, we use the algorithm 
devised by Dinkelback (Ref. 3) for a nonlinear fractional program- 
ming problem to prove an existence theorem for a control problem 
with the cost functional having a fractional form which subsumes 
the control problem considered by Lee and Marcus (Ref, 4) as a 
particular case, 

1, I n t r o d u c t i o n  

Let a system of differential equations be given, that is, 

dx~/dt = f l ( t ,  xl,..., x",  ul,..., u'~), i = I,..., n, (1) 

where f i ( t ,  x l , . . . ,  x n, ul , . . . ,  u m) --:- f i( t ,  x,  u), i = 1,..., n,  along with their 
partial derivatives with respect to x k, k = 1,..., n, are real continuous 

funct ions  on R 1 × R ~ × / 2 ,  where f2 is a nonempty compact subset of 
R m. By the Caratheodary existence theorem (ReL 5), for each choice of 
the function u ( t ) = ( u l ( t ) ,  .... urn(t)) on --oo < t  o ~ < t ~ < t  t < ~  as a 
measurable vector-valued function taking values in 12, the differential 
system 

= f l ( t ,  x, u(t)), i = 1,..., n, (2) 

has a unique absolutely continuous solution x( t )  on a subinterval of 
t o ~< t ~< t 1 with the prescribed initial condition x 0 = x(to).  
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Def in i t ion  1.1. A control for system (1) with prescribed non- 
empty compact set 32 C R ~ and initial point x o = X(to) is a measurable 
vector-valued function u(t) C 32 such that the response x(t) with x(to) = 
x o is also defined in R ~ on t o ~< t < tx. 

In the optimum control problem considered here, we shall be 
interested in those controls such that the response x(t) travels from the 
prescribed initial point x(to) = x o to a given moving target G(t) for each t 
on a given finite interval r 0 ~ t ~< r l ,  where G(t) C R ~ is assumed to 

• be a nonempty compact set varying contin.uously with t. Here, we use the 
Housdorff metric distance between two nonempty compact subsets of 
R n to define continuity (Ref. 4). 

Def in i t ion  1.2. 

(i) 
(ii) 

(iii) 

(iv) 
(v) 

Given the control problem 

Yd = f i ( t ,  x,  u), i = I,..., n, 

D C R', 

x o ~ R "~, 

G(t) C R"  on ~0 ~ t ~< ~'1, 

C(u) the cost functional, 

define A = A { ~ ( t ,  x, u) , . . . , fn(t ,  x, u), 32, :Co, G(t)} as the set of all 
controls u(t) on various subintervals t o ~ t ~< t 1 with % ~ t o ~< t 1 ~< r x 
such that x ( t o ) =  x o and x(t l)~ G(tl).  A control u, ( t )  in A is called 
optimal in the case where C ( u , )  ~ C(u) for all u(t) ~ A. 

In Section 2, we state the fractional optimum control problem and 
establish certain results which will be used to prove the existence 
theorem, which is given in Section 3. 

2. S t a t e m e n t  and  Analys is  o f  the  P r o b l e m  

The fractional optimum control problem can now be stated below. 

P r o b l e m  (1). Given 

(i) a system of differential equations 

:~ = f ' ( t ,  xl,..., x", u 1, .... u m) = gi(t, x) + h~'(t, x)ui, i = 1,..., n, j = 1,..., m, 

with g~(t, x), hi(t, x), and ~gi(t, x) /gx ~, ~h~(t, x)/~x k, k = 1 ..... n, 
continuous on R 1 × R n, 

(ii) a nonempty convex, compact restraint set D C R m, 

(iii) the initial point x 0 ~ R", 
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(iv) the continuously moving nonempty compact target set G(t) 
on the finite interval ~0 < t ~< *x, 

(v) the cost functional 

tx 
" |q'f"+l(t ,  x(t), u(t)) d t / f  f"+' (t, x(t), u(t)) tit, c(,,) 
" t o , ~to 

where 
f+t ( t ,  x, u) = gn+i(t, x) + h~ ( t ,  x)d, 

g"+i(t, x) and h"+t°~ v,  x), i = 1, 2, are continuous on R 1 × R ~, and 

; [ f "+ ' ( t ,  x(t), u(t)) dt > 0  

for all u(t) e A [the set of controls which is assumed to be such that the 
responses travel from x 0 to G as above and such that (a) A iz nonempty 
and (b) there exists a real bound B < ~ for all responses x(t) corre- 
sponding to A, that is, Ix(t)! < B uniformly for all responses], the 
problem is to find a control u , ( t ) e  A which minimizes C(u) over all 
u(t) A. 

It  can be noted that, if 

f[~f.+'(t, x(t), u(t)) dt _~ 1 

for all u(t) e A, the above problem reduces to one considered by Lee and 
Marcus (Ref. 4). 

We consider another opt imum control problem of our interest. 

P r o b l e m  ~ )  

for q e R 1 under the hypotheses of Problem (I). 
Now, Lee and Marcus (Ref. 4) assert that a control u(t) e A exists 

which solves Problem (II) for q e Rk In what follows, we analyze the 
two problems along the lines of Dinkelback (Ref. 3). Define 

F(q) rain 

for q ~ R t. 

L e m m a  2.1. F(q) is concave over R 1. 
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Proof .  Le*. (xa(t), ua(t)) solve Problem (II) with 

q = ~ q l + ( I  - ~)q2,  

where ql & q2 and 0 ~ )t ~< 1 and xa(t) is a solution of the differential 
system in Problem (I), corresponding to the control u~(t). Then, 

F(aq, + 0 --  ~)q~) 

= f,[~ U'"+~Ct, ,:aCt). ua(t)) - (,~q~ + (1 - ~)q~)/.+~Ct. ,,aCt). ~,~(t))} ,it 

= )t [ "  {]"+1(t, xa(t), u~(t)) -- ql/"~2(t, xa(t), ua(t))} ,It 
.tt 

$1 
+ (1 -- )l) fu  {.f"+~(t, Xa(t), uaCt) -- qz.f"+=Ct, xa(t), ua(t))} dt 

rr' ] t> )t min {fn+l(t, x(t), u(t)) -- ql/"+2(t, x(t), u(t))} dt 
u(t)e,J [. , to 

+ (1 --)l) min [[tt  ] ,,(0~,~ [J,, {f"+l(t' x(t), u(t)) -- q~C"+2(t, x(t), u(t))} dt 

= kFCq~) + (1 -- ;t)F(q2). 

L e m m a  2.2. F(q) is continuous on R t. 

Proof .  See Ref. 3 and Reg. 6, page 326. 

L e m m a  2.3. F(q) is strictly monotonically decreasing, i.e., 

q~ , q~ E R ~ and qx < q~ => F(q2) < F(ql). 

Proof ,  Let ql < q2 be given, and let (xx(t), ul(t)) solve Problem (II) 
with q = ql .  Then, since 

> o, 

we have 
tt 

F(ql) = [ {f"+l(t, xlCt), u,Ct)) -- qlf"+'(t, xl(t), u~(t))} ,It 
o 

tx 

> ft, {f"+l(t' xl(t)' ul(t)) --  q~f"+'(t, x1(t), ul(t))} art 

[ f :{ /"+~(t ,  ] ~. min x(t), u(t)) - -  qJ"+~(t, x(t), u(t))} dt = F(q~). 
u(t)~d 
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L e m m a  2.4. F(q) = 0 has a unique solution in R 1. 

P r o o f .  Lemmas 2.2 and 2.3 and the fact that limq_,_~F(q) = + co 
and lim~.+,F(q) = --oo imply the result. 

L e m m a  2.5. Let u(t) ~ A and 

q = f'~J"÷x(t, x(t), u(t)) dt/f"f.÷'-(t, x(t), u(t)) tit. 
te ' "to 

Then,  F(q) < O. 

P r o o f  

F(q) = min x(t), u(t)) -- qf"÷~(t, x(t), u(t))} art 
u(t)e~ 

~t 
< [ V.+'(t ,  ~(t), .(t)) - qI.+'(t, ~t), u(t))} ~t = o. 

"to 

3. Exis tence  T h e o r e m  

We are nov,- in a position to prove the main result of this paper. 
We shall first prove a theorem ensuring the existence of an optimal 
control for Problem (I) and then develop an algorithm to reach it. Denote 
the value of 

rain "|tt ~"+1( t, x(t), u(t)) -- q,f"+'(t, x(t), u(t))} dt 
u(t)~ .% 

b y F ( q , ,  x,(t) ,  u,(t)) = F(q,),  where (x,(t), u,(t)) minimizes the above. 

T h e o r e m  3.1. I fF (q , )  = 0, then 

[[~f"+l(t ,  / f]] f"+~(t, x(t), ] q, = rain x(t), u(t)) dt u(t)) dt 
u(t)e,a L"** 

f,i'f.+~(t, " = ~.(t), u.(t)) dt/[,o y,+,(t, x.(O, u.(t)) at, 

and u,(t)  solves Problem (I). 
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P r o o L  Surely, there is a unique solution to F(q) = 0, say q,  
(Lemma 2.4). Then, the existence of an optimal control is guaranteed by 
(Reg. 4), which solves Problem 0I)  with q = q , .  Then, 

tl 
0 = F(q.) = f~ ff-+lCt, x,(t), u.Ct)) -- q,f,+'(t,  x.(t), u.(e))} act 

~< f "  ff-+l(t, ,~t),  ~(e)) - q.f"+'-(t, x(t), .(t))} a't 

for all u(t )~ A, so that 

t l  

q* ft~ f"+1(t' x,(t), ~t = u,(t)) dt / f~ f"+'-(t, x,(t), u,(t)) dt 

Y2 " <~ f"+x(t, x(t), u(t) de/f, f,+z(t) x(t), u(t)) dt 

for all u(t) c A, and u,(t)  solves Problem CI) with C(u*) = q ,  . 

A l g o r i t h m .  Suppose that u , ( t ) ~ A  is an optimal control 
solving Problem (I). Keeping in view Theorem 3.1, we see that ProbIem 
(I) can be formulated as follows. Find a control u,,,(t) such that 
[ q(u.)  -- q(um) ] < ~ for any given ~ > 0. Since F(q) is continuous, we 
have a second formulation: find uz(t) and 

t l  t x 

q, = f~ f"+'Ct, x,Ct), .,Ct)) at/f,o/"+'Ct, x,Ct), .,Ct)) at = ~.,)  

such that IF(q.)--F(q~)l  = l F(qz)l < 8 for any given 8 > 0. The 
algorithm can be started by choosing any ut(t ) ~ A with C(ux )=  qx, 
so that F(ql) <~ 0, which is possible in the light of Lemma 2.5. Then, 
let k = 2, and proceed as follows. 

(A) By means of any known method (say Ref 4), find a control 
uk(t ) that solves Problem (II) with q = qk such that 

' ] F(qk) = m i n [  f {f'~+x(t, x(t), u(t)) -- qJ"+'(t, x(t), u(t))} dt . 
uCt)~a L a t ,  - " 

(Ax) If I F(qk)l < 8, stop. If  F ( q k ) <  0, then uk(t ) = u~(t). If 
F(qk) = O, then uk(t) = u,(t).  

(A2) If  ]F(qk)l >~ 8, evaluate qk+1 = C(uk)and go to (A) replacing 
qk by qk+l. 
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Proof of  Convergence. (a) First, we show that qk+t < qk for all 
k = 1, 2, . .  with i F(qk) ] >/5. Lemma 2.5 implies that F(qk) < 0. By 
definition, 

f', t l  

dt ---- qk+t ft. f"+2(t' x~(t), u~(t)) dr. 

Hence, 
t l  

F(q~) = fa {f'+l(t' x~(t), u~(t)) -- qkf'+~-(t, xk(t), u~(t))} dt 

l 1 P 

= (qk+~ -- qk) Jr. f=+'-(t, x~(t), uk(t)) dt < O. 

Therefore, qk+l < qk, since 

ft~f"+z(t, xk(t), uk(t)) dt > O. 

CV) Our assertion is that l imk~q ~. ---- q(u,) = q , .  If this is not 
true, we must have Iim~_~qk = q > q , .  In that case, we have a sequence 
Uk(t), with q~ such that limk_.~fl'(qk) = F(q) ----- 0 [see step (Ax) of the 
algorithm]. Since F(q) is strictly monotonic decreasing (Lemma 2.3), 
we obtain 

0 = F(q) < F ( q , )  = O, 

which is a contradiction. Hence, it follows that limk_,~f(q~. ) ----- F(q,);  and 
then, by Lemma 2.2, we have limk_~q k ----- q , .  
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