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An Existence Theorem for a Fractional Control Problem?
S. K. Buarr

Communicated by G. B. Dantzig

Abstract. Computational algorithms in mathematical program-
ming have been much in use in the theory of optimal control (see,
for example Refs. 1-2). In the present work, we use the algorithm
devised by Dinkelback (Ref. 3) for a nonlinear fracticnal program-
ming problem to prove an existence theorem for a control problem
with the cost functional having a fractional form which subsumes
the control problem considered by Lee and Marcus (Ref. 4) as a
particular case:

1. Introduction
Let a system of differential equations be given, that is,

deifdt = fi(t, 1, 5" Wy u™),  f= Lym, (1)

where fi(t, x,..., x%, ul,..., ™) = fi(t, x, u), { = 1,..., n, along with their
partial derivatives with respect to x%, & = 1,..., n, are real continuous
“functions on R! X R* X £, where 2 is 2 nonempty compact subset of
Rm™. By the Caratheodary existence theorem (Ref. 5), for each choice of
the function u(t) = (uX(t),..., w™(t)) on —o0 <t <Lt <t < o0 as a
measurable vector-valued function taking values in £, the differential
system

#=fit,xut)), i=L.,n, @

has 2 unique absolutely continuous solution x(f) on a subinterval of
ty <t < t; with the prescribed initial condition x, = x(2,).

! The author is thankful to the referee for suggestions.
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Definition 1.1. A control for system (1) with prescribed non-
empty compact set 2 C R™ and initial point x5 = x(#,) is 2 measurable
vector-valued function u() C Q2 such that the response x(#) with x(¢,) =
%y 18 also defined in R* on ¢, < ¢ < ¢, .

In the optimum control problem considered here, we shall be
interested in those controls such that the response x(¢) travels from the
prescribed initial point x(t;) = x, to a given moving target G(2) for each ¢
on a given finite interval 7y <t < 7;, where G(t) C R* is assumed to

- be a nonempty compact set varying continuously with ¢. Here, we use the
Housdorff metric distance between two nonempty compact subsets of
R™ to define continuity (Ref. 4).

Definition 1.2, Given the control problem
() #=fit,x,u),i=1.,n

(i) L2CRm~,

(iti) x,€ R™,

(v) GWCR onr <<y,

(v) C(u) the cost functional,
define 4 = A{f\t, x, u),..., fr(t, x, u), 2, x,, G(t)} as the set of all
controls u(t) on various subintervals t, <t <, with 7y < ¢, <1, < 7y
such that x(t;) = x4 and x(t,) € G(t;). A control u,(t) in 4 is called
optimal in the case where C(u,) < C(u) for all u(t) € 4.

In Section 2, we state the fractional optimum control problem and

establish certain results which will be used to prove the existence
theorem, which is given in Section 3.

2. Statemient and Analysis of the Problem
The fractional optimum control problem can now be stated below.

Problem (I). Given
(i) a system of differential equations
# = fi(t, 2., 2, wl,..., w™) = gi(t, %) -+ B3, X, i=l..,n j=l,.m,

with gi(¢, x), At x), and 2g(2, x)/9xF, ohi(t, x){ox*, k = 1,..,m,
continuous on R x R»,

(ii) a nonempty convex, compact restraint set 2 C R™,
(iii) the initial point x, € R®,
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(iv) the continuously moving nonempty compact target set G(f)
on the finite interval 7, <t < 7y,

(v) the cost functional

f H
€ = [ e =(e), o) def[ " fo (6 x(0), u(0)
where
7 5 1) = g7 ) + B W,

g™*(t, x) and k}*(t, x), i = 1, 2, are continuous on R! X R", and

Ff A, #(1), u(t)) dt > 0

for all u(t) € 4 [the set of controls which is assumed to be such that the
responses travel from x, to G as above and such that (a) 4 i nonempty
and (b) there exists a real bound B < « for all responses x(t) corre-
sponding to 4, that is, | x(¢)} < B uniformly for all responses], the
problem is to find a control u,(t) € 4 which minimizes C(u) over all
u(t)e 4.

It can be noted that, if

[ 1 sy e = 1

for all u(t) € 4, the above probiem reduces to one considered by Lee and
Marcus (Ref. 4).
We consider another optimum control problem of our interest.

Problem (II)

h
i [ U0 500, 400 = e 10, )

for ¢ € R* under the hypotheses of Problem (I).

Now, Lee and Marcus (Ref. 4) assert that a2 control u(t) € 4 exists
which solves Problem (II) for g € R In what follows, we analyze the
two problems along the lines of Dinkelback (Ref. 3). Define

F(g) = min, { [ e, 0, ) — af e 50, ey dt]
forge R

Lemma 2.1, F(g) is concave over RY
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Proof. Let (x,(2), u(t)) solve Problem (II) with

g =2q + (1 —Xg,,

where ¢, % ¢, 2nd 0 LA < 1 and x,(¢) is a solution of the differential
system in Problem (I), corresponding to the control #,(¢). Then,

FQg, + (1 — Ng)
B f: {7t (0, i) ~ gy 4 (1 — D) £+, x:(8), wy(2))} dt
=A f: {7438, 2(8), ui(1)) — uf 136, %(0), (1)} e
+=2 f: {3t w2, (8) — @f 2t 2,(0), w(0)} dt

L3
> A gin [ [ 17770 50,0 = a e 0, )
u(t}ed

=AF(g:) + (1 — A) Flg,)-

Lemma 2.2. F(q) is continuous on R,

LY
0= i [ e 50,00 = auf 2050, s ]

FProof. See Ref. 3 and Ref. 6, page 326.

Lemma 2.3, F(g) is strictly monotonically decreasing, i.e.,
@, $E€RY and g < g > F(g,) < Flg).

Proof. Letg, < g, begiven, and let (x,(2), u,(2)) solve Problem (II)
with ¢ = ¢, . Then, since

fH
j; f n+2(t? xl(t)) ul(t)) dt > 07
we have

&
Flg) = f‘ {Fm4(t, %,(0), 1(0) — quf "3(2, % (8), u(8))} dt

8
> [0 500, () — aaf ™t #(0), (e}

]
> pin [ 00 00,400 — a0 50, w0y ]| = P
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Lemma 2.4. F(g) = 0 has a unique solution in R

Proof. Lemmas 2.2 and 2.3 and the fact that lim,,  F(g) = +c©
and lim_, . F(g) = — oo imply the result.

Lemma 2.5. Letu(t)ed and
1 t
— nilft x(1), u a n+2(t x(1), dt.
g.= [ S =0, we) [ froo0n 50, ue)
Then, F(g) <0

Proof

u(t)cd

F@ = g, | 477440 500 () = af e x0h e}

<[4 =0, 1) — gf e K0, N} de = 0.

3. Existence Theorem

We are now in a position to prove the main result of this paper.
We shall first prove a theorem ensuring the existence of an optimal
control for Problem (I) and then develop an algorithm to reach it. Denote
the value of

h
im0/ 50, 00) — 0uf >0 0, ()}
by F(qy , x4(2), u4(t)) = F(q,), where (x(?), u,(f)) minimizes the above.

Theorem 3.1. If F(q,) = 0, then

%+ = Mo, U £, x(2), u(t)) dt f o, (1), () dz]

[ oo, ) ) e[ 7450, 000, )
e &

and u,(t) solves Problem (I).
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Proof. Surely, there is a unique solution to F(g) =0, say ¢,
{Lemma 2.4). Then, the existence of an optimal control is guaranteed by
(Ref. 4), which solves Problem (IT) with g == ¢, . Then,

4
0 =Fg) = [ U™t 500, 1a(0) — guf (6 5u00) ()} de
< J, U050, 0) — g5t ), e}
for all u(t) € 4, so that
gx = f:f"“(t, %4(t), u,(1) dt j:fma, x4(t), (1)) 4t

e &
< »i(y, x(¢), u(t) d nHI(f) x(t), d
[ #rot s, u ][ g s, wp
for all u(t) € 4, and u (1) solves Problem (I) with C(u*) = ¢, .

Algorithm. Suppose that u,(f)ed is an optimal control
solving Problem (I). Keeping in view Theorem 3.1, we see that Problem
(I) can be formulated as follows. Find a control u,(f) such that
| g(uy) — g(u,)] < € for any given € > 0. Since F(g) is continuous, we
have a second formulation: find u{#) and

t t;
0= [ S50, o) def[ 130 50, w) dt = ofw)

such that | F(g,) — F(q)! = | F(g)) <& for any given § > 0. The
algorithm can be started by choosing any u,(f) € 4 with C(u,) = ¢, ,
so that F(g;) < 0, which is possible in the light of Lemma 2.5. Then,
let & = 2, and proceed as follows.

(A) By means of any known method (say Ref 4), find a control
4,(t) that solves Problem (II) with ¢ = g, such that

Y
F(g) = min { [ 136 50, 5(e)) — g™, 5(0), 1)) dz].

u(t)ed t

(Ay) If [F(g)l <8, stop. If F(g) <0, then u(f) = uf?). If
F(q,) = 0, then u,(t) = u,(t).

(As) If | F(g)l > 3, evaluate g, = C(i) and go to (A) replacing
@ bY @i -
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Proof of Convergence. (a) First, we show that ¢, ., < g, forall
k =1,2,.. with |F(q,) = 8. Lemma 2.5 implies that F(g;) < 0. By
definition,

t b
[ 77430 mue) e dt = guia [ %0 mule), mle)) .
Hence,

Flg) = [ (9050, ) = 020 500 1)

= @ — 9 [ 1700, ) &t <0.

Therefore, ¢, < g; , since

[t nlt) mley de > 0.

(b) Our assertion is that lim;_.q,. = g(u,) = ¢, . If this is not
true, we must have lim; .. = ¢ > ¢, . In that case, we have a sequence
u(2), with g, such that lim; . F(g;) = F(q) = 0 [see step (A;) of the
algorithm]. Since F(q) is strictly monotonic decreasing (Lemma 2.3),
we obtain

0 =F(g) <F(g,) = 0,

which is a contradiction. Hence, it follows that limy_,.. f(g;) = F(gs); and
then, by Lemma 2.2, we have lim;_,.q, = ¢, .
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