
Journal of VLSI Signal Processing 14, 241-248 (1996)
�9 1996 Kluwer Academic Publishers. Manufactured in The Netherlands.

An Efficient Tree Architecture for Modulo 2 n + 1 Multiplication

ZHONGDE WANG, G.A. JULLIEN AND W.C. MILLER
University of Windsor, 401 Sunset, Windsor, Ontario N9B 3P4, Canada

Received March 11, 1996; Revised June 28, 1996

Abstract. Modulo 2 n-I- 1 multiplication plays an important role in the Fermat number transform and residue number
systems; the diminished-1 representation of numbers has been found most suitable for representing the elements
of the rings. Existing algorithms for modulo (2 n + 1) multiplication either use recursive modulo (2 ~ + 1) addition,
or a regular binary multiplication integrated with the modulo reduction operation. Although most often adopted
for large n, this latter approach requires conversions between the diminished-1 and binary representations. In this
paper we propose a parallel fine-grained architecture, based on a Wallace tree, for modulo (2 ~ -I- 1) multiplication
which does not require any conversions; the use of a Wallace tree considerably improves the speed of the multiplier.
This new architecture exhibits an extremely modular structure with associated VLSI implementation advantages.
The critical path delay and the hardware requirements of the new multiplier are similar to that of a corresponding
n x n bit binary multiplier.

1. Introduction

The Fermat number transform has found applications in
signal processing [1], and computation over a Fermat
Number Field has recently been proposed in a mod-
ulus replication architecture [2]. To develop an ef-
ficient coding system for Fermat number arithmetic,
Leibowitz [3] proposed the diminished-1 coding sys-
tem, which is not only suitable for Fermat numbers,
but also for general moduli of the form (2 ~ § 1). Com-
putations over modulo (2 n + 1) rings, based on these
numbers, is also adopted for many residue number sys-
tem implementations [4, 5]. Multiplication modulo
(2 ~ § 1) is an important, but rather difficult, opera-
tion and has been a topic of many published papers
[3, 6-11]. Since the diminished-1 coding is efficient
and convenient, most published modulo (2 ~ § 1) multi-
plication algorithms use this representation [3, 7-9]. In
his paper, Leibowitz [3] suggested two algorithms for
multiplication of diminished- 1 coded numbers. Chang
et al. [7] proposed an improved algorithm for multipli-
cation of diminished- 1 coded numbers, which requires
a conversion to binary representation prior to the mul-
tiplication. In the same paper, they also proposed a

way to merge the carry correction into the addition
process. Benaissa et al. [8] made another improve-
ment to avoid the conversion from the diminished-1
representation. Both of these techniques, however,
require a large number of n-bit diminished-1 addi-
tions. Based on an investigation of several approaches,
Curiger et al. [10] conclude that, for large n, a modulo
(2 n + 1) multiplier implemented by a (n + 1) • (n + 1)
bit binary multiplier together with modulo reduction
is the best solution. The multiplier proposed in [11]
uses a modification of this scheme with a most signifi-
cant bit (MSB) detector and a smaller n • n bit binary
multiplier.

In this paper we introduce a new modulo (2 ~ § 1)
multiplier which avoids all drawbacks of the cited mul-
tipliers. The large number of n-bit diminished- 1 addi-
tions in the multipliers of [7] and [8] are replaced by a
Wallace tree of full adders, and the length-2n adder for
the n • n bit binary multiplier in [11] is replaced by a
length-n diminished-1 adder. In this new architecture
no conversion is required, since number representation
is always in the diminished-1 form, and the usual re-
dundancy associated with representing numbers over
the Mod (2 n + 1) ring is eliminated.

242 Wang, Jullien and Miller

This paper is organized as follows. In Section 2, the
diminished-1 representation is briefly reviewed. The
new algorithm for modulo (2~+ 1) multiplication is
introduced in Section 3. Section 4 describes the ar-
chitecture of the new multiplier, with an illustrative
example for n = 8. Comparisons and the conclusions
are presented in Sections 5 and 6, respectively.

2. Diminished-1 Representation

The diminished- 1 representation of numbers was pro-
posed by Leibowitz [3], as a convenient and efficient
form for modulo (2 n + 1) operations on binary num-
bers. I f we let d(A) be the diminished-1 representation
of A, then:

d(A) = (A - 1) Mod(2 ~ § 1) (1)

The advantage of this representation is that zero is
uniquely identified by MSB = 1, for which case all
arithmetic operations are inhibited.

We obtain the following relationships [3] for arith-
metic operations within the representation:

d (a + B) =

d(A - B) =

d(A) �9 d(B)

d(A) + d(B) + 1 Mod(2 n + 1) (2)

d(A) �9 [- d (B)]

d(a) + d (B) + 1 Mod(2 n + 1) (3)

• ed(Ak)
k=I

d(A~) @ . . . Gd(A~)

d (a l) § -t- d(an)

+ n - 1Mod(2 n + l) (4)

where | represents addition, I - x] , negation in the
diminished-1 representation, respectively, d(B) rep-
resents the one's complement of d(B), and y~. ed(Ak)
represents modulo (2 n + 1) summation of diminished- 1
numbers.

Since 2 n --= - 1 Mod(2 n + 1) the residue operation
is accomplished by

A M o d (2 n + l) = A M o d 2 n - A d i v 2 n (5)

where div represents division retaining only the quo-
tient.

3. An Algorithm for Diminished-1 Multiplication

Our algorithm assumes that neither the multiplier or
multiplicand is zero; i.e., zero detection has been com-
pleted prior to using this algorithm. These are the
same assumptions used in many previously reported
diminished-1 multipliers, and so our final comparisons
will be valid.

To derive the general formulae for multiplication, we
start with the special case of multiplication by 2 k.

From Eq. (2), we find:

d(2A) = d(A + A) = 2d(A) + 1 Mod(2 '~ + 1) (6)

Since 2 k A can be treated as adding A to itself 2 k - 1
times, then:

d(2kA) = d(A + A + . . . § A)

= 2kd(A) + 2 k - 1 Mod(2 n + 1) (7)

and Eq. (7) can be rearranged as:

2kd(A) = d(2kA) - 2 ~ + 1 Mod(2 n + 1) (8)

Representing the n bits of the diminished-1 form as
d(A) = {an-lan-2.." a0}, then, from Eq. (7), we have:

d(2kA) = {an-(k+1)an-(k+2)'"aoO'..O} § {1. . - 1}

-- { a n - l a n - 2 ' ' ' an-e} (9)

where we use k least significant zeros in the first num-
ber and k ones in the second number on the right hand
side of Eq. (9). The first number is the binary rep-
resentation of 2kd(A) Mod(2n), and the third number
is 2kd(A) div(2n). The combination of the last two
numbers yields {an-1 a~-2 an-3}, the l ' s complement
of {an-j a~-2an-3 }. Therefore:

d(2eA) = {an-4an-5 ...aoa,~-1 an-2 an-3} (10)

or in other words, multiplication by 2 ~ is accomplished
by a cyclic shift o fk bits to the left with the shifted bits
being complemented. This rule was previously derived
in [3] by induction. The above argument provides a
direct proof of this rule.

Similar to the derivation of Eq. (7), the general mul-
tiplication of A, a non-zero number, by B, a non-zero
number, can be treated as adding A to itself B - 1 times.

An Efficient Tree Architecture for Modulo 2 n + 1 Multiplication 243

Therefore,

d(BA) = Bd(A) + B - 1

= (d(B) + 1)d(A) + d (B) M o d (2 n + 1) (11)

Representing d(B) by n bits as:

d(B) = E bk2k
k=O J

(12)

we have:

n--I 1 d(BA)=[k~=obk2k-~-I d(A)-}-d(B)
n-I

= ~_, bk2kd(A) + (bo + 1)d(A)
k = l

n - I

+ Z bk2k M~ + 1)
k=0

(13)

Using Eq. (8), Eq. (13) can be re-written as:

n - 1

d(BA) = Ebk(d(2kA) -- 2 k + 1) + (bo + 1)d(A)
k = l

n--1

+ E bk2k M~ + 1) (14)
k=0

o r

n--I n - l

d(BA) = E bkd(Z~A) + E bk + (bo + l) d (a)
k=l k= l

+ b 0 Mod(2 ~ + 1) (15)

Let

d~(A) = (bo + 1)d(A) + bo Mod(2" + 1) (16)

Then dl (A) = d(A) if bo = 0; or dl (A) = d(2A) if
b0 = 1. Or, in other words,

dl (A) = bod(A) + bod(2A) (17)

Replacing the first summation of Eq. (15) by the
diminished-1 summation of Eq. (4), we obtain:

;.'t -- I

d(BA) = Eebkd(2kA) - n + 2
k=l

n--1

+ Z bk +dl (A) Mod(2 ~ + 1) (18)
k=I

Let Z be the number of zeros of the n - I bits ffom
bl to bn_l,then:

n--i n--I

z : 1-Z;b
k=l k = l

(19)

and

n - I

d(BA) = E *bkd(2kA) - Z + dl (A)
k=l

+ 1 Mod(2 ~ + 1) (20)

S i n c e - Z = 2 n + l - Z = 2 n - 1 - Z + 2 = 2 + 2
Mod(2 ~ + 1), then:

n - I

d(BA) = E ~b~d(2k A) + 2 + dl (A)
k=l

+ 3 Mod(2 n + 1) (21)
o r

rt-- t

d(BA) = ~ ebkd(2kA) G 2 | (A)
k=l

+ l M o d (2 n + l) (22)

Except for the final binary addition of 1, which can
be easily implemented by setting the carry-in of the
final diminished-1 adder, all operations in Eq. (22) are
diminished-1 operations. If bk = 1, we implement
d(2kA) by cyclic shifts together with a complement
operation on the shifted bits, as shown previously. If
bk = 0, we replace d (2 k A) with n zeros. Therefore, the
n + 1 numbers (excluding the last 1) on the right hand
side of Eq. (22) are all n-bit diminished-1 numbers.

4. A New Architecture for Modulo
(2 n + 1) Multiplication

The efficient implementation of multi-operand dimi-
nished-1 addition is of great importance to the speed of
the modulo (2 n + 1) multiplier. In the published liter-
ature, the addition of diminished- 1 numbers is always
implemented by self-contained diminished-1 adders,
which require an n-bit binary addition plus a can'y cor-
rection. Since a carry correction is equivalent to an
n-bit half adder, which has a critical path delay sim-
ilar to an n-bit binary full adder, the self-contained
n-bit diminished- 1 adder is considerably slower than an
n-bit binary adder. If we look at the multiplication as a

244 Wang, Jullien and Miller

0 1 1 0 1 0 1 1 108
+ 0 0 1 0 1 1 1 0 47

0 1 0 0 1 1 0 0 1
+ ~ 1

1 0 0 1 1 0 1 0 155
+ 1 0 0 1 1 1 0 1 158

1 0 0 1 1 0 1 1 1
+ " - - - - - - " - - ~ 0

0 0 1 1 0 1 1 1 56 rood 257

~gure i, Adding three diminished-1 numbers using the scheme
given in [3].

multi-operand adder tree, however, then we can invoke
transformations which effectively remove the extra de-
lay associated with the diminished-1 adder structure.
To start v, ith let us use an example to demonstrate the
existing techniques of modulo (2 ~ + 1) multiplication,

4.1. The Existing Techniques

Let us perform muki-operand addition on three mod-
ulo (2 8 + 1) diminished-1 numbers 108(01101011),
47(00101110), and 158(10011101).

First, we use the original diminished-1 addition
scheme given in [3]. As shown by Fig. 1, this scheme
requires two n-bit binary additions and two carry cor-
rections.

In general, if K diminished-1 numbers are added
with this scheme, K - 1 n-bit binary additions and the
same number of carry corrections are required. Let t~
be the delay of an n-bit addition and tc be the delay
of a carry correction, then the delay of this scheme is
given by:

T1 = (K - 1)(t, + to) (23)

The scheme proposed in [7] is shown in Fig. 2, where
the number of carry corrections has been reduced from
2 to 1. In fact, no matter how many numbers are added,
only one carry correction is required, since all other
carry corrections can be merged with the binary addi-
tions. Therefore, if K diminished-1 numbers are added
by this scheme, K - 2 carry corrections can be saved
in comparison with the first scheme, but K - 1 n-bit
binary additions are still to be done. The delay of this
scheme is given by:

T2 = (K - 1)t, + tc (24)

O1 1 O1 O 1 1 108
+ 0 0 1 O1 1 1 0 47

O1 0 0 1 1 0 0 1 155
~ 0 0 ~ 1 158

+ 1

1 001 1 01 1 1
+ - ' ~ 0

001 1 01 1 1 56 rnod 257

Figure 2. Adding three diminished-I numbers using the scheme
given in [7].

Figure 3.
scheme.

01101011 (108)
00101110 (47)

10011101 (158)
S 1 1 0 1 1 0 0 0
C 0 0 1 0 1 1 1 1 1

100110111
---"-~ 0

0 0 1 1 01 1 1 (56)

Adding three diminished-I numbers using the new

4.2. Application of the Wallace Tree

It is well known that multi-operand binary addition can
be optimally implemented by a Wallace tree [12]. The
optimality is achieved at the expense of an irregular in-
terconnection structure compared to slower regular ar-
ray solutions [13]. To take the advantage of the Wallace
tree structure in our design, the only extra problem we
have to take care of is the carry correction. That is,
to complement any carry out of the MSB in our n-bit
representation, and shift it to the LSB position.

Figure 3 uses the new scheme proposed in this paper
in the example of Section 4.1.

Each bit of the three numbers is added by a binary
adder. The sum bit of the adder is fed to the same bit
position of an n-bit fast adder, while the carry bit of
the adder is fed to the n-bit adder by shifting one bit
position to the left for all adders, except the adder in
the MSB position; in this latter case the carry is com-
plemented and fed to the LSB position of the n-bit fast
adder. This fast adder then adds the sums and carries
together with a carry correction to yield the final result.

In general, if K diminished-1 numbers are to be
added, we treat the same bit position of the set of input
numbers as a column. Then we use a Wallace tree [12]

An Efficient Tree Architecture for Modulo 2 n -t- 1 Multiplication 245

Table 1. Number of stages as a function of column height.

g 3 4 5-6 7-9 10-13 14-19 20-28 2942 43-63 ...
j(K) l 2 3 4 5 6 7 8 9 ...

0 0 1 1 1 0 1 0
X 1 0 1 1 0 1 1 1

0101 1 1 01 011k
o , o t l l O l O 1 1 ~ B "" D/s r ~
I ,-~ } ~ z s ii I 1 0 1 O l l ' ~ C 1

oo111olo,11, trr s illllOlOO,,,tvc 11o 1 ~ 1 7 6 A l F-, ,, ~,cu,l i I 0 1 0
~ 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6 ~,c111olo1116-]/t ,,,oo 1~176 1 0 0 0 1 0

111 O0 1 0 1 01 1 ~ 1 7 6 7' t.colo oo 1 o o orr, _zs ,o 1 1 il 11 ooo 11 001 1 1 ' 0 t ; 1 ~) 0 0 .oo&o0ooo(l / s z 1'1~176 w-,s loolooo lo/ c o l O l O l l O O F
0 o 1 1 1 o i 1 0 ~ 1 0 0 o 1 o l ' ~ C O l l 1 oo o o o I T J " 1

7, ~ 1 1 1 1 1 1 0 1 # 1 0 0] 1 1 1 0 1
4~- 0

Final result in diminished-1 coding ~ 0 0 01 1 11 01

Figure 4. An example of diminished-1 multiplication.

of binary adders, to compress the column size from K
to 2. The number of stages, j , required by the Wallace
tree is determined by the recursion of Eq. (25):

K(0) = 2

K (j + I) = -~K(j) (25)

where [o] represents the integral part of the argument
(floor function). The series so generated is:

j 1 2 3 4 5 6 7 8 9 .- .
K (j) 3 4 6 9 13 19 28 42 63 --.

Let the inverse function of K (j) be j (K) . Then j (K)
is given by Table 1.

Thus, j (K) stages are required by the Wallace tree in
order to compress the column size from K to 2. Since
j (K) ~ logl. 5 K, then j (K) << K for large K.

When the Wallace tree is applied to the specific prob-
lem of diminished- 1 multi-operand addition, the carries
of adders at the MSB position of any stage have to be
complemented and fed to the input of adders at the LSB
position of the next stage.

Let to be the delay of a binary adder. Then the delay
for adding K diminished-1 numbers by our scheme is
given by:

Ts = j (K) t o + t,, + tc (26)

Since to < t~,, and j (K) < K, then T3 < 2"2 and our
scheme appears to be the fastest proposed so far.

4.3. An Example

Figure 4 shows an example of modulo (28 + 1) mul-
tiplication using the proposed algorithm. The mul-
tiplicand and the multiplier are 59 (000111010) and
184 (010110111), respectively. The final result is 62
(000111101) Mod 257. In Fig. 4, the generation of the
partial product array, i.e., di (A), b~d(2kA) and 2 is
given by A. The Wallace tree, is given by B, C, D, and
E. The final diminished- 1 addition, with a carry-in (the
last term in Eq. (22)) is given by F (binary addition) and
G (carry correction). All bits on the left of the broken
lines are complemented and shifted to the right hand
side (identified by borders on the top and left). In the
Wallace tree stage, every three rows of partial products
are compressed to two rows by a full adder array. The
resulting two rows are marked by ' s ' for sums, and 'c '
for carries, the carry row is shifted one bit position to
the left with respect to the sum row.

4.4. Computing Z

The number Z is obtained as the result of a counter,
which counts the number of zeros of the N - 1 bits from
bi to bn-i. Z must be computed before the Wallace
tree is applied. For the example of N - 1 = 7, the
counter can be implemented as shown by Fig. 5. Taking
advantage of the difference in delay between the carry
and sum of a full adder [16], the seven counter has the
equivalent delay of four XOR gates.

246 Wang, Jullien and Miller

Figure 5.

TII I!1

i
Zz Z 1

The implementation of a seven counter by full adders.

Figure 6. VLSI architecture for modulo 2 8 + 1 multiplier.

4.5. An Architecture for Modulo 257 Multiplication

Figure 6 shows the architecture for the new modulo
(2 '~ § 1) multiplier for n = 8, where each block repre-
sents a full adder. The inputs of the adder enter from
the top, while the outputs, the sum on the right side
and carry on the left, exit fi'om the bottom. The small
circle at the carry position of each of the left most
adders represents a complemented output, ak and bk,
k = 0, 1 n -- 1 are diminished-1 representations

of bits taken from n LSBs of the multiplicand and mul-
tiplier, respectively.

It is well known that when the Wallace tree is used to
build a binary multiplier, the irregularity of the archi-
tecture and interconnection cause layout difficulties. In
contrast, it can be seen from Fig. 6 that the full adder ar-
ray for the Wallace tree in our architecture is extremely
regular, and is therefore easier to implement than the
Wallace tree binary multiplier, especially when n be-
comes large. This, we feel, is a rather intriguing result

5. Comparison with Published Techniques

For comparison purposes, we use the algorithm pro-
posed in [11] based on a study presented in reference
[10], since this appears to represent the fastest pub-
lished modulo (2 ~ § 1) multiplier technique.

Hiassat [11] does not use the diminished-1 repre-
sentation for numbers. As mentioned previously,
the diminished-1 representation is the most eff•
and convenient representation for numbers modulo
(2" + 1), and we assume that inputs and outputs are
in diminished-1 representation. Thus, the algorithm in
[11] requires an initial conversion from the diminished-
1 form into a binary representation to allow the mul-
tiplication to be performed with a conventional binary
multiplier. This is followed by a modulo reduction and
conversion back to the diminished-1 representation.
We show, in the following, that our multiplier has ap-
proximately the same area and delay as the binary mul-
tiplier of the size used in [11]; this clearly renders our
technique superior to prior results, since we remove the
conversion overhead.

Since our modulo (2 ~ + 1) multiplier is based on the
Wallace tree we will compare it to an n • n Wallace
tree binary multiplier.

Both our multiplier and the n x n bit Wallace tree bi-
nary multiplier consist of three sections: partial product
generation; the Wallace tree, which reduces the column
size of the partial products from n to 2; and a fast adder,
which combines the carries and sums from the second
part into a single number. Our comparison is made for
each part separately.

For a binary multiplier, all partial products are ob-
tained by AND gates. The delay is one AND gate de-
lay. The partial products for our modulo (2 ~ + 1) mul-
tiplier, on the other hand, require some extra hardware
and longer delay for generation of Z, as has been shown
in Section 4.4. Comparing to the whole multiplier, the
extra hardware is negligible. Although the extra delay
is not negligible (for the example of N = 8, an extra

An Efficient Tree Architecture for Modulo U + 1 Multiplication 247

delay equivalent to 3.5 XOR delays is required), it is,
however, still a small portion of the total delay of the
multiplier.

The number of full adders for the Wallace tree is
(n - 1) x (n - 2) for the binary multiplier [14], while
that for our modulo (2 ~ + 1) multiplier is n • (n - 1),
(easily obtained from Fig. 6). Because of the irregular-
ity of the Wallace tree for a binary multiplier, compared
to the regularity of our multiplier, more silicon area
will be spent on routing, especially when n becomes
large. It is difficult, in general, to show the area trade-
off of the extra 2(n - 1) full adders required by our
multiplier versus the much greater wiring irregularity
of the binary multiplier, since these are very technol-
ogy dependent. It is clear, however, that the trade-off
tends to reduce the effect of the extra full adders for
our modulo (2 n + 1) multiplier.

The delay of the Wallace tree depends on the height
of the column of the partial product array (Table 1), pro-
viding that we do not count the delay of the wiring. The
column size for an n x n bit binary multiplier is n, while
the column size for the modulo (2 n + 1) multiplier is
n + 1. For many n in practical use (e.g., 8 and 16)
j (n + 1) = j (n), yielding the same delay for the second
part of both multipliers. The irregular routing and inter-
connection of the binary multiplier will, in fact, tend to
increase its delay, offsetting the effect of the first stage
delay increase for the modulo (2 ~ + 1) multiplier.

For the third part we compare a 2(n - 1) bit binary
adder for the binary multiplier, to an n-bit diminished-
1 adder for the modulo (2 ~ + 1) multiplier. The lat-
ter consists of two n-bit adders (full and half). For
fast adders, such as carry-tookahead or carry-skip, a
2(n - 1) bit adder requires more hardware than two n
bit adders. The delay of a fast adder is approximately
proportional to log 2 n [15], and so our delay compari-
son is approximately log 2 n + 1 vs. 2 log 2 n. Although
the delay of an n-bit half adder is shorter than that of
an n-bit full adder, clearly the delay of the third part
of our modulo (2 ~ + 1) multiplier is longer than that of
the binary multiplier.

Considering that the second part of the multiplier has
a major impact on the area and delay, then we have the
interesting result that our Wallace tree modulo (2 ~ + 1)
multiplier has similar area and delay to that of a Wallace
tree n x n binary multiplier.

6. Conclusions

In conclusion, an architecture for a modulo (2 n + 1)
multiplier is presented. The multiplier is based on a

modified Wallace Tree, rather than on binary multi-
pliers and converters, as proposed in the literature. An
interesting observation is that the resulting Wallace tree
is much more regular than Wallace Tree structures ap-
plied to binary multipliers. The required hardware and
the delay of the new modulo (2 n + 1) multiplier is
similar to that required by a n x n bit Wallace tree bi-
nary multiplier. The regularity of the proposed modulo
(2 n § 1) multiplier suggests suitability for VLSI imple-
mentation. The proposed modulo (2 ~ + 1) multiplier
appears to be superior to published modulo (2 ~ + 1)
multiplier architectures in terms of both hardware and
speed.

Acknowledgments

The authors acknowledge support from the Natural Sci-
ence and Engineering Research Council of Canada, and

the Micronet Network of Centres of Excellence for
funding this work. Design tools have been provided
by the Canadian Microelectronics Corporation.

References

1. R.C. Agarwal and C.S. Burrus, "Fast convolution using Fermat
number transforms with applications to digital filtering," IEEE
Trans. Acoust. Speech, Signal Processing, Vol. ASSP-22, pp.
87-97, 1974.

2. W. Luo, G.A. Jullien, N.M. Wigley, W.C. Miller, and Z. Wang,
"An array processor for inner product computations using a Fer-
mat number ALU," Proc. 1995 Symposium on Application Spe-
cific Array Processors (in print).

3. L.M. Leibowitz, "A simplified binary arithmetic for the Fermat
number transform," IEEE Trans. Acoust. Speech, Signal Pro-
cessing, Vol. ASSP-24, pp. 356-359, 1976.

4. W.K. Jenkins, "The design of specialized residue classes for
efficient recursive digital filter realization," IEEE Trans. Acoust.
Speech, Signal Processing, Vol. ASSP-30, pp. 370-380, 1982.

5. W.K. Jenkins, "Recent advance in residue number techniques for
recursive digital filtering," IEEE Trans. Acoust. Speech, Signal
Processing, Vol. ASSP-27, pp. 1%30, 1979,

6. EJ. Taylor, "A VLSI residue arithmetic multiplier," IEEE Trans.
Comput., Vol. C-31, pp. 540-546, 1982.

7. J.J. Chang, T.K. Truong, H.M. Shao, I.S. Reed, and L.-S. Hsu,
"The VLSI design of a single chip for the multiplication of in-
tegers modulo a Fermat number," IEEE Trans. Acoust. Speech,
Signal Processing, Vol. ASSP-33, pp. 1599-1602, 1985.

8. M. Benaissa, A Pajayakrit, S.S. Dlay, and A.GJ. Holt, "VLSI
design for diminished- 1 multiplication of integers modulo a Fer-
mat number," lEE Proc., Vol. 135, Pt. E, pp. i61-164, 1988.

9. M. Benaissa, A. Bouridane, S.S. Dlay, and A.GJ. H01t,
"Diminished-I multiplier for a fast convolver and correlator us-
ing the Fermat number transform," lEE Proc., Vol. 135, Pt. G,
pp. 187-193, 1988.

10. A.V. Curiger, H. Bonnenberg, and H. Kaeslin, "Regular VLSI
m'chitecture for multiplication modulo (2 n + 1)," IEEE J. Solid-
State Circuits, Vol. 26, pp. 990-994, 1991.

248 Wang, Jullien and Miller

l 1. A. Hiassat: "New memoryless rood (2 n + 1) residue multiplier,"
Elec. Letts., Vol. 28, pp. 3124-315, 1992.

12. C.S. Wallace, "A suggestion for a fast multiplier," IEEE Trans.
Electronic Computers, Vol. EC-13, pp. 14-17, 1964.

I3. J.Y. Lee, H.L. Garvin, and C.W. Slayman, "A high-speed high-
density silicon 8 x 8-bit parallel multiplier," IEEEJ. Solid-State
Circuits, Vol. SC-22, pp. 35-40, 1987.

14. Z. Wang, G.A. Jullien, and W.C. Miller, "New design techniques
for column compression multipliers," IEEE Trans. Comput., Vol.
C-44, No. 8, pp. 962-970, 1995.

15. R.E Brent and H.T. Kung, "A regular layout for parallel adders,"
IEEE Trans. Comput., Vol. C-31, pp. 260-264, 1982.

16. V.G. Oklobdzija, D. Villeger, and S.S. Liu, "A method for speed
optimized partial product reduction and generation of fast par-
allel multiplier using an algorithmic approach," IEEE Trans.
Computers., Vol. C-45, No. 3, pp. 294-306, 1996.

Loughborough, Birmingham and Aston (Ph.D., 1969). He was a
student engineer and data processing engineer at English Electric
Computers, UK, from 1961 to 1966, and a visiting senior research
engineer at the Central Research Laboratories of EMI Ltd., UK, from
1975 to 1976.

Since 1969 he has been with the Electrical Engineering Depart-
ment of the University of Windsor, Ontario, Canada, and currently
holds the rank of University Professor. He is also the Director of
the VLSI Research Group at the University of Windsor. He was a
member of the Board of Directors of the Canadian Microelectronics
Corporation from 1990 to 1993 and is a Principle Researcher and
member of the Coordinating Committee of the Micronet Network of
Centres of Excellence.

He has published widely in the fields of Computer Arithmetic,
Digital Signal Processing and VLSI Systems, and teaches courses in
related areas. He has served on the technical committees of many
international conferences; he serves on the Editorial Board of the
Journal of VLSI Signal Processing, and was an Associate Editor of
the IEEE Transactions on Computers from 1994 to 1996. He hosted
and was program co-chair of the 1 lth IEEE Symposium on Computer
Arithmetic.

Zhongde Wang was with Kunming Institute of Physics from 1960
to 1987. During that period, he visited the Department of Electri-
cal Engineering of the University of Arizona as an exchange scholar
from June 1980 to January 1983. From August 1987 to September
[990 he was with Beijing University of Posts and Telecommunica-
tions, as a associate professor (1987), and a professor (1988-1990).
He was with the VLSI Research Group, Department of Electrical
Engineering, University of Windsor, as a Senior Research Scientist,
from September 1990 to June 1996. He is now a staff engineer in
video DSP Group of Genesis Microchip Inc.

Prof. Wang's research interests include algorithms for DSR com-
puter arithmetic and its VLSI implementation, orthogonal transforms
and their algorithms.

G r a h a m Jullien was educated in the United Kingdom, receiv-
ing degrees, in Electrical Engineering, from the Universities of

William C. Miller was born in Toronto, Ontario, Canada. He re-
ceived the B.S.E. degree in electrical engineering from the University
of Michigan, Ann Arbor, in 1960, and the M.A.Sc. and Ph.D. degrees
in electrical engineering from the University of Waterloo, Waterloo,
Ontario in 1961 and 1969, respectively.

He joined the Department of Electrical Engineering at the Uni-
versity of Windsor in 1968, where he currently holds the rank of
Professor. His research interests ,are oriented towards digital signal
processing and the design of massively parallel VLSI processor ar-
chitectures for application specific problems in the area of image
processing relating to machine vision. He also teaches courses in
the area of circuit theory, signal processing, and system theory. He
is also engaged extensively in industrial consulting work. He was
director of the CAD/CAM Centre at the University of Windsor for a
two year period ending in 1988.

Dr. Miller is a registered Professional Engineer in the Province of
Ontario.

