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Abstract.  Modulo 2 n-I- 1 multiplication plays an important role in the Fermat number transform and residue number 
systems; the diminished-1 representation of numbers has been found most suitable for representing the elements 
of the rings. Existing algorithms for modulo (2 n + 1) multiplication either use recursive modulo (2 ~ + 1) addition, 
or a regular binary multiplication integrated with the modulo reduction operation. Although most often adopted 
for large n, this latter approach requires conversions between the diminished-1 and binary representations. In this 
paper we propose a parallel fine-grained architecture, based on a Wallace tree, for modulo (2 ~ -I- 1) multiplication 
which does not require any conversions; the use of a Wallace tree considerably improves the speed of the multiplier. 
This new architecture exhibits an extremely modular structure with associated VLSI implementation advantages. 
The critical path delay and the hardware requirements of the new multiplier are similar to that of a corresponding 
n x n bit binary multiplier. 

1. Introduction 

The Fermat number transform has found applications in 
signal processing [1], and computation over a Fermat 
Number  Field has recently been proposed in a mod- 
ulus replication architecture [2]. To develop an ef- 
ficient coding system for Fermat number arithmetic, 
Leibowitz [3] proposed the diminished-1 coding sys- 
tem, which is not only suitable for Fermat numbers, 
but also for general moduli of the form (2 ~ § 1). Com- 
putations over modulo (2 n + 1) rings, based on these 
numbers, is also adopted for many residue number sys- 
tem implementations [4, 5]. Multiplication modulo 
(2 ~ § 1) is an important, but rather difficult, opera- 
tion and has been a topic of many published papers 
[3, 6-11]. Since the diminished-1 coding is efficient 
and convenient, most published modulo (2 ~ § 1) multi- 
plication algorithms use this representation [3, 7-9]. In 
his paper, Leibowitz [3] suggested two algorithms for 
multiplication of diminished- 1 coded numbers. Chang 
et al. [7] proposed an improved algorithm for multipli- 
cation of diminished- 1 coded numbers, which requires 
a conversion to binary representation prior to the mul- 
tiplication. In the same paper, they also proposed a 

way to merge the carry correction into the addition 
process. Benaissa et al. [8] made another improve- 
ment to avoid the conversion from the diminished-1 
representation. Both of these techniques, however, 
require a large number of n-bit diminished-1 addi- 
tions. Based on an investigation of several approaches, 
Curiger et al. [10] conclude that, for large n, a modulo 
(2 n + 1) multiplier implemented by a (n + 1) • (n + 1) 
bit binary multiplier together with modulo reduction 
is the best solution. The multiplier proposed in [11] 
uses a modification of this scheme with a most signifi- 
cant bit (MSB) detector and a smaller n • n bit binary 
multiplier. 

In this paper we introduce a new modulo (2 ~ § 1) 
multiplier which avoids all drawbacks of the cited mul- 
tipliers. The large number of  n-bit diminished- 1 addi- 
tions in the multipliers of [7] and [8] are replaced by a 
Wallace tree of  full adders, and the length-2n adder for 
the n • n bit binary multiplier in [11] is replaced by a 
length-n diminished-1 adder. In this new architecture 
no conversion is required, since number representation 
is always in the diminished-1 form, and the usual re- 
dundancy associated with representing numbers over 
the Mod (2 n + 1) ring is eliminated. 
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This paper is organized as follows. In Section 2, the 
diminished-1 representation is briefly reviewed. The 
new algorithm for modulo (2~+  1) multiplication is 
introduced in Section 3. Section 4 describes the ar- 
chitecture of the new multiplier, with an illustrative 
example for n = 8. Comparisons and the conclusions 
are presented in Sections 5 and 6, respectively. 

2. Diminished-1 Representation 

The diminished- 1 representation of numbers was pro- 
posed by Leibowitz [3], as a convenient and efficient 
form for modulo (2 n + 1) operations on binary num- 
bers. I f  we let d(A) be the diminished-1 representation 
of A, then: 

d(A) = (A - 1) Mod(2 ~ § 1) (1) 

The advantage of  this representation is that zero is 
uniquely identified by MSB = 1, for which case all 
arithmetic operations are inhibited. 

We obtain the following relationships [3] for arith- 
metic operations within the representation: 

d ( a  + B) = 

d(A - B) = 

d(A) �9 d(B)  

d(A) + d(B) + 1 Mod(2 n + 1) (2) 

d(A) �9 [ - d ( B ) ]  

d(a)  + d ( B )  + 1 Mod(2 n + 1) (3) 

• ed(Ak) 
k=I  

d(A~) @ . . .  Gd(A~)  

d (a l )  §  -t- d(an) 

+ n -  1Mod(2 n + l )  (4) 

where | represents addition, I - x ] ,  negation in the 
diminished-1 representation, respectively, d(B) rep- 
resents the one's complement of d(B), and y~. ed(Ak) 
represents modulo (2 n + 1) summation of diminished- 1 
numbers. 

Since 2 n --= - 1  Mod(2 n + 1) the residue operation 
is accomplished by 

A M o d ( 2  n + l ) = A M o d 2  n - A d i v 2  n (5) 

where div represents division retaining only the quo- 
tient. 

3. An Algorithm for Diminished-1 Multiplication 

Our algorithm assumes that neither the multiplier or 
multiplicand is zero; i.e., zero detection has been com- 
pleted prior to using this algorithm. These are the 
same assumptions used in many previously reported 
diminished-1 multipliers, and so our final comparisons 
will be valid. 

To derive the general formulae for multiplication, we 
start with the special case of multiplication by 2 k. 

From Eq. (2), we find: 

d(2A) = d(A + A) = 2d(A) + 1 Mod(2 '~ + 1) (6) 

Since 2 k A can be treated as adding A to itself 2 k - 1 
times, then: 

d(2kA) = d(A + A + . . .  § A) 

= 2kd(A) + 2 k - 1 Mod(2 n + 1) (7) 

and Eq. (7) can be rearranged as: 

2kd(A) = d(2kA) - 2 ~ + 1 Mod(2 n + 1) (8) 

Representing the n bits of  the diminished-1 form as 
d(A) = {an-lan-2.." a0}, then, from Eq. (7), we have: 

d(2kA) = {an-(k+1)an-(k+2)'"aoO'..O} § {1. . -  1} 

-- { a n - l a n - 2 ' ' '  an-e} (9) 

where we use k least significant zeros in the first num- 
ber and k ones in the second number on the right hand 
side of Eq. (9). The first number is the binary rep- 
resentation of 2kd(A) Mod(2n), and the third number 
is 2kd(A) div(2n). The combination of the last two 
numbers yields {an-1 a~-2 an-3}, the l ' s  complement 
of {an-j a~-2an-3 }. Therefore: 

d(2eA) = {an-4an-5 ...aoa,~-1 an-2 an-3} (10) 

or in other words, multiplication by 2 ~ is accomplished 
by a cyclic shift o fk  bits to the left with the shifted bits 
being complemented. This rule was previously derived 
in [3] by induction. The above argument provides a 
direct proof of this rule. 

Similar to the derivation of  Eq. (7), the general mul- 
tiplication of A, a non-zero number, by B, a non-zero 
number, can be treated as adding A to itself B - 1 times. 
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Therefore, 

d(BA) = Bd(A) + B - 1 

= (d(B) + 1)d(A) + d ( B ) M o d ( 2  n + 1) (11) 

Representing d(B) by n bits as: 

d(B) = E bk2k 
k=O J 

(12) 

we have: 

n--I 1 d(BA)=[k~=obk2k-~-I d(A)-}-d(B) 
n-I 

= ~_, bk2kd(A) + (bo + 1)d(A) 
k = l  

n - I  

+ Z bk2k M~ + 1) 
k=0 

(13) 

Using Eq. (8), Eq. (13) can be re-written as: 

n - 1  

d(BA) = Ebk(d(2kA)  -- 2 k + 1) + (bo + 1)d(A) 
k = l  

n--1 

+ E bk2k M~ + 1) (14) 
k=0  

o r  

n--I n - l  

d(BA) = E bkd(Z~A) + E bk + (bo + l ) d ( a )  
k=l  k= l  

+ b 0  Mod(2 ~ + 1) (15) 

Let 

d~(A) = (bo + 1)d(A) + bo Mod(2" + 1) (16) 

Then dl (A) = d(A) if bo = 0; or dl (A) = d(2A) if 
b0 = 1. Or, in other words, 

dl (A) = bod(A) + bod(2A) (17) 

Replacing the first summation of Eq. (15) by the 
diminished-1 summation of Eq. (4), we obtain: 

;.'t -- I 

d(BA) = Eebkd(2kA)  - n + 2 
k=l  

n--1 

+ Z bk +dl (A) Mod(2 ~ + 1) (18) 
k=I  

Let Z be the number of zeros of the  n - I bits ffom 
bl to bn_l,then: 

n--i  n--I 

z : 1-Z;b  
k=l  k = l  

(19) 

and 

n - I  

d(BA) = E *bkd(2kA) - Z + dl (A) 
k=l  

+ 1 Mod(2 ~ + 1) (20) 

S i n c e - Z = 2  n + l - Z = 2  n -  1 - Z + 2 = 2 + 2  
Mod(2 ~ + 1), then: 

n - I  

d(BA) = E ~b~d(2k A) + 2 + dl (A) 
k=l  

+ 3  Mod(2 n + 1) (21) 
o r  

rt-- t 

d(BA) = ~ ebkd(2kA) G 2 | (A) 
k=l  

+ l M o d ( 2  n + l )  (22) 

Except for the final binary addition of 1, which can 
be easily implemented by setting the carry-in of the 
final diminished-1 adder, all operations in Eq. (22) are 
diminished-1 operations. If  bk = 1, we implement 
d(2kA) by cyclic shifts together with a complement 
operation on the shifted bits, as shown previously. If  
bk = 0, we replace d (2 k A) with n zeros. Therefore, the 
n + 1 numbers (excluding the last 1) on the right hand 
side of Eq. (22) are all n-bit diminished-1 numbers. 

4. A New Architecture for Modulo 
(2 n + 1) Multiplication 

The efficient implementation of multi-operand dimi- 
nished-1 addition is of great importance to the speed of 
the modulo (2 n + 1) multiplier. In the published liter- 
ature, the addition of diminished- 1 numbers is always 
implemented by self-contained diminished-1 adders, 
which require an n-bit binary addition plus a can'y cor- 
rection. Since a carry correction is equivalent to an 
n-bit half adder, which has a critical path delay sim- 
ilar to an n-bit binary full adder, the self-contained 
n-bit diminished- 1 adder is considerably slower than an 
n-bit binary adder. If we look at the multiplication as a 
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0 1 1 0 1 0 1 1  108 
+ 0 0 1 0 1 1 1 0  47  

0 1 0 0 1 1 0 0 1  
+ ~ 1  

1 0 0 1 1 0 1 0  155 
+ 1 0 0 1 1 1 0 1  158 

1 0 0 1 1 0 1 1 1  
+ " - - - - - - " - - ~  0 

0 0 1  1 0 1 1  1 56 rood 257 

~gure i, Adding three diminished-1 numbers using the scheme 
given in [3]. 

multi-operand adder tree, however, then we can invoke 
transformations which effectively remove the extra de- 
lay associated with the diminished-1 adder structure. 
To start v, ith let us use an example to demonstrate the 
existing techniques of modulo (2 ~ + 1) multiplication, 

4.1. The Existing Techniques 

Let us perform muki-operand addition on three mod- 
ulo ( 2 8 +  1) diminished-1 numbers 108(01101011), 
47(00101110), and 158(10011101). 

First, we use the original diminished-1 addition 
scheme given in [3]. As shown by Fig. 1, this scheme 
requires two n-bit binary additions and two carry cor- 
rections. 

In general, if K diminished-1 numbers are added 
with this scheme, K - 1 n-bit binary additions and the 
same number of  carry corrections are required. Let t~ 
be the delay of an n-bit addition and tc be the delay 
of a carry correction, then the delay of this scheme is 
given by: 

T1 = (K - 1)(t, + to) (23) 

The scheme proposed in [7] is shown in Fig. 2, where 
the number of carry corrections has been reduced from 
2 to 1. In fact, no matter how many numbers are added, 
only one carry correction is required, since all other 
carry corrections can be merged with the binary addi- 
tions. Therefore, if K diminished-1 numbers are added 
by this scheme, K - 2 carry corrections can be saved 
in comparison with the first scheme, but K - 1 n-bit 
binary additions are still to be done. The delay of this 
scheme is given by: 

T2 = (K - 1)t, + tc (24) 

O1 1 O1 O 1 1  108 
+ 0 0 1  O1 1 1 0 47 

O1 0 0 1  1 0 0 1  155 
~ 0 0 ~ 1  158  

+ 1 

1 001 1 01 1 1 
+ - ' ~ 0  

001 1 01 1 1 56 rnod 257 

Figure 2. Adding three diminished-I numbers using the scheme 
given in [7]. 

Figure 3. 
scheme. 

01101011 (108) 
00101110 (47) 

10011101 (158) 
S 1 1 0 1 1 0 0 0  
C 0 0 1 0 1 1 1 1 1  

100110111 
---"-~ 0 

0 0 1  1 01 1 1 ( 56)  

Adding three diminished-I numbers using the new 

4.2. Application of the Wallace Tree 

It is well known that multi-operand binary addition can 
be optimally implemented by a Wallace tree [12]. The 
optimality is achieved at the expense of  an irregular in- 
terconnection structure compared to slower regular ar- 
ray solutions [13]. To take the advantage of the Wallace 
tree structure in our design, the only extra problem we 
have to take care of is the carry correction. That is, 
to complement any carry out of  the MSB in our n-bit 
representation, and shift it to the LSB position. 

Figure 3 uses the new scheme proposed in this paper 
in the example of Section 4.1. 

Each bit of the three numbers is added by a binary 
adder. The sum bit of  the adder is fed to the same bit 
position of an n-bit fast adder, while the carry bit of 
the adder is fed to the n-bit adder by shifting one bit 
position to the left for all adders, except the adder in 
the MSB position; in this latter case the carry is com- 
plemented and fed to the LSB position of the n-bit fast 
adder. This fast adder then adds the sums and carries 
together with a carry correction to yield the final result. 

In general, if K diminished-1 numbers are to be 
added, we treat the same bit position of  the set of  input 
numbers as a column. Then we use a Wallace tree [ 12] 
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Table 1. Number of stages as a function of column height. 

g 3 4 5-6 7-9 10-13 14-19  20-28 2942 43-63 ... 
j(K) l 2 3 4 5 6 7 8 9 ... 

0 0 1 1 1 0 1 0  
X 1 0 1 1 0 1 1 1  

0101 1 1 01 011k 
o , o t l l O l O 1 1 ~ B  "" D/s r ~ 
I ,-~ } ~ z s  ii I 1 0 1  O l  l ' ~ C  1 

oo111olo,11,  trr s illllOlOO,,,tvc 11o 1 ~ 1 7 6  A l F-,  ,, ~,cu,l i I 0 1 0  
~ 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6  ~,c111olo1116-]/t ,,,oo 1~176  1 0 0 0 1 0  

111 O0 1 0 1 01 1 ~ 1 7 6  7' t.colo oo 1 o o orr,  _zs ,o 1 1 il 11 ooo 11 001 1 1 ' 0 t ; 1 ~ ) 0 0  .oo&o0ooo(l / s z  1'1~176 w-,s loolooo lo/ c o l O l O l l O O F  
0 o 1 1 1 o i 1 0 ~ 1 0 0  o 1 o l ' ~ C O l l  1 oo  o o o I T J  " 1 

7, . . . . ~ 1 1 1 1 1 1 0 1 #  1 0 0 ]  1 1 1 0 1  
4~- 0 

Final result in diminished-1 coding ~ 0  0 01 1 11 01 

Figure 4. An example of diminished-1 multiplication. 

of binary adders, to compress the column size from K 
to 2. The number of  stages, j ,  required by the Wallace 
tree is determined by the recursion of Eq. (25): 

K(0) = 2 

K ( j  + I) = -~K(j )  (25) 

where [o] represents the integral part of the argument 
(floor function). The series so generated is: 

j 1 2 3 4 5 6 7 8 9 .- .  
K ( j )  3 4 6 9 13 19 28 42 63 --.  

Let the inverse function of K ( j )  be j ( K ) .  Then j ( K )  
is given by Table 1. 

Thus, j ( K )  stages are required by the Wallace tree in 
order to compress the column size from K to 2. Since 
j ( K )  ~ logl. 5 K, then j ( K )  << K for large K. 

When the Wallace tree is applied to the specific prob- 
lem of diminished- 1 multi-operand addition, the carries 
of  adders at the MSB position of  any stage have to be 
complemented and fed to the input of adders at the LSB 
position of the next stage. 

Let to be the delay of a binary adder. Then the delay 
for adding K diminished-1 numbers by our scheme is 
given by: 

Ts = j ( K ) t o  + t,, + tc (26) 

Since to < t~,, and j ( K )  < K, then T3 < 2"2 and our 
scheme appears to be the fastest proposed so far. 

4.3. An Example 

Figure 4 shows an example of modulo (28 + 1) mul- 
tiplication using the proposed algorithm. The mul- 
tiplicand and the multiplier are 59 (000111010) and 
184 (010110111), respectively. The final result is 62 
(000111101) Mod 257. In Fig. 4, the generation of the 
partial product array, i.e., di (A), b~d(2kA) and 2 is 
given by A. The Wallace tree, is given by B, C, D, and 
E. The final diminished- 1 addition, with a carry-in (the 
last term in Eq. (22)) is given by F (binary addition) and 
G (carry correction). All bits on the left of the broken 
lines are complemented and shifted to the right hand 
side (identified by borders on the top and left). In the 
Wallace tree stage, every three rows of  partial products 
are compressed to two rows by a full adder array. The 
resulting two rows are marked by ' s '  for sums, and 'c '  
for carries, the carry row is shifted one bit position to 
the left with respect to the sum row. 

4.4. Computing Z 

The number Z is obtained as the result of a counter, 
which counts the number of zeros of the N - 1 bits from 
bi to bn-i. Z must be computed before the Wallace 
tree is applied. For the example of N - 1 = 7, the 
counter can be implemented as shown by Fig. 5. Taking 
advantage of the difference in delay between the carry 
and sum of a full adder [16], the seven counter has the 
equivalent delay of four XOR gates. 
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Figure 5. 

TII I!1 

i 
Zz Z 1 

The implementation of a seven counter by full adders. 

Figure 6. VLSI architecture for modulo 2 8 + 1 multiplier. 

4.5. An Architecture for Modulo 257 Multiplication 

Figure 6 shows the architecture for the new modulo 
(2 '~ § 1) multiplier for n = 8, where each block repre- 
sents a full adder. The inputs of the adder enter from 
the top, while the outputs, the sum on the right side 
and carry on the left, exit fi'om the bottom. The small 
circle at the carry position of each of the left most 
adders represents a complemented output, ak and bk, 
k = 0, 1 . . . . .  n -- 1 are diminished-1 representations 

of bits taken from n LSBs of the multiplicand and mul- 
tiplier, respectively. 

It is well known that when the Wallace tree is used to 
build a binary multiplier, the irregularity of  the archi- 
tecture and interconnection cause layout difficulties. In 
contrast, it can be seen from Fig. 6 that the full adder ar- 
ray for the Wallace tree in our architecture is extremely 
regular, and is therefore easier to implement than the 
Wallace tree binary multiplier, especially when n be- 
comes large. This, we feel, is a rather intriguing result 

5. Comparison with Published Techniques 

For comparison purposes, we use the algorithm pro- 
posed in [11] based on a study presented in reference 
[10], since this appears to represent the fastest pub- 
lished modulo (2 ~ § 1) multiplier technique. 

Hiassat [11] does not use the diminished-1 repre- 
sentation for numbers. As mentioned previously, 
the diminished-1 representation is the most eff• 
and convenient representation for numbers modulo 
(2" + 1), and we assume that inputs and outputs are 
in diminished-1 representation. Thus, the algorithm in 
[ 11 ] requires an initial conversion from the diminished- 
1 form into a binary representation to allow the mul- 
tiplication to be performed with a conventional binary 
multiplier. This is followed by a modulo reduction and 
conversion back to the diminished-1 representation. 
We show, in the following, that our multiplier has ap- 
proximately the same area and delay as the binary mul- 
tiplier of the size used in [11]; this clearly renders our 
technique superior to prior results, since we remove the 
conversion overhead. 

Since our modulo (2 ~ + 1) multiplier is based on the 
Wallace tree we will compare it to an n • n Wallace 
tree binary multiplier. 

Both our multiplier and the n x n bit Wallace tree bi- 
nary multiplier consist of three sections: partial product 
generation; the Wallace tree, which reduces the column 
size of the partial products from n to 2; and a fast adder, 
which combines the carries and sums from the second 
part into a single number. Our comparison is made for 
each part separately. 

For a binary multiplier, all partial products are ob- 
tained by AND gates. The delay is one AND gate de- 
lay. The partial products for our modulo (2 ~ + 1) mul- 
tiplier, on the other hand, require some extra hardware 
and longer delay for generation of Z, as has been shown 
in Section 4.4. Comparing to the whole multiplier, the 
extra hardware is negligible. Although the extra delay 
is not negligible (for the example of  N = 8, an extra 
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delay equivalent to 3.5 XOR delays is required), it is, 
however, still a small portion of  the total delay of  the 
multiplier. 

The number of full adders for the Wallace tree is 
(n - 1) x (n - 2) for the binary multiplier [14], while 
that for our modulo (2 ~ + 1) multiplier is n • (n - 1), 
(easily obtained from Fig. 6). Because of the irregular- 
ity of the Wallace tree for a binary multiplier, compared 
to the regularity of  our multiplier, more silicon area 
will be spent on routing, especially when n becomes 
large. It is difficult, in general, to show the area trade- 
off of  the extra 2(n - 1) full adders required by our 
multiplier versus the much greater wiring irregularity 
of  the binary multiplier, since these are very technol- 
ogy dependent. It is clear, however, that the trade-off 
tends to reduce the effect of  the extra full adders for 
our modulo (2 n + 1) multiplier. 

The delay of  the Wallace tree depends on the height 
of the column of the partial product array (Table 1), pro- 
viding that we do not count the delay of the wiring. The 
column size for an n x n bit binary multiplier is n, while 
the column size for the modulo (2 n + 1) multiplier is 
n + 1. For many n in practical use (e.g., 8 and 16) 
j (n + 1) = j (n), yielding the same delay for the second 
part of  both multipliers. The irregular routing and inter- 
connection of  the binary multiplier will, in fact, tend to 
increase its delay, offsetting the effect of the first stage 
delay increase for the modulo (2 ~ + 1) multiplier. 

For the third part we compare a 2(n - 1) bit binary 
adder for the binary multiplier, to an n-bit diminished- 
1 adder for the modulo (2 ~ + 1) multiplier. The lat- 
ter consists of two n-bit  adders (full and half). For 
fast adders, such as carry-tookahead or carry-skip, a 
2(n - 1) bit adder requires more hardware than two n 
bit adders. The delay of  a fast adder is approximately 
proportional to log 2 n [15], and so our delay compari- 
son is approximately log 2 n + 1 vs. 2 log 2 n. Although 
the delay of an n-bit  half adder is shorter than that of 
an n-bit  full adder, clearly the delay of the third part 
of our modulo (2 ~ + 1) multiplier is longer than that of 
the binary multiplier. 

Considering that the second part of the multiplier has 
a major impact on the area and delay, then we have the 
interesting result that our Wallace tree modulo (2 ~ + 1) 
multiplier has similar area and delay to that of a Wallace 
tree n x n binary multiplier. 

6. Conclusions 

In conclusion, an architecture for a modulo (2 n + 1) 
multiplier is presented. The multiplier is based on a 

modified Wallace Tree, rather than on binary multi- 
pliers and converters, as proposed in the literature. An 
interesting observation is that the resulting Wallace tree 
is much more regular than Wallace Tree structures ap- 
plied to binary multipliers. The required hardware and 
the delay of the new modulo (2 n + 1) multiplier is 
similar to that required by a n x n bit Wallace tree bi- 
nary multiplier. The regularity of the proposed modulo 
(2 n § 1) multiplier suggests suitability for VLSI  imple- 
mentation. The proposed modulo (2 ~ + 1) multiplier 
appears to be superior to published modulo (2 ~ + 1) 
multiplier architectures in terms of both hardware and 
speed. 
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