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Axiomatic Approach in Differential Games 1 

EMILIO ROXIN z 

Communicated by L. Cesari 

Abs t rac t .  Differential games are usually defined by differential equations. 
Recently, some work has been done on the possibility of defining such games 
in a more general, axiomatic way. In this paper, the advantages of this 
approach are discussed and possible further developments are pointed out. 

I .  I n t r o d u c t i o n  

An ordinary, autonomous,  differential game is essentially determined 
as follows. Let  t ~ [0, ~ )  denote t ime and x ~ R ~ represent  the state of a 
certain system. T h e  evolution x( t )  of the system is assumed to be determined 
by the k inemat ic  equat ion 

Yc = f ( x ,  u, v) (1) 

with the initial condit ion 
x(0) = x0 (2) 

Here  u, v are control  parameters which are continuously regulated by two 
players whom, for simplicity, we shall call player u and player v, respectively. 

Of  particular interest are the following cases: 

(a) T h e  kinematic equation is separable,  that  is, 

= f l (x ,  u) + f2(x, v) (3) 

(b) T h e  generalized pursuit  problem 

~1 = A(x~ , u), ~2 = f~(x~ , v) (4) 

with x = [xl ,  x~], x l ,  x~ being vectors of dimension n~, n2, with n I q- n 2 = n. 

1 Paper received September 4, 1968. 
Professor of Mathematics, University of Rhode Island, Kingston, Rhode Island. 
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The game ends when a given end manifold dd C R n+* is reached, that is, 

(T, x(T)) E d// (5) 

It is customary to avoid games of infinite duration by including in ~ / s o m e  
hyperplane t ---- T o . 

The payoff P which player v has to pay to player u at the end of the game 
is some functional 

T 
P = P[u, v] = g(x(T)) + f h(x, u, v) dt (6) 

0 

In the case of a separable kinematic equation (3) or the generalized pursuit 
problem (4), we also assume that 

h(x,.,  v) = hi(x, u) + h (x, v) (7) 
o r  

h(x , . ,  = h i ( , , ,  u) + (8) 

Player u chooses his control function u(t) so as to maximize P; similarly, 
player v tries to minimize P. In order to do so, both players know, at each 
instant t, the general features of the system [Eqs. (1)-(8)], the previous 
evolution of the system [that is, x(~-)], and also the behavior of the other 
player for 0 ~< 7 < t. The knowledge of the values of the present (7 = t) 
is irrelevant in many cases, for example, when all the important information 
is contained in x(t), which is a continuous function; therefore, the value of x(t) 
follows from the values of x(7) for r < t. The cases when the knowledge of, 
say, v(t) is crucial for the determination of u(t) are pathological in the sense 
that they usually correspond to singularities in the optimal solutions. We will 
see later how this problem can be avoided, at least theoretically. For a dis- 
cussion of such singularities and their importance for the game, we refer to 
the classical book of Isaacs (Ref. 1) and the recent survey paper by Berkovitz 
(Ref. 2). 

Some restrictions have to be imposed on the controls u(t), v(t) in order to 
be admissible. They have to be measurable for the kinematic equation (1) 
to make sense. Some boundedness condition is very natural, and one usually 
assumes u(t), v(t) to be vector-valued functions (of dimensions p, q, respec- 
tively) with values in some fixed compact sets U, V, that is, 

u(t) ~ U C R ~, v(t) e V C Rq (9) 

The admissible values of the state variable may also be restricted to some 
closed set X, that is, 

x(t) e X C R ~ (10) 
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This  last condition creates new and difficult problems, because it means that 
not all measurable pairs u(t), v(t) satisfying (9) are admissible. In the pursuit  
case (4), if (10) has the Cartesian product  form 

xl(t) Ex l  c R~, x~(t) eX~ c _R"~ (11) 

it is much  simpler to take this condition into account because then a certain 
u(t) either is or is not admissible, independently of the choice of v(t), and 
conversely. 

For the mathematical problem to be relatively tractable, some 
assumptions are made on the functions appearing in the basic equations. 
Typical  assumptions are the following: 

(a) The  function f (x ,  u, v) is continuous in (x, u, v). 

(b) There  is a Lipschitz constant k such that, for every u ~ ~J. v ~ V, 
x, x ~ X ,  

]f(x, u, v) - - f (x ;  u, v)l < k I x -- ~i 

Here, the symbol  1. [ denotes the Euclidean norm. 

(c) There  are constants M, N such that for every u s U, v ~ V, x E X ,  

]f(x,u,v)l  <~ M I x [  + N 

(d) Some convexity condition is necessary to avoid the appearance of 
sliding regimes or weak solutions. Conditions of this type are: (d') for every 
x E X, the set f (x ,  U, V) -~ {f(x, u, v)l u e U, v ~ V} is convex; and (d") for 
every x e X ,  u o ~ U, % e V, the sets f (x ,  % ,  V) = { f (x ,  uo , v)l v e V} and 
f (x ,  U, %) -- {f(x, u, %)1 u e U} are convex. In  the case of a separable function 
f (x ,  u, v), (d') follows immediately from (d"). 

Basic for any development of the theory is the definition of a strategy, 
that is, a general rule of behavior for a player. In  most practical cases, a 
strategy for player u is given by  a function u*(x), with the requirement  that 
u(t) should be chosen at any moment  as u(t) = u*(x(t)). A strategy for player 
v is defined similarly as v(t) = v*(x(t)). This  way of prescribing the action 
of the players is very satisfactory when it works, but  unfortunately this is not 
always the case. Indeed, introducing these expressions into Eq. (1), we obtain 
the relation 

:~ = f(x ,  u*(x), v*(x)) 

for which neither the uniqueness nor the existence of solutions is assured 
(u* and v* are not necessarily continuous). 
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Of course, both players seek optimal strategies u*(x), v*(x), such that, for 
all other strategies u(x), v(x), the payoff P satisfies the inequalities 

P[u, v*] ~ P[u*, v*] ~ P[u*, v] (12) 

Such a couple u*, v* constitutes a saddle point. The corresponding value of 
the payoff 

v* = P[u*, v*] 03)  

is called the value of the game, and it is easy to see that, if it exists, it is unique. 
The optimal strategy u* or v* may not be unique; but, if there are more 
strategies than one, they are equivalent in the sense that they give the same 
payoff. 

The main difficulty is plain: in order to assert (12) for all possible u, v, 
the set of all these strategies must constitute a well-defined and known class. 
Such a class is not always easy to determine. 

Recently, Varaiya (Ref. 3) gave another definition of strategy and was 
successful in applying it to games of the pursuit type. For this purpose, he 
used notions from the theory of dynamical polysystems. 

2. D y n a m i c a l  Po lysys tems  

Some axiomatic approaches to control and even more general systems 
were developed recently. An excellent survey was given by Bushaw (Ref. 4). 
The main idea is to characterize and study systems such as control systems 
usually defined by a differential equation 

~=f (x ,  u) (14) 

where u(t) is a control function chosen arbitrarily from a given class of 
admissible controls, but seeking a characterization independent of a particular 
representation like (14). Such dynamical polysystems include differential 
equations 

y~ = f(x) 

with nonunique solutions and contingent equations defined by a set-valued 
function F(x) such that 

~F(x) 
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or by inequalities 

o 

For the relation of contingent equations with control systems, we refer to 
Ref. 5. The advantage of such a theory is the characterization of all properties 
in an intrinsic way, that is, independently of the analytical representation. 
A deeper insight is so obtained and, as an example, one can mention the 
stability theory developed in Ref. 6 and later papers. 

The theory of dynamical polysystems in its greatest generality was 
initiated by Bushaw in Ref. 7, but in such a general setting very few results 
have been achieved at present. 

Aiming at much less generality, working in locally compact, complete 
metric spaces (in practice, finite-dimensional Euclidean spaces) and with 
relatively strict assumptions, Barbashin (Ref. 8) and the author (Ref. 6) 
developed a rather satisfactory theory having sufficient results to be practically 
applicable, but nevertheless including all classical control systems, differential 
equations without uniqueness, and so on. In this approach, the following set 
of axioms is assumed concerning the attainable se tF( t ,  t o , Xo), that is, the set of 
points x which can be reached at time t starting at x 0 , t o . The axioms are: 

(r) 
(H) 

(m) 

F(t ,  t o , Xo) is a closed nonempty set defined for every x ~ X, t /> t o . 

F( to ,  to, Xo) = {xo} for every Xo, t o . 

For t o ~< t 1 ~< t 2 , 

F(t2,  to, Xo) - -  U F(t2, tl, xl) 
~x~F(t~,to,Xo) 

(IV) Given x I ~ X ,  t o ~<t a, there exists an x 0 ~ X  such that 
x 1 ~ F ( t  1 , to,  xo). 

(V) F(t ,  to,  Xo) is continuous in t. 

(VI) F(t ,  to,  Xo)is upper semicontinuous in (to, xo) uniformly in any 
finite t-interval. 

From these axioms, many properties are derived which show that these 
systems behave as one expects or wishes them to behave. The most important 
consequence of the axioms is the existence of trajectories. These are defined 
as functions x = q~(t), t o ~< t ~ t l ,  with the property that, if t o ~ t a 
t b ~< t l ,  then ¢(tb) is attainable from ~(ta) in the corresponding time interval. 
This shows that systems defined by axioms (I)-(gI) can be determined by 
the trajectories. 

8o9/3/3-z 



158 JOTA: VOL. 3, NO. 3, 1969 

3. Applications to Differential Games 

The similarity between the control equation (14) and the kinematic 
equation (1) of a differential game is obvious. Equation (14) can indeed be 
imagined as a differential game with only one player. One therefore expects 
to be able to develop the theory of differential games starting from the 
knowledge of the attainable sets, that is, the sets of points x reachable from 
some x 0 by a suitable choice of u(t) and v(t). But here the situation is much 
more difficult than in the case of a single control. 

To realize this, consider a deterministic control system (14) and any 
corresponding optimization problem. It is completely equivalent for the 
single player to determine his best course of action u(t) for the whole game 
at the beginning or step by step as the one-player game proceeds. More 
precisely, the player can predict completely the future course of the game as 
a function of his own action. The fact that this is not true for the two-player 
game (1) is the essential feature of game theory. 

A general theory of differential games from the approach of the attainable 
sets has not been attempted to the author's knowledge. In a recent paper, 
Kirillova (Ref. 9) did some work in this direction for the pursuit problem, 
but she did not use a concept of strategy in the sense of Varaiya. For that 
reason, her results, even if applicable to some special cases, do not really 
correspond to the theory of differential games. 

A kind of mixed approach, utilizing some features of the axiomatic systems, 
was initiated by Varaiya for the pursuit game (Ref. 3). He considers two 
players with positions x(t), y(t). The initial conditions x0, Y0 are given. The 
payoff is the time of capture, that is, the time when x(T)  = y(T) .  But instead 
of equations of type (4), the kinematics of the players are assumed to be given 
by the attainability functions 

x(t) eF(t, to, xo) , y(t) e G(t, t o , Yo) (15) 

which satisfy axioms (I)-(VI) of the previous section. Note that x, the 
maximizing player, is the evader, and y is the pursuer. Under these conditions, 
Varaiya proves the existence of an optimal pursuit strategy, provided, of 
course, that the pursuer is able to catch the evader at all. 

The most interesting point in this approach is the definition of a strategy. 
Comparing the kinematics of Eq. (4) with (15), we see that, in the latter, 
the control functions u(t), v(t) have disappeared. This can be achieved in (4), 
if we assume that both players select x(t) and y(t) directly among the admissible 
trajectories, without going through u(t) and v(t). In this way, we let the 
trajectories x(t) and y(t) themselves play the role of control functions. The 
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great advantage of this is that the set of admissible trajectories for each player 
is a compact set in the topology of uniform convergence in some basic interval 
[0, To]. 

A strategy for the pursuer y is then defined as a mapping 

/3 : W --~ ~ (16) 

where 2f and ®~ stand for the setg of admissible trajectories {x(t)} and {y(t)}. 
In order to be a strategy, such a mapping has to satisfy the additional condition 
that its determination does not depend on the future. Precisely, 

imply that 

xl(~-) = x~( . ) ,  o <~ ~- <~ t 
(17) 

5[xd = y l ,  ~[xd = y= 

yl(t) =y~(*)  

We may say that y(t) depends, for each t, only on the past values of x(t). 
The value of x(t) corresponding to the present is accounted for by the 
continuity of x(t) [see the remark in the introduction, after formula (8)]. 
A similar definition is given for an x-strategy a[y]. 

The drawback of Varaiya's results is that, in general, there is no optimal 
evasion strategy (and, therefore, no true saddle point). The situation is the 
following. 

A pursuit strategy fi[x] is called feasible if it guarantees that the pursuer 
catches the evader within the allowed time interval [0, To]. We assume that 
such strategies exist, because otherwise the evader can avoid capture and 
there is no optimization problem. 

Denote by T[x,/?] the time of capture, which depends on the behavior 
x(t) of the evader and the strategy fi of the pursuer. The game is said to have 
a good solution if there is a pursuit strategy fi* such that 

sup T[x, fi*] = T* = inf sup T[x, fl] (18) 
x(0 /3 ~(t) 

where x(t) ranges over all the admissible x-trajectories and /3 over all the 
feasible pursuit strategies. In other words, using the strategy fl*, the pursuer 
is sure to catch the evader in a time t ~ T*, and this value T* is the best 
such value. Under the assumed conditions, Varaiya proves that the game 
has a good solution. It should be noted that, in this way, the evader does not 
choose x(t) accordingto some strategy ~[y]. 
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4. F u r t h e r  D e v e l o p m e n t  of  the  G e n e r a l i z e d  P u r s u i t  G a m e  

The  asymmetry of the solution mentioned in the preceding section was 
overcome recently, to some extent, by Varaiya and Lin. Here, we can only 
give the main ideas and refer the reader, for the precise assumptions and all 
other  details, to the original paper (Ref. 10). The  game considered in Ref. l0 
is less general than the one considered in the previous section, in the sense 
that it is defined by  differential equations of the type (4), but  more general, 
in the sense that the payoff is of the type (6), (8). 

The  strategies a[y], fi[x] are defined as before. Given such a pair of 
strategies, the corresponding solution of the game should be a pair of trajec- 
tories x(t), y(t) satisfying 

x(t) = a[y(t)], y(t) = ~[x(t)] (19) 

Unfortunately,  neither the existence nor the uniqueness of such a solution can 
be  assured in general, as examples show. 

A pair (xo(t), yo(t)) is defined to be an outcome of the pair (~, fl) if there are 
two sequences of admissible trajectories x~ --~ :Co, yn --~ Yo, n = 1, 2,..., 
such that 

lim xn = lim c~[y,J = xo, lim y,~ = lira fi[x,~] = Yo (20) 

Let 0(% t9) = {(x, y)[(x, y) is an outcome of (% 3)}. Let  P denote the payoff 
of  the game. Under  some given conditions, 0(~,/9) is nonempty  and compact, 
and the following values can be defined: 

P+(3) = sup max P[x, y] 
o~ (~ ,v)~O(o: ,B)  

P_(~) = inf min P[x,y] 
(~,~)~o(~,~ (21) 

V + = rain P+(3) 
B 

v _  = m a x  

Note  that the inequality V + ~> V_ always holds. 
Under  the assumptions made, the following saddle point theorem can be 

proved: There  exist strategies ~*, fi* such that, for all admissible strategies 

max P[x, y] ~ max P[x, y] = rain P[x, y] ~ min P[x, y] 
(~,y)~O(~,B*) (~,y)~O(ct*,9*) {~,y)~O(a*,~3*) ($,y)~O(a*.B) 

Furthermore,  P[x, y] = Const = V F for all (x, y) e O(a*, fi*). 
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Therefore, (a*, fi*) has the properties of a saddle point. The corres- 
ponding value of the game is VF, where the subindex F stands for fair game, 
which is the name Varaiya and Lin give to the optimization problem so defined. 

5. Differential Games from the Viewpoint  of  Functional Analysis 

Let us consider again the differential game given in the general form of 
Eqs. (1), (2), (5), (6). The evolution x(t) of the game is determined by the 
two functions u(t), v(t) chosen by the players from the corresponding sets of 
admissible controls {u} = ~g, {v} = f/~. Therefore, there is a functional 
relationship of the form x = x[u, v], and a similar one for the payoff 
P = P[u, v]. The choice of u(t), v(t) by the players is made according to 
the desire to maximize and minimize P and with the information pattern 
already explained. 

It is natural to define a strategy for players u and v by 

~ : ~f" --,. ~', fi : ¢ . -+ ~/" 

satisfying the Varaiya condition. We observe that 

7)1, 7) 2 ff ~7", 06[Vl] = Ul ' 0~[g)2 ] = U2 

vl(z)=ve(~- ) for 0 ~ - ~ t  

imply that 

(22) 

ul( t )  = u2(t) 

and, similarly, for fi[u]. 
From here, we can reproduce many results mentioned above, provided 

the sets qg, ¢P, with a suitably chosen topology, are compact. This was done 
in Ref. 11, but the drawback is that, in general, ~ and ~/" are not compact. 
Nevertheless, one can sometimes avoid this difficuky with a special device. 

In  the cases considered by Varaiya and Lin (Refs. 3, 10), the control 
functions were simply replaced by the admissible trajectories x ,y ,  which 
form compact sets. For example, if Eq. (1) is linear, that is, 

= A x  + Bu + Cv 

if l u] ~ 3//, Iv[  ~ N are the constraints, and if the payoff is terminal, 
that is, 

P = g(x(To) ) 
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with fixed T o and continuous g( .  ), then one can adopt for q/, 2~ the weak 
topology which makes them compact (see Ref. 12, pages 292 and 430). With 
this topology, P is continuous in u, v and the theory can easily be developed 
as before. 

It is probable that this kind of approach can be extended to more general 
games. At least for the separable case (3), (7), we already know from Pontryagin 
(Ref. 13) that this case is reasonably tractable by analytical methods and the 
interaction between the two controls is not too involved. 

Finally, we mention that one of the main tools used by Varaiya and Lin 
in the proof of the above results is the comparison of the given game with 
some upper and lower games (or majorant and minorant games). These are 
obtained from the given game by introducing a delay ~ into the transmission 
of information to one or the other player; obviously, this gives an advantage 
to his opponent. 

This method, used earlier by Fleming (Ref. 14), is really a particular 
case of the much more general method of attack of these problems based on 
comparison of different games, tn  many cases, it should be possible to 
construct, for a given game, comparison lower games and upper games by 
changing some feature of the original game. Devices of this sort have been 
used in many particular cases (see, for example, many concrete games in 
Ref. 1), but there is no general theory. In this sense of comparison criteria, the 
use of all kinds of possible Liapunov functions also comes to mind. 

The fact that so little has been done in these areas shows that the whole 
subject is in its early stages of development and that the axiomatic or functional 
analytic approach is likely to yield powerful methods to deal with differential 
games. 
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