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On the Observability of Linear, Time-lnvariant Systems 
with Unknown Inputs 1 

G. BASILE z AND G.  MARRO a 

Communicated by G. Leitmann 

Abstract.  This paper considers the observation of linear, time-invariant 
dynamical systems in the general case in which some of the input functions 
are unknown. By arguments based on the concepts of controlled and condi- 
tioned invariance, a convenient expression for the observability subspace is 
found which includes the well-known expression for the case in which the 
input functions are given. 

I .  I n t r o d u c t i o n  

Observability has been presented and subsequently developed as a dual 
of controllability (Refs. 1-5). A plant is usually said to be completely observ- 
able if, from the knowledge of input and output functions in a finite time 
interval, it is possible to deduce the state trajectory in the same time interval. 
In practice, many cases occur in which some of the input variables are not 
accessible, so that we can conveniently distinguish the inputs in two classes; 
control inputs and disturbances. When the system equations are known, it 
may be possible, even in the presence of disturbances, to deduce the state 
trajectory from the knowledge of control inputs and system outputs in a 
finite time interval. The purpose of this paper is to give necessary and 
sufficient conditions for complete or partial observability when some inputs 
are completely unknown. 
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We deal with a linear, purely dynamical, time-invariant system described 
by the equations 

= Ax  + B1u x + B2u~ (1) 

y = Cx (2) 

where x e R n is the state vector, u 1 ~ R m is the control vector, u,, E R ~ is the 
disturbance vector, y e R 8 is the output vector, and A, Bt. , B~, C are real, 
constant matrices of proper sizes. We call 51 = ~(Ba) the subspace of control 
actions and 5 e = ~(Be) the subspace of disturbance actions. 

It is well known that, in the particular case where B 1 :/: 0, B 2 ~- 0, from 
the observation of input and output functions in a finite interval of time, it is 
possible to recognize the orthogonal projection of the state on the least 
subspace which is invariant under A r and contains ~(Cr) .  The word least 
is justified because the intersection of two invariants is an invariant. This 
subspace is sometimes called observability subspace and its orthogonal comple- 
ment unobservability subspace. 

In this particular case, when the input functions are completely known, 
the observation of the system (1)-(2) reduces to the observation of the corre- 
sponding autonomous system; that is, since 

y(t)  = CoP(t, O) x o + C ¢(t, r) B1ul(r ) dr (3) 
0 

where qh(t, r) is the state-transition matrix, it is possible to determine by a 
simple subtraction the output functions of the corresponding autonomous 
system, namely, the zero-input output functions. 

By similar reasoning, the general case in which a part of the input is 
known and a part is unknown can be reduced to the case of completely 
unknown input. Thus, it is sufficient to consider only this last case. In the 
next section, we state a theorem that provides the observabitity subspace as 
the least conditioned invariant under the matrix A r, with respect to the 
subspace -~2 l ,  containing ~(Cr) ,  and which includes the previous results, 
corresponding to B~ = 0. 

2. O b s e r v a b i l i t y  S u b s p a e e  for  S y s t e m s  wi th  U n k n o w n  Inpu t s  

First, we recall some definitions and results given in a previous paper 
(Ref. 6) which provide a background for the analysis presented here. Consider 
an n × n matrix A and a subspaee ~ C R n. We use the following definitions 



412 JOTA: VOL. 3, NO. 6, 1969 

and properties: (a) an (A, o~)-controlled invariant is a subspace a¢ such that 
A j  C_C_ ,,¢ + f ;  (b) an (A, o~-)-conditioned invariant is a subspace j such 
that A ( j " n  ,~) C j ;  (c) the orthogonal complement of an (A, o~')-controlled 
invariant is an (A r, ~X)-condi t ioned invariant; and (d) the least (A, o~)- 
conditioned invariant containing a given subspace ~ is the subspace 

J , , ,  = ~,~-I (4) 

where O~/n_ l is defined by the recursive relationship 

~o = Y', °"d~ = W + A(ad~_l C~ ~ ) ,  

Now, consider the system 

s; = A x  + Bu 

y -= Cx 

i = l , . . . ,  n - 1 ( 5 )  

(6)  

(7) 

where u is a completely unknown input  vector. We state the following theorem: 

T h e o r e m  2.1. The  observability subspace of system (6)-(7) with 
unknown inputs (i.e., the subspace of maximal dimension where the orthogonat 
projection of the state can be recognized solely from the knowledge of the 
output  in a finite interval of time) is the least ( A  r, o~Z)-conditioned invariant 
containing ~ (  CT). 

By the duality property (c) mentioned above, it follows from Theorem 2.1 
that the state can be recognized within a vector on the greatest (A,-~')- 
controlled invariant contained in .~V'(C). This is intuitively obvious, because 
the greatest subspace of Y ( C )  which could contain a finite arc of the trajectory 
in the state space is exactly the greatest (A, ~)-control led invariant contained 
in JV(C). 

3. P r o o f  of  T h e o r e m  2.1. 

First, we prove that the least ( A  r, ~±)-condi t ioned invariant containing 
~(CT), which can be defined exactly by means of statement (d) of the previous 
section, is a subspace where the orthogonal projection of the state can be 
recognized from a record of the output functions of a finite length. Later, we 
verify that it is the greatest suhspace where the system can be observed. 

We start from 
y(t)  = Cx(t), t e [0, T] (8) 
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which, in order to emphasize the iterative character of the argument, can be 
written as 

qo(t) -=- Yox(t), t e [0, T] (9) 

where qo(t) = y( t )  is a vector of known functions of the time and Yo = C is 
a known constant matrix. Using solely the vector equation (9), that is, pseudo- 
inverting the matrix Yo, we can obtain the orthogonal projection of the vector 
x(t)  on the range of the transpose of the coefficient matrix. We denote this 
subspace by the symbol ~0 : ~'0 = ~(Yo r) = ~ (Cr )  • 

In general, more knowledge of the state can be gained by using also the 
differential equations (6); in fact, taking the first derivatives of (9) and using (6), 
we have 

qo(t) --= YoAx(t) + YoBu(t) a.e. in [0, T] (10) 

Since the input vector function u(t) is unknown, in order to deduce some 
information on the state from Eq. (10), we must employ its projection on the 
subspace ~ ( Y o B )  l = ~A:(BrYor).  Letting P1 denote the projecting matrix on 
this subspace, ~ we obtain 

P~o(t)  = PiYoAx( t )  (t 1) 

Note that we take a twofold advantage of this projection: we drop the 
unknown input and we obtain a vector equation, both sides of which are 
again differentiable a.e. in [0, T]. In more compact notation, we can write 
Eqs. (9) and (11) together as 

ql(t) = Yxx(t), t ~ [0, T] (12) 
where 

ql = [P,Ooj Y1 = P lYoA 

In order to deduce information about the state, it is convenient to employ 
Eqs. (12) instead of (9), because :2/1 = ~(Y1 T) D_ 02/0. In fact, since 

~(P1) = 2~(Plr) = {y: BTYory = 0} (14) 

is the locus of the vectors y e R 8 which are mapped by Yo r into g a  _= ~ ' (Br) ,  
the set d 2 ( Y J P l r  ) = Yor~(p1T)  is equal to ~(Y0 r) (~ 2/'(B r) = ~J0 c~ .,~z, so 

4 T h e  project ing mat#ix on  a subspace  :F = ~(X), where  it is a s s u m e d  tha t  the  c o l u m n  vectors  
of  X are linearly independen t ,  is expressed  by P = X(XTX)-tXr. Also, P is symmetr ic .  
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that the range of the transpose of the coefficient matrix of (11) is A r ( q / o  c~ ~'±); 
hence ,  

~ = ~o + Ar(~0 n o~ -±) (15) 

and, therefore, ~1 ~- c~0 • 
We can now start from Eqs. (12) and, by means of the same procedure, 

derive the equations 

q~(t) : Y2x(t),  t • [0, T] (16) 

which make it possible to determine the projection of the state on the subspace 

aj~ = ~,(y.~-) = ~jo + ArC~j~ n ~ - )  (17) 

Relationship (17) can be proved by the same arguments as those used in the 
proof of (14), noting that A r ( ~ r  1 c3 o~±)~_  .4r(Cffo n if±),  so that we can 
have go  instead of ~ t  in the right side of (17). 

Iterating n -- 1 times, we finally obtain 

qn_l(t) = Y ._ lx ( t ) ,  t e [0, T] 08 )  

where qn_l( t )  is a known function of the output and of the derivatives of its 
projections on proper subspaces, on which they are differentiable, and Y,~-I 
is a known matrix such that 

~._1 = ~ ( r [ _ , )  = ~0  + J ( ~ _ ~  n o~ ~) (19) 

Thus, the range of the transpose of Yn-1, where it is always possible to 
recognize the projection of the state function, is the least (A r, ~±)-conditioned 
invariant subspace containing go  = ~ (Cr )  • 

It is still to be proved that it is not possible to find any greater subspace 
where the projection of the state can be observed: if such a subspace were to 
exist, a trajectory on the greatest (A, ff)-controlled invariant contained in 
.dr(C) would be partially observable. This is clearly a contradiction, because 
such a trajectory does not affect the output. 

4. Conc lus ion  

In this paper, we have presented an application of the properties of 
controlled and conditioned invariance, namely, the solution of the problem 
of observing a system with unknown inputs. It is remarkable how these 
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generalizations of the concept of invariance, particularly suitable for the 
analysis of control systems, make it possible to state the main result and give 
its proof in a very simple way. 
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