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Abstract. A survey is made of the physics of the interiors of Venus. The introduction explains the 
main concepts used in the construction of models of Venus and the history of the question; obser- 
vational data are gathered and analyzed. The method of constructing the models of the planet is 
explained and earhhqike models of Venus and parametrically simple PVM models are discussed. Within 
the compass of a physical model of Venus, the thermodynamics of the mantle and core is constructed 
and questions are discussed concerning the heat conduction, temperature distribution in the litho- 
sphere and the thermal flux from the interior of Venus, the electrical conduction and mechanical 
quality, and large-scale steady stresses in the mantle of Venus. A rheological model of the crust and 
mantle is constructed. In conclusion, the question as to the distribution of radioactivity and con- 
vection in the interior of the planet is discussed. 

1. Introduction. Observational Data 

Venus belongs to the planets of  the Earth group, which also includes Mercury, Earth, 

Mars, and the Moon. All the planets of  the earth-like group, including Venus and Earth, 

are relatively small. As a result, in the process of  their formation they were unable to 

retain the hydrogen-hel ium component  which is the most common in space. Moreover, 

all these planets have a deficit of  water, methane, and ammonia - low-boiling compounds 

which are rather common in space~ The main components  of  the planets of  the earth-like 

group are silicates, iron, and compounds between iron and sulfur. 

According to modern theories, the planets, satellites, asteroids, and comets were 

formed as a result o f  the evolution of  a protoplanetary cloud, which at an early stage of  

its existence was a gas/dust cloud. In constructing the model  o f  a planet, it is important  

to have an idea as to the chemical composit ion of  the protoplanetary cloud in the region 

of  formation of  the planet. Theoretical calculations of  the condensation of  the proto- 

planetary cloud contain indications as to the possibility of  chemical fractionation of  iron, 

sulfur, and radioactive sources as a function of  the temperature conditions of  conden- 

sation at various distances from the Sun (Grossman and Larimer, 1974; Lewis, 1972). 

One of  the main problems in constructing models of  the earth-like planets is their com- 

parative analysis and the production of  quantitative estimates of  the concentration of  

dust component  in the original gas/dust cloud, as well as confirming the conclusions of  

the space-chemical schemes of  condensation of  this cloud. 

By its mechanical parameters - mass M, mean radius R,  and mean density P o -  Venus 

is reminiscent o f  a twin planet o f  Earth. Thus it is perfectly natural that the first modern 

model  of  Venus, by Harold Jeffreys (1937), was based on the first modern model  of  

Earth (Bullen, 1936). At that t ime, which now appears to us infinitely remote,  the value 
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of the mass M = 4.91 x 102~g was exaggerated by 1% and the mean radius R = 6150 km 

was known with a good precision. In the double-layer model of the planet, the density p 

in the mantle varied from 3.29 to 5.44gcm -3, and that in the core from 9.6 to 

l l . l g c m - 3 ;  at the boundary between the mantle and the core, the pressure P was 

1.24Mbar, while at the center of Venus it was 2.4Mbar; the mass of the core was 

1.06 x 1027g, and its radius was 2910km. Comparing these figures with the parameters 

of the latest models of Venus (Table II), we may conclude that the mechanical model of  

the planet in 1937 [p(/), p(l), g(1), where g is the acceleration of gravity and l is the 
depth) was very fortunate. 

After the work of Jeffreys, in the classical monograph of Harold Urey (1952), a con- 

siderable enlargement was made of the conceptual basis, being used everywhere since 

then to construct models of  planets, including those of the Earth group. Harold Urey 

emphasized the importance of Cosmo-chemical data and cosmogonic concepts. It became 

customary to compare the composition o f  Venus not only with that of the Earth, but 

also with that of  the meterorJtes. Interest grew toward the problem of the distribution of 

the concentration of iron and the other main elements in the planets of the Earth group. 

A survey of the works carried out in the 50's and 60's is given in the books of Levein 

(1970) and Bullen (1975). The basic conclusion of these works is that the interior struc- 
ture of Venus is similar to that of Earth. 

In very recent times, an increased interest has again been noted for the investigation of 
the internal structure of Venus (cf. Ringwood and Anderson, 1977; Kalinin and 

Sergeyeva, 1979 ; Zharkov and Zasurskiy, 1982). In the works of Ringwood and Anderson 

(1977) and Kalinin and Sergeyeva (1979) it was shown that an earth-like model of  Venus 

should have an average density which is about 2% larger than the observed average den- 

sity. In the work of Kozlovskaya (1982), carried out by our suggestion, a large number of 

mechanical models of Venus are considered in order to identify discrepancies in its 

composition as compared with the average chemical composition of Earth. The con- 

clusions of this work and of a work devoted to the construction of a physical model of 

Venus (Zharkov and Zasurskiy, 1982; Zharkov et al., 1981) will be described in greater 
detail below. In the work of Anderson (1980) a new interpretation was proposed for the 
average density of Venus, which is reduced from that of the Earth. Previously this fact 

had been interpreted as an indication of a difference in the bulk content of  iron (Kovach 

and Anderson, 1965), sulfur (Lewis, t972), or in the degree of oxidation of the mantle 
(Ringwood and Anderson, 1977). However, if we assume that Venus has avery  thick 
outer basalt shell, and the corresponding basalt fraction of Earth by subduction into the 
mantle is present there in the Eclogite phase (Anderson, 1979), then the depressed aver- 

age density of Venus is more likely produced by tectonic, rather than cosmo-chemical 
factors. 

Since the time of the first publications of Jeffreys and Urey, geophysics has greatly 

changed its aspect (Zharkov and Trubitsyn, 1978, 1980; Schubert, 1979; Phillips and 
Ivins, 1979; Stacey, 1977; Zharkov, 1983). Now, we are interested not only in a mech- 
anical model of the planet - i.e., the distribution of p(/), p(1) and g(1) in its interior, but 
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also to not a lesser extent in a physical model which gives the distribution of many 

physical parameters such as the heat capacity, coefficient of thermal expansion, adiabatic 

temperatures, coefficients of heat conduction and effective viscosity, etc. In connection 

with the development of works on the hydrodynamics of the interiors of the planets, the 
problem of determining the distribution of the temperature in these interiors has under- 
gone significant changes (Toks6z et  aL, 1978; Schubert, 1979; Zharkov, 1983). All these 

matters will be discussed below. 

The accumulation of data on Venus and its analysis reveals not only a similarity 

between Venus and Earth, but also an important difference. There gradually emerges the 

fact that each planet is a unique individual. 

In fact, both planets have different atmospheres, different histories of rotation and, 
consequently, different histories of tidal evolution. The Earth has a substantial magnetic 

field. The question as to the presence of a magnetic field on Venus is debatable, tending 

to indicate that the planet lacks such a field (Russell, 1980; Russell et al., 1980). The 

magnetic moment of Venus is estimated at a maximum of about 5 x 10 -5 of the magnetic 

moment of Earth (Russell et  al., 1980). The question as to whether the core of Venus is 
solid or liquid (not even mentioning the presence of a solid internal core) is important but 

not trivial. It is not yet possible to provide unambiguous answers to all these questions. 

But it is obvious that these problems can only be solved by constructing an actual model 

of the planet and the history of its evolution. 

The tectonic type of development is also different for Venus and Earth (Masursky et  

al., 1980). This is revealed in their structure and thickness of outer layers, ultimately 

resulting in the fact that Venus is aseismic (Zharkov ef al., 1981). 

To a first approximation, the outer rigid layer of Earth (the lithosphere) can be divided 

into the oceanic and continental parts with thicknesses of ~ 80 km and ~ 200 km, respec- 

tively. But a more important difference between these type of lithosphere consists in 

their structure and thermal regime. The oceanic lithosphere, forming roughly 0.7 of the 
surface layer of Earth, contains a basalt crust with an overall thickness of ~ 6 kin, while 

the average thickness of the continental crust is 35 kin. The oceanic lithosphere repre- 

sents a thermal boundary layer, created in the rift zones of the mid-oceanic ridges and 

engulfed in other areas, known as zones of  subduction. Thus, the plate-tectonic regime of 

the Earth leads, on the one hand, to an effective cooling of the planet by the continual 
creation of a thermal boundary layer, the oceanic lithosphere; and on the other hand to a 
continual exchange of crust material between the crust and the mantle. 

The tectonic regime of Venus and the other planets of the Earth group differs from 

the plate-tectonic. As a consequence of this fact, the Moon and, apparently, Mercury, 

Venus, and Mars should have significantly thicker crust layers than the Earth. The thick- 
ness of the lunar crust is ~ 60-100 kin. The thickness of the crust in the other planets of 
the Earth group is probably within the same limits (this is mere supposition at present, 
which it is highly interesting to confirm). 

A displacement of the center of the geometrical figure of a planet with respect to its 
center of masses may be interpreted as an indication of considerable regional variations 
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TABLE I 

Observational data and parameters of the planetary figures of the earth-like group 

Venus Earth Mars Mercury 

Mass M, 1027g 4.869 5.974 0.6422 0.3302 
Equatorial radius 6051.53" 6376 3400 
Re, km 6051.54" 
Mean radius R, km 6051.5 6371 3390 2439 
Mean density, Po, g cm-2 5.25 5.514 3.94 5.44 
I* = I /MR s ~. C/MR~ 0.334* 0.33076 0.365 - 

(0.375)** 
Period of rotation r, days 243.16 1.00 1.027 58.646 
q = 47r2R~/GMr 2 6.1 X 10 4 3.47 X 10 -3 4.6 X 10 -3 1 X 10 -6 
J2, 10-6 4.0 ~ 1.5 a 1082.64 1959 80 -+ 60 

5.97 ~- 3.2 b 
J J q  65 +- 25 0.31 0.43 80 -+ 60 

98 -+ 52 
j0,  10-~ - 1072 1830 - 
J2 = (J2 _ j o ) ,  10-6 4.0 -+ 1.5 a 10 130 80 ~ 60 

5:9~/_+ 3.2 b 
~-* 298.26 191.19 
e -l 298.18 151.75 
C~=, 10 -6 -- (0.33 -+ 0.81) 1.565 -- 54.9 
- -  $ 2 2  , 10 -6 1.74 +- 0.74 0.894 -- 3 1.3 -- 
f, 10 -6 7.1 7.2 253 -- 
go = GM/R:,  cm s -~ 887 982 373 370 
M =  B o . R  3, 1022 Gscm 3 < (0.43 -+ 0.2) 7800 3.5 5 
B o, -~ < 2 30950 64 350 
Temp. on surface, KCC) 733(460) 277(3) 255(-- 18) 435(182) 

a From data of Akin et al. (1978). 
b From data of Ananda et al. (1980). 
* Values calculated theoretically, cf. text. 
** Value for equilibrium model of Mars. 

in the thickness o f  the crust. In Venus the distance be tween  bo th  centers is ~ (440 -+ 

1 2 0 ) m ,  which is m u c h  less than the correspond differences for Earth,  the Moon,  and 

Mars, which are o f  the  order  o f  a k i lomete r  (Masursky e t  at., 1980). Consequent ly ,  the 

variat ion o f  thickness o f  the Venusian crust is less than that  o f  the o ther  planets o f  the 

Earth type.  This same fact may  be regarded as one o f  the indicat ions that  the outer  

layers o f  Venus are closer to spherical symmet ry  than  those o f  Earth.  

The observat ional  data for Venus is col lected in Table I, where for compar ison analo- 

gous in fo rmat ion  is given for Ear th ,  Mars, and Mercury.  Table I shows the massesM, the 

mean and equator ia l  radii R and Re ,  the mean  densities 0o, the non-dimensional  m o m e n t  

o f  inert ia I*  = I / M R  2, the  per iod o f  ro ta t ion  r ,  the  first coeff icients  for the expansion o f  

the gravitat ional potent ia l  in spherical funct ions  J2 (Akim e t  al., 1978; Ananda et  al., 

1980), C22 and $22 (non-normal ized  coeff ic ients)  (Ananda e t  al., 1980). At present,  for 

Venus,  an expansion o f  the  gravitat ional  field up to the sixth order  inclusive (m ~< n ~< 6) 

has been found  (Ananda  et  at., I980) ,  a l though the  accuracy o f  the de te rmina t ion  is no t  
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large for any of  the coefficients except J2. Table I includes the value of  the small param- 

eter of  the theory of  figures t q, the dynamic flattening (the flattening of  the outer equi- 

potential surface of the gravitational potential o f  the planet a), and the geometrical flat- 
tening e, given by 

co2Re 4n2R3 e R e - -  R p  
q -  -  = J2+lq, e =  - ;  ( 1 )  

GM GMr 2 ' Re 

where co is the angular speed of  rotation, G is the gravitational constant, and Rp is the 

polar radius. For planets close to hydrostatic equilibrium (e.g., Earth or Mars), the mean 

radius R to a first approximation is expressed by Re, in the formula R = (1 -- ~/3)R e. 

As is known (Zharkov and Trubitsyn, 1978; Zharkov, 1983), for an equilibrium planet 

the values of q and J2 are of  the same order of  smallness. Referring to Table I, we dis- 

cover that, for Venus, J2 is larger than q by (65 + 25) or (98 + 52) times, while for 

Mercury it is (80 + 60) times. Consequently, we may assert that Venus and Mercury are 

the most non-equilibrated planetary bodies in the solar system. This fact is evidently not 

random, since the rotation of  both  planets in the past was greatly retarded by tidal fric- 
tion. If  we assume that, for an effectively equilibrated Venus, the ratio of  J2/q ~ 0.3 

(i.e., the same as the Earth, cf. Table I), then it is possible to determine So = ~J2 + �89 

3.17J2 ~ (12.7 or 18.9)x 10 -6. The corresponding equatorial radii Re for Venus are 

shown in Table I. Thus we see that, for Venus, Re should practically coincide with R. 

The usual method of determining the moment  of  inertia of  a planet from given J2 

and q is based on the formula of  Radau-Darwin (Zharkov and Trubitsyn, 1978), asserting 
that 1 I *  - I _ 2 1 - -  5 1 - -  - - 1  ( 2 )  

MR 2 3 2 o~ ] ' 

based on the assumption that the planet is close to a hydrostatic equilibrium. The scale 

of  disequilibrium of  Venus and Mercury prevents us from finding out their moments  of  

inertia in this manner. The constants of  precessions H = MR~J2/C = (C- -A) /C ,  where C 

and A ~ B are the polar and equatorial moment  of  inertia, are also unknown for Venus 

and Mercury, and it is not clear whether H can be determined for both planets in the fore- 

seeable future. Hence, it is not apparently possible to find the moment  of  inertia of  
Venus and Mercury from such observations in the near future. 

The young Venus and Mercury, at an early epoch - when their rotation was not yet 

retarded by tidal friction - rotated much more quickly with a period of ~ 10 hr (Zharkov 
and Trubitsyn, 1978). Thus, the small parameter of  the theory of  figures of  these planets, 

inversely proportional to the square of  the period of  rotation (q ~ r-z),  was much larger 

(roughly 4 orders of  magnitude) for the young planets, than the present values. The 
observed value of  J2 for Venus and Mercury is approximately 70 times greater than q, 

t q is equal to the ratio between the centrifugal acceleration at the equator o.,2Re and the gravita- 
tional acceleration GM/R~. The larger q, the more strongly the centrifugal forces distend the planet in 
the direction of extension of the equatorial plane and.the planet is thus contracted along the polar axis. 
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which may be regarded as certain relict values of this quantity, pertaining to the early 

and much larger values of q, when the rotation of the planets was not yet retarded by 

tidal friction to the present extent. And, since the shells of both planets had been able to 
cool considerably and become excessively rigid (or excessively viscous), the planetary 
figure 'froze', as it were, at a certain remote epoch and therefore does not conform to 

the present angular speed of rotation of the planet. If  we solve the formula of Radau- 
Darwin with respect to the period of rotation from 

r 4  = poGJ-----~ 6.25(1 -- 1.51") 2 + 1 1 , 
(3) 

where P0 is the mean density, we are then able to estimate za2 for the epoch when the 
corresponding equilibrium figure of the planet was 'fixed', as well as the value of Jz, 

which has been retained to the present day. Assuming for the moment of inertia of Venus 

I* = 0.334, a value obtained from model calcuIations (cf. item 2, Table II; also entered 
in Table I), we can find a certain paleoperiod of rotation of Venus, rj2 (Venus) ~ 1~ a § 

~ ~ '  ' - " - 0 . 4  

days or 13.9L61~ days, where J2 has been taken from (Akim et  al., 1978) and (Ananda e t  

al., 1980). The obtained result suggests that Venus rotated more rapidly in the past. The 
period of rotation of the young Venus was probably even less and is equal to ~ 10hr, 

although the disequilibrium of the planet, corresponding to so rapid a rotation, was 

apparently long ago lost from the 'memory'  of Venus due the 'ductility' of  its mantle 
and core. 

Since the interior of the planets of the Earth group deviates from the state of hydro- 

static equilibrium, the difference between their major momenta of inertia with respect to 

the axes in the equatorial plane, is not equal to zero. This difference can be calculated 

from the formula (Zharkov and Trubitsyn, 1978) 

B - - A  
- -  - 4V/'~22~ + S~2. (4) f - M R  2 

The results are shown in Table I. We see that the value f for Venus is small and close to 

the value of f for Earth. This indicates that the density distribution in both planets is 

close to the axisymmetrical, with good accuracy. Moreover, this fact strengthens the idea 
that the large non-equilibrium J2 for the planet represents a relict value which corresponds 

to the more rapid rotation of  Venus in a certain earlier epoch, as we have mentioned 
above. 

Table I shows the values of the hydrostatic portion of the quadrupole moment jo  for 

Earth and Mars (Zharkov, 1983) and the non-equilibrium value of the quadrupole 
moment AJ~ = J2 -- jo.  For Venus and Mercury, Ja >> jo  and A J2 ~ at2. The value of the 
quantity A J2 enables an estimate of  large-scale static tangential stresses in the interiors of 
the planets of the Earth group (Zharkov and Zasurskiy, 1981). 
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TABLE II 

Parameters of Venus models for different compositions of the mantle and core 

145 

Venus crust :M c = 0.0183M, ~ c  = 70km, Pe = 2.89g cm-3 Earth 
PEM-C 

Core - MCE Core - Fe 

zxo% 0 - - 4  -- 8 0 - - 4  -- 8 

Lxl e = 35 km 

0 

P0, g cm-3 3.26 3.13 3.00 3.26 3.13 3.00 3.30 
M 1, % 22.3 23.3 24.3 22.3 23.3 24.3 18.4 
M 2, % 47.8 41.7 35.7 49.8 43.9 38.1 49.0 
Ii, km 481 548 618 581 548 618 420 
12, km 756 825 900 756 825 900 670 

Meore, % 29.9 35.0 40.0 27.9 32.8 37.6 32.6 
reore , km 3210 3388 3548 3076 3239 3394 3486 
o, gcm -3 15.39 5.17 4.96 5.45 5.24 5.03 5.55 

9.59 9.45 9.32 10.42 10.30 10.17 9.91 
Pc, kbar 1158 1066 978 1231 1144 1058 1354 

o, gcm -3 11.7 11.8 11.9 12.3 12.4 12.5 13 
p, kbar 2878 2987 3087 3006 3131 3246 3632 
I * =  I /MR 2 0.334 0.328 0.321 0.333 0.326 0.319 0.330 89 
I; Fe (e - -  9) �9 2.2 1.7 0.5-0.4 

Note:  P0 = Density of mantle under normal conditions, M 1 and M 2 = masses of upper and lower 
mantle, 11 and 12 = depth of first and second phase transitions in mantle; MCE = material of the core 
of the Earth; the last row gives the difference between the total iron content in the models of Earth 
and Venus with mantles of pyrolite composition. 

2. Models  o f  Venus .  Earthdike Models  

The  creep  l imit  o f  rocks  is ~ 103 bar ,  or even less u n d e r  c o n d i t i o n s  o f  h igh  t e m p e r a t u r e s  

and  'geological '  t ime  intervals .  The re fo re  the  p l ane t a ry  figures are close to  t he  h y d r o -  

s tat ic  equ i l ib r ium,  in  t he  sense t h a t  the  n o n - e q u i l i b r i u m  stresses in the  ma jo r i t y  o f  the  

p l ane t a ry  in te r iors  is m u c h  less t h a n  t he  h y d r o s t a t i c  pressure  p( r ) ,  where  r is the  d is tance  

to the  cen te r  o f  the  p lane t .  As a result ,  in  ana lyz ing  the  models ,  i t  is possible to  use the  

e q u a t i o n  o f  h y d r o s t a t i c  equ i l ib r ium 

dp aM(__f ) p (r) 
d r  - r -  = - - g ( r ) p ( r ) ,  (5)  

a n d  the  e q u a t i o n  for  M ( r ) ,  t he  mass  o f  a sphere  o f  radius  r 

d M  
d r  41rr2p(r)" (6)  

The  b o u n d a r y  cond i t i ons  assert  t h a t  

o n  t he  surface r -- R ,  

in  t he  cen te r  r = 0,  

M(R ) = M, 
(7) 

/ 1 4 ( 0 )  = O; 
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in which M and R are the known mass and mean radius of the planet. Unfortunately, the 

moment of inertia cannot be found from the observations of Venus: and, therefore, the 

analysis of its model does not make use of the equation for the moment of inertia, as is 

done for Earth and Mars. In order to close the set of Equations (5) and (6), we must join 

an equation of state of the form 

p = p(p).  (8) 

We must point out the difference in the determination ofp(r) for Earth and for the other 

planets. In the case of Earth, from seismology we know the quantity 

= K s / p  = V ~ - - ~  s4V2 

as a function of the radius (K s is the adiabatic modulus of compression, Vv and Vs are 

the velocities of the longitudinal and transverse seismic waves). By use of the equation of 

Adams-Williamson, it is now possible to calculate an actual model of the Earth and thus 

determine the equation of state of the material of Earth p(p), using only geophysical data 

(Bullen, 1975; Zharkov and Trubitsyn, 1978). In the case of the planets, the quantity q5 is 

unknown and therefore it is necessary to know the equation of state p(p), which pro- 

duces the law by which the material of the planet is compressed beneath the weight of 

the overlying strata. The analysis of the models of Venus makes use of the equation of 

state for the material of Earth, as well as the equation of state of Fe, FeS, MgO, FeO, 

SiO2, A1203, etc., determined from dynamic and static experimental data (Zharkov et al., 
1975 ; Zharkov and Trubitsyn, 1978). 

Let us explain the specific procedure of constructing a model of Venus in accordance 

with the works of (Kozlovskaya, 1982; Zharkov et aI., 1981; Zharkov, 1983.? Few data is 

available for Venus. Under such conditions - considering that Venus is a twin planet of 

Earth in regard to the mass and radius - it is reasonable for the construction of a model 

of the planet to use the equation p(p) for Earth as the initial equation of state 

(Dziewonski et al., 1975; Zharkov and Trubitsyn, 1978). For Earth, at present, there also 

exist more detailed models (Dziewonski and Anderson, 1980). However, in constructing a 

model of Venus it is not important which of the similar models of Earth is taken as the 

foundation. The convenience of such a choice, furthermore, automatically takes into 

account the influence of temperature on the equation of state, as the temperature distri- 

bution in both planets is evidently similar for depths greater than ~ 200 km. Specifically, 

the dependence p(p) was chosen as the equation of state for the PEM-C model 

(Dziewonski et al., 1975). In constructing models for the silicate mantle of Venus, both 

'reduced' and 'weighted' equations of state were used in relation to p(p) of PEM-C. 

These curves are shown in Figure 1 and are described by the simple formulae 

P(P) = Of(P)+ Ap, Ap = const., 

while Pl(P) is the equation of state as per the PEM-C model. Thus, all the curves of 

t In the analysis of the models of the planet, its mean radius is assumed to be R ~ 6050 km. 
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Fig. 1. Set of equations of state of p(p) for analysis of silicate mantles of models of Venus. Curves 
(1-4) for models with minimum crust, Al  K = 38km,  M K .~ l%M, PK = 2.8g cm-3. (1) [Ap = 0, 
p(p) = pl(p)], (2) [Ap = --4%P11, (3) [ap =--  8%p,], (4) lAP = 8%P11, (5) (Ap = 0) for models 
with maximum crust, Zxl K = 127 km, M K ~ 3.3%M, 15% of the material of the upper mantle is melted. 

p(p) obtained by interpolation for intermediate values of Al. 

Figure 1 are produced by a parallel shift along the p axis by the amount Ap. Specifically, 

AO was varied within limits of -+ 8% of pl, while the actual value was assigned to the 

models with Ap < 0, which corresponds to the cosmo-chemical data, in accordance with 

which the content of iron in the silicates of the mantle should diminish systematically in 

the transition from Mars to Mercury (Lewis, 1972). The models of Venus, constructed 

with equations of state having Ap < 0 are interpreted as possessing a deficit of iron in the 

silicates of the mantle. A reduction of Ap by 1% corresponds to a reduction of 1.4% in 

the content of iron in the silicates of the mantle. In accordance with the data of Venera 

10, the density of the surface rocks on Venus is 2.8 + 0.1 gcm -3, which corresponds to 

the basaltic rocks (Surkov et al., 1977), cf. also (Masursky et aL, 1980). We shall cite 

below models of the planet with a priori given thickness of the crust Al e = 70kin. The 

reasons for assuming so thick a crust have been discussed in the introduction. The mass 

of the crust is Me ~ 1.8%M and corresponds to a melting of 8.2% of the material of 
the upper mantle (the boundary of the upper mantle is located at the depth of the second 

phase transition). The selection of the equations of state for the Cytherean core is more 

complicated. Here, also, p(p) for the PEM-C model was assumed at the start [PMcE(P), 

where MCE is the material of the core of the Earth]. Moreover, according to the cosmo- 

chemical data, the cores of the planets of the Earth group may contain FeS, nor is it 
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MCE and FeS*, in which the  por t ion  o f  FeS* comprises 0.5, 0.6, and 0.7. 

excluded, that the cores of Venus and Mercury may consist of pure iron. Therefore the 

equations of state, shown in Figure 2, include the alloys Fe - FeS, FeS, MCE and Fe. For 

Fe, Figure 2 shows a curve for the adiabatic temperature distribution in the core with 

temperature at the mantle/core boundary equalling 3500 K. The equations of state were 

taken from Zharkov e t  al. (1975) and Zharkov and Trubitsyn (1978). The equation of 

state, taken for the high-pressure phase of iron, is practically identical with the equation 
for e-Fe, obtained in (Brown and McQueen, 1981). The equation of  state for FeS differs 
somewhat from that obtained in Ahrens (1979), but this is not important, due to the 

small content of FeS in the core of Earth being much less in the core of Venus. 

According to modern cosmo-chemical theories, the content of  FeS in the interiors of  the 
planets of the Earth group should diminish in the transition from Mars to Mercury. Since 
the admixture of  FeS to Fe in the core of  the Earth is not large (of the order of  10%), if 
it is even present at all, it is logical to use the equations of state for the MCE and for Fe 
as the two extreme cases when constructing the models of Venus. Table II shows the 
main parameters of  the models of  Venus with a core of MCE and a core of molten iron, 
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follow the adiabatic curve. 

and for comparison data for the PEM-C model of  the Earth are also shown. Figure 3 

shows the distribution o f  density, pressure, gravity, and the temperature in an earth-like 

model of  Venus (numerical parameters given in Table II, Ap = 0, core of  MCE). The tem- 

perature distribution was obtained from a priori  considerations. Assuming a thickness of  

200 km for the Cytherean lithosphere, we shall take a temperature of  ~ 1200 ~ for this 

depth. At the boundary between the mantle and the core the temperature was assumed 

to be "-~ 3500 K (~ 3230 ~ The temperatures in the core were regarded as adiabatic and 

were computed from Equation (27). As a result, the temperature in the center of  Venus 

was found to be about 4670 K (4400 ~ The trial temperature distribution in Figure 3 

in the mantle is close to the distribution obtained in (Toks6z et al., 1978), while in the 

core it is appreciably higher and at the center of  Venus the discrepancy attains ~ 1200 ~ 

It is natural that the question as to the temperature distribution in the interior of  Venus 

is even more vague than the interior o f  Earth (Zharkov, 1983). We shalldiscuss the tem- 

perature distribution of  Venus in greater detail in the section devoted to convection in 
the mantle o f  the planet. 

In order to classify the silicate mantle of  Venus into mineralogical zones, we use the 
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TABLE III 
Mineralogical zones in the mantle of Venus 

Depth, km Principal mineral phases 

Upper mantel 70 Pyroxene + garnet 
(Zone B) olivine zone Olivine (~-phase) + A1203 ~ garnet 

480 
Transitional zone Spinel zone B-phase ~ spinel 
(Zone C) (y-phase) Garnet 

760 zone of ilmenite Ilmenite --, perovskite + Ilmenite Ilmenite 
and perovskite ferropericlase perovskite perovskite 
1000 (Mg, Fe)O 

Lower mantle Perovskite zone Perovskite + Perovskite Perovskite 
(Zone D) (Mg, Fe)O 

2840 

phase diagrams of  the systems Mg2SiO4-FezSiO4, MgSiO3-FeSiO3 and MgSiOa-A12Q. 

These data have been collected in books (Zharkov and Trubitsyn, 1978, 1980)and were 

basically gathered by Akimoto et al. (1975) and Liu (1977). The mineralogical zones in 

the mantle of  Venus are given in Table III. In comparing the structures of  Venus and the 

Earth, we can only conclude that both planets are alike except for the thicker crust of  

Venus and the deeper location in it of  the boundaries of  the first and second phase 

transitions in the mantles. Referring to Table II, we see that the content of  iron in the 

earth-like models of  Venus is 2% less than that in the Earth. In the introduction we 

pointed out  the tectonic interpretat ion o f  this fact in the work of  Anderson (1980). Only 

in models of  Venus with a core of  mol ten  iron is the overall content of  Fe the same as in 

the Earth. Despite the insufficient data on Venus, we may still form the provisional con- 

clusion that the general tendency of  monotonic decrease o f  the general content of  iron in 

the transition from Mercury to Mars seems to have been disturbed. This is somewhat sur- 

prising in the context  of  modern theories as to the condensation of  the protoplanetary 

cloud and the subsequent formation of  the planets. If  this finding is confirmed, it will be 

necessary to treat it as a new boundary condit ion in the problem of  the origin and evo- 

lution of  the planets o f  the Earth group. 

2.1. THE PARAMETRICALLY SIMPLE MODEL OF VENUS - PVM t 

For  Venus, as for Earth,  it is useful to construct a parametrically simple model  (PVM), in 

which the density distribution p(x) and the velocities of  the longitudinal Vp(x) and trans- 

verse Vs(x ) volume waves are given by piecewise-continuous analytical functions of  the 

non-dimensional radius x = r/R. The continuous segments of  the distributions are 

described by polynomials in x, not larger than the third degree. Knowing the distribution 

of  density p(r) (Fig. 3) in an earth-like model  o f  Venus and describing the continuous seg- 

ments of  this distr ibution by polynomials in the radius, it is easy to construct a seismic 

t PVM - Parametric Venus Models. 
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A parametrically-simple Venus model (PVM). The distributions of Vp, V s, and p are shown. 

model of the planet. For this, we should use the functions Vp(#) and ~(p )  of the PEM-C 

models. A PVM model, designed in this fashion, is characterized by Table IV This is 

shown graphically in Figure 4 (Zharkov and Zasurskiy, 1982). 

3. A Physical Model of Venus 

In this section we shall explain the thermodynamics of the mantle and core and estimate 

the coefficients of  thermal and electric conductivity, the mechanical quality Q~z, and the 
large-scale static stresses in the mantle. A rheological model of the crust and mantle is 

considered. 

3.1. THE THERMODYNAMICS OF THE MANTLE 

Let us consider the thermodynamical parameters of the mantle on the basis of the Debye 

model (Zharkov and Trubitsyn, 1978, 1980; Zhakov and Kalinin, 1971; Zharkov and 
Zasurskiy, 1980a, b). Let us define the average speed of sound V in terms of the velocity 

of the seismic waves Vp and V s by 

r3 = 3us[1 + 2(V~,lVs)3l-~/3v~,; (9) 

then, assuming an average atomic weight ofA ~ 22 for the mantle of Venus, we shall find 

the Debye temperature by means of the standard formula (cf Zharkov and Zasurskiy, 
1980a, b) 

0 = 0.924 x 10-3~3p 1/s. (10) 
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In this equation, 0 is found in K with ~7 in cm s -1 and p in g cm -3. The second function 

needed to calculate the thermodynamic coefficients is % the Griineisen parameter 

d l n 0  
- . ( 1 1 )  

3' d l n p  

In the classical limiting case of T >  O, the specific entropy S is related to 0 by the simple 

formula 
R 

~ <  1, (12) S = ~ [ 4 - - 3 1 n 0 / T ] ,  T 

where R is the universal gas constant. 

(S = const.) 

From this, we obtain the adiabatic equation 

Tac t = Taao(O/Oo) , (13) 

where the index 0 designates the value with respect to the initial counting level, usually 

the depth I0 = 100 or 200km, where Taa is supposed to be ~ 1500K. For the Debye 

model, Equation (13) is equivalent to the standard thermodynamic formula for an adi- 

abatic gradient 

(d--~)a = Cp ' (14) 

where T is the absolute temperature, l is the depth, g is the acceleration of gravity, c~ is 

the volume coefficient of thermal expansion, and Cp is the specific heat capacity at con- 

stant pressure. 

The fusion temperature of the planetary interiors is usually determined by means of 

the formula of Lindemann (cf. Zharkov and Trubitsyn, 1978) 

Trn(P ) = Tmo(O/Oo)2(po/p) 2/3, (15) 

where the index 0 refers to the starting level of the measurement. The distributions of 

O(1), T~(l ) ,  and Tin(l), thus calculated, along with the trial temperature T(l), are shown 

in Figure 5. The inset of  Figure 5 shows a graphical image of the Griineisen parameter 

3'(0, found from Equations (11) and (10), and the PVM model (Table IV). Since the 
function "y(l) is determined by differentiation of the function O(l) [Equation (10)], it 

may contain errors which are difficult to spot. Therefore, along with function 3'(/), cal- 

culated in the above manner, it is useful to employ a function which is determined from 

classical averaged models of  Earth, which have a continuous velocity distribution without 

jumps in the zone of phase transitions. The function ~'(l), calculated for classical models 
for the mantle of the Earth, decreases uniformly from a value of ~ 1.9 at a depth of 

100km to values of ~ 1.0km at the boundary between the mantle and core of Earth. 
The averaged (smoothed-out) Grtineisen parameter for the mantle of Venus q,(l) is like- 

wise shown in the inset of  Figure 5 for comparison. The PVIVl model (Table IV) allows 
the calculation of the adiabatic modulus of  compression K s from 
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Fig. 5. The temperature in the mantle of Venus. (1) Debye temperature, (2) adiabatic temperatures, 
(3) trail smoothed-out temperatures, (4) temperatures obtained in analysis of the thermal history of 
the planet (Maeva, 1969), (5) temperatures with thermal boundary layers at the borders of the lower 
mantle, (6) melting temperature of the mantle. The inset shows the Gruneisen parameters as a func- 
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K s = pq5 = p ( V ~  4 2 -~V,), (16) 

where q~(1) is the seismic parameter of the mantle of Venus. In the classical limiting case 

(T > 0), the Debye model gives, for the thermal pressure (Zharkov and Kalinin, 1971) 

3 R T T p  
PT = - -  ; (17) 

A 

and, correspondingly, for the thermodynamic derivative 

(18) 

From given Ks ,  the thermodynamic formula can be used to calculate K m from 

T (Opl 2 3R (19) 
/ ~  = /~s- Z i ~ ] ;  r = 7 
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or, by using Equation (18), we can find 

3RpT2T 
K T = K S ( 2 0 )  

A 

The coefficient of thermal expansion ~ can be calculated by means of the formula 

(~P] ~ KT, (21) 
3R'yp 

O~ = K T 011p A 

while the heat capacities Cp and C v are related by 

Cp ~ Cv(1 + Te~T). (22) 

The ratios between the coefficients of compressibility fT and ~s, the heat capacities, and 

the moduli of  compression and related by the thermodynamic formula 

Cp __ ~T Ks 
- ( 2 3 )  

Cv ~S K T  

Values of the thermodynamic parameters of the mantle of Venus, calculated by formulas 

(9)-(23), are summarized in Table V; Table V shows the jumps of the Debye temperature 

at the first (11 = 481 kin) and second (12 = 756km) phase transitions, (A0)I = 55 K and 
(A0)2 = 126K, and the corresponding jumps in the adiabatic temperatures (ATad)I = 
124K and (ATad)2 = 285K. Equation (12) allows the estimation of the entropy jumps 

upon phase transitions in the mantle of Venus 

AS = $2 - - &  = 3--R-R in 0~. (24) 
A 02 

Using equation (24) we obtain the slope of the curve of the phase equilibrium 

dp AS AS PiP2 q 
X - dT - V1 -- V2 P102 (P2- -P l )  Ap T" (25) 

This was found to equal ~ 51 barK -1 and ~ 90 barK -1 at the first and second phase tran- 
sition in the mantle, respectively. According to Equation (25), the thermal effect at the 

first phase transition (T1 ~ 2160K) is equal to ( --q) l  ~ 5.9 x 108ergg -1, which corres- 

ponds to a heating by (AT)I ~ (--q)l/Cp ~ 49K (Cp ~ 1.2 x 107ergg-1). The corres- 

ponding values for the second phase transition (T2 ~ 2660 K) are ( - - q ) 2 ~  13.4x 
10Sergg -1, (AT)2 ~ (--q)2/Cp ~ 112K. 

The PVM model, as well as the PEM models for Earth, is a schematized and simplified 

model of the planet. In particular, the jumps in the parameters at the boundaries of the 
first and second phase transitions in the mantle of Venus should in fact be obliterated, 

the same as in the mantle of  Earth at (AI)I ~ 50km and (Al)2 ~ 100 km (Zharkov and 
Zasurskiy, 1980a, b). 
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3.2.  THE THERMODYNAMICS OF THE CORE 

Let us discuss the thermodynamics of the core of Venus on the basis of the Debye model. 

The Grtineisen parameter of the core of Earth has been studied in Zharkov and Zasurskiy 

(1980b), cf. also Zharkov (1962) or Jacobs (1975). There it was shown that 3'(P) in the 

core diminishes smoothly from 1.6-1.5 at the boundary with the mantle of the Earth 

down to ~ 1.3 at the center of the Earth. Roughly the identical range of variation of the 

function 3'(P) can also be assumed for Venus. In consideration of the weak dependence of 

the function 3'(P) on the density, the same as in Zharkov and Zasurskiy (19808), we shall 

assume for Venus a constant mean value q = ~,(p) = 1.45. Then the Debye temperature 

of the interior of Venus can be computed by the equation 

O(p) = 1070(p/po) ~ -- 1070(p/po)l"4SK, (26) 

where Po = 9-59 gcm -3 is the density of the core at the boundary with the mantle, p, in 

gcm -3 and 0 is in K. In the calculation of 0o = 1070 K, the Poisson coefficient was 

assumed to be a = 0.3, while the mean molecular weight of the core material was A = 56. 

In accordance with Equations (13) and (26), the adiabatic curve of the core of Venus 

is of the form 

rad.(p) = rado(O/Oo) = Tado(p/po)  1"4s. (27)  

We shall define the equation of the melting curve of the core of Venus by the formula 

of Lindemann [Equations (15) and (26)], of  the form 

Tin(P) = Tmo(OlOo)~(PolP) 2/3 = rmo(plPo) 2"24. (28) 

In Equations (27) and (28), Taao and Trap are the temperatures at the beginning of the 

adiabatic curve and the melting curve, respectively. Using Equations (27) and (28), we 

find it easy to compute the adiabatic gradient and the gradient of the melting curve form 

,.4 To o 7 -dl \po] d l -  2"24Tmo vkkPo]7.2 - -  ' (29) 

where g is the gravity, vv is the velocity of longitudinal waves in the molten core of 

Venus. I n t h e  Earth, the adiabatic curve of the convective external core intersects the 

melting curve at the boundary with the solid internal core. The question as to whether 

Venus possesses a solid internal core remains open at present. However, since both planets 

are very similar, it is reasonable to assume that Venus also has a small solid internal core, 

the boundary of which we shall arbitrarily place at a depth of ~ 5000 km. Then the adi- 

abatic curve of the outer molten core of Venus should intersect the melting curve at 

l = 5000 km. This circumstance was used to construct Figure 6. Figure 6 shows trial adi- 

abatic curves for the core of Venus with initial temperatures Taao at the boundary with 

the mantle equaling 3500, 4000, and 4500K. The corresponding temperatures at the 

boundary between the outer and inner core will be 4550, 5200, and 5850 K. Also shown 

by broken lines are the corresponding melting curves of the core, computed from 
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Fig. 6. Trial adiabatic temperatures and melting curves of the core. Solid lines of the adiabatic curve 
with values of Tad o at the core/mantle boundary equal 3500 K, 4000 K and 4500 K. Dashes - melting 
curves with values of Tmo at the core/mantle boundary equaling 3000 K, 3450K and 3900 K. Also 

shown is the experimental zone for the iron melting curve after Brown and McQueen (1981). 

Equation (28). The values o f  the melting temperature at the boundary with the mantle 

were found to be 3000, 3450, and 3900K.  Figure 6 also shows an experimental zone for 

the melting temperatures of  iron according to the data of  Brown and McQueen (1981). 

We can see that,  for the molten core of  Venus with a composit ion close to pure iron, only 

the adiabatic curve with initial temperature at the boundary between the core and mantle 

equalling Taao ~ 4500 K is realistic. From this, the problem arises - how to coordinate 

such high temperatures with a convective mantle of  the planet. This question is discussed 

in greater detail in Section 4. 

A knowledge of  the Grtineisen parameter 7 and the Debye temperature 0 allows the 

calculation o f  all the thermodynamic coefficients of  the core by  the formulas given in the 

preceding paragraph, A = 56. The results of  the calculations are summarized in Table VI. 

Let us now calculate the heat flux, emit ted by the core of  Venus by the mechanism of  

molecular thermal conduction (since the core by  hypothesis is in the convective state, this 

will provide the lower limit f o r  the heat flux from the core). For this, let us mult iply 

dTad/d l  [Equation (29)] at the boundary with the mantle by  the coefficient of  thermal 

conduct ion of  the core: 

L T e  c = K e, ( L = 0 . 2 4 5 e r g ' s  - 1 . O h m . K ,  

a e = 3 x 103Ohm -1- cm -I, T =  3500K,  

~c = 0.26 x 107erg �9 cm - t  �9 s -1 �9 K- l ) ,  
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TABLE VI 
Values of the thermodynamic parameters of the core of Venus 

l, km p, g cm -3 p, Mbar 0, K Tad K KS, Mbar fiT, 10-7 a, 10 -s 
bar -1 deg -I 

2843 9.591 1.158 1071 3480 5.62 1.89 1.21 
3027 9.858 1.323 1114 3620 6.21 1.71 1.11 
3330 10.25 1.586 1178 3830 7.17 1.47 0.97 
4237 11.10 2.268 1324 4300 9.69 1.08 0.74 
5447 11.67 2.805 1424 4027 11.56 0.9 0.62 
6050 11.74 2.874 1436 4666 11.69 0.88 0.6 

where o e is the coefficient o f  electrical conduction of  the core, L is the Lorentz constant 

(Zharkov and Tribitsyn, 1978), and the area of  the surface of  the core is 47rRc 2, where 

R e = 3210 km. As a result, we find Qe = 2.86 x 10a9ergs -1 = 0.9 x 1027ergy -1. 

3.3. THERMAL CONDUCTIVITY. TEMPERATURE DISTRIBUTION IN THE LITHOSPHERE 

AND THE HEAT FLUX FROM THE INTERIOR OF VENUS 

Estimates of  the coefficient of  thermal conduction of  the metal  core of  Venus have been 

given in a preceding paragraph. A more complicated problem is the estimation o f  the 

thermal conduction o f  the mantle o f  the planet. Below we shall discuss the molecular 

coefficient of  thermal conduction,  which determines the heat transfer in the lithosphere 

and the thermal boundary layers of  the planetary interior (cf. Section 4). 

When calculationg the temperatures in the lithosphere of  Earth, often for the coef- 

ficient of  thermal conduct ion K in the upper mantle we use formulas which smooth out  

the experimental  data in the temperature range o f  5 0 0 - t 4 0 0 K  (Schatz and Simmons, 

1972). These formulae presuppose that the properties o f  the mantle are approximated 

by  dunite with an olivine composit ion (Mg0.gFe0.1)2SiO4. 

The effective thermal conduction of  the mantle is represented in the form of  the sum 

of  the lattice •L and radiant ~R parts, K = ~ r  + nR, as 

KL = 103/(74 + 0.5 r ) ,  (30) 

2 . 3 x 1 0 - 3 ( T - - 5 0 0 )  when T > 500 K, 
KR = ( 3 2 )  

0 when T <  500K,  

where ~ is in units of  W m - I K  -1 ( 1 W m - I K  -1 = 10Sergcm-Xs- lK -1 = 2.39 x 10-acal 

cm -a s -1 K-a) ,  and the temperature T is in degrees Kelvin. An extensive summary of  data 

concerning K has been gathered in Chermak (1981), where the experimental  data is 

smoothed out by means of  the formula 

t~ = Ko/(1 + CT), where 7 ~ = T - - 2 7 3 .  (32) 

Expressions (30), (31) and (32) yield practically coincidental results when •0 = 2.5W 

m -1K -1 and C = - -  0.00025 ~ -1. Chermak considers that,  in the temperature range of  
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0-700  ~ for a crust of  the Earth consisting of  an upper "granitic" layer and a lower 

"basaltic" layer an excellent aproximation is obtained by setting K 0 = 3 W m -1K -1 and 

C = 8 x 10 -4 ~ in Equation (32). In the temperature interval 200-600 ~ the thermal 

conduction o f  basalts is approximately constant at ~ 2 W m - I K  -1. This was used to 

obtain averaged values of  Ko (Win -1K -1) and C (10-4~ for granitoid, gabbroid, and 

ultrabasic rocks, respectively, equaling (Ko and C) 2.93 -+ 0.51 and 11.90 + 0.51 ; 2.10 -+ 

0.47 and 2 . 5 4 -  + 0.50; 4.51 -+ 0.70 and 14.8 -+ 2.56. For conditions corresponding to 

depths of  l > 100-200kin  the coefficient of  thermal conduction has not been studied 

experimentally. In this connection, it is usually supposed to be constant and equal to 
8 x 10 -3 cal c m  -1  S -1 K -1 = 3.33 W m -1K -1 ,  which is close to the value of  3.5 W m -1 K -1, 

produced by the formula o f  Schatz and Simmons [Equations (30) and (31)] for 

T = 1473 K. However we have no basis to suppose that the coefficient of  thermal con- 

duction is constant at l > 100-200 km. In the absence of  experimental data, it is reason- 

able to use the theoretical indications for this purpose. The theoretical expression for 

K L (cf. Zharkov, 1958; Zharkov and Trubitsyn, 1978) is of  the form 

KL = •L, lo Fl(p) , Fl(P ) = 3"t--2t[O-LI (33) 
~pzl \3"z]\Ozo]' 

where l0 is the reference depth, 1 is the actual depth;p,  0 and 3' are the density, the Debye 

temperature, and the Griineisen parameter, respectively; T is the absolute temperature. 

According to the data o f  Schatz and Simmons, when J~ ~ 1200 ~ the components o f  ~:z 

and Kn provide roughly the same contribution to K. The question as to the values ofK n 

in the depths of  the mantle has not been decided and there is reason to suppose that KR 

does not appreciably increase there. Therefore, we shall assume that Kn = 4 x 10-3cal 

cm -1 s -I K when l ~> 200 km and Kz,2oo = 4 • 10 -3 cal cm -~ s -~ K -1. It is then reasonable to 

calculate the further variation with depth by means of  the relation 

~(l) = 4 x l O - 3 [ l + ( ~ t f t ( p ) ] c a l c m - l s - l K - 1  , (34) 

where Ft(p ) is defined by formula (33) and given in Table V. At the base of  the mantle, 

T234o < 3T2oo, F284o ~ 22, and we obtain the estimate K( /=  2 8 4 0 ) ~  4K(/= 200). Con- 
sequently, in the mantle of  Venus, K (/) may increase by several times. 

The temperature distribution in the outer 200 km layer of  Venus (considering this the 

lithosphere of  the planet) can be found by means of  solving the steady-state thermal con- 

duction equation for the flat layer 

-~ ~ - ~  + A(l) = 0, (35) 

where l is the depth, A is the evolution of  heat in W cm -3. The distribution of  radioactive 

impurities in the crust is assumed to be a homogeneous or exponential function of  the 
depth 
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A(I) = Aoe -t/D (36) 

with a scale o f D  ~ 8-10kin .  Let us consider a two-layered model of  2x/1 = 7 0 k m  and 

2xl2 = 130 kin. We shall consider the upper layer to be basalt, K s = 2 x 10-2W cm -1 K-S; 

the lower consists o f  ultrabasic rocks, g 2 = 3.3 x 10-2W cm -~ K-S; the temperature value 

at the surface is To = 733 K. We shall consider the temperature value at the lower bound- 

ary of  the lithosphere to be a free parameter,  varying from 1473 to 1873K, T2oo~ 
1473-1873 K. 

According to modern geochemical theories (O'Nions et al., 1979; Wasserburg and 
De Paolo, 1979; Zharkov, 1983), the upper and lower mantle of  the Earth do not 

exchange material or radioactive impurities between themselves (the boundary of  the 

upper and lower mantle is situated at the depth of  the second phase transition, for Venus 

at ~ 760km).  We shall also presuppose a similar theory in respect of  Venus. When the 

thick Cytherean crust melted out of  the upper mantle of  the planet, all the radioactive 

impurities have been virtually concentrated in the crest; and, therefore, we may presume 

that the concentration of sources of  heat in the lower layer of  the lithosphere is 0, 
A2 = 0. Let us assume that the rate of  generation of  heat in the non-differentiated upper 
mantle of  Venus is the same as for the non-differentiated upper mantle of  Earth, ~ 4.8 x 

10-6/aWkg -1 (O'Nions et al., 1979). Supposing that almost all the sources of  heat have 

been transported from the upper mantle into the basalt crust, we obtain the value of  Ao 
in Equation (36), where we assumed t h a t D  = 10kin andA0 = 1.13 x 10-61.tWcm -3. The 

other limiting case corresponds to a uniform distribution of radioactivity in the crust. 

Then, A x ( I ) = A =  1.62x10-7/~Wcm -a. The solutions of  the problem for A~(l) 
[Equation (36)] and A s(l) = - 4  = const, provide similar results. For simplicity, we shall 
give the formulas for a uniform distribution of  radioactivity in the crust, A l ( l )=  A = 
1.62 x X0-7/2Wcrct -3. By 1~ and l~ we shall designate the thickness of  the crust and litho- 

sphere, respectively; T(ll) = Ts, T(12) = T2, T(O) = To. Then, the heat flux from the 
interior of  Venus qo is equal to 

( T 2 - - T o ) + A I I [  g1(12 - - /1)  l 
ll 2 l + 2 K  2 11 J 

qo = (37) 
K1 (/2 -- /S)  

14 
K2 11 

This is determined by the temperature value 7"2 at the lower boundary of  the lithosphere 

and by the thickness of  the crust ls. Under the assumed values of  the parmeters 

To = 733K,  7"2 = 1473-1873K ~, ls = 70kin,  l: = 200km,  K1 = 2 x 10 -2Wcm-IK  -1, 
K ~ = 3 . 3 x l 0 - 2 W c m - I K  -1, A = l . 6 2 x 1 0 - T g W c m  -3, we obtain q o = ( 1 8 . 5 - 2 3 . 8 )  

erg s -s cm -2. This is much less than that found in the work of  (Toks6z eta/. ,  1978) 

qo ~ 77ergs-Scm -2 (for Earth, qo ~ 61 .5ergs - lcm-~) .  If  we reduce the thickness of  

t The lower boundary of the lithosphere can be arbitrarily defined on the isothermic surface T 2 = 
1473K (1200~ The choice of T2= 1873K (1600~ physicaUy denotes that the lithosphere 
includes the upper thermal boundary layer of convective cells in the upper mantle. 
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the lithosphere by two times, 12 = 100 kin, while retaining the values of  the other param- 

eters, then the heat flux from Venus is somewhat increased, q0 ~ (23.5-32.5)ergs -1 

cm -2. Let us now consider what happens when the thickness of  the crust is reduced by 

two times, ll = 351an (corresponding to ~ = 3.24 x 10-7/~Wcm-3); when 12 = 200kin,  

we obtain qo = (20.8-26.7) erg s -1 cm -2 ; when 12 = 100 kin, the flux increases somewhat, 

qo = (28.6-39.3)erg s -a cm -2. As a general deduction from the above we may regard the 

heat flux from the interior of  Venus as included in the interval 

q0 ~ (20-40)  erg s -1 cm -2, (38) 

i.e., 2-3  times less than that from the interior of  the Earth. This is due to the high tem- 

perature of  the surface o f  Venus and the low thermal conduction of  its thick basalt crust. 

In this particular 2-layer model of  the lithosphere, the temperature in the crust is given 

by the expression 

A 

T(I) = To + q ~  2, l<~l l ,  (39) 
K1 291 

while in the lower lithosphere it is a linear function of  the depth 1. 

3.4. TIlE ELECTRICAL CONDUCTION 

Estimates of  the coefficient of  electrical conductivity of  the metallic core of  Venus are 

given at the end of  the paragraph devoted to the thermodynamics of  the core. 

The question as to the electrical conductivity of  the mantle of  Venus can only be 

treated in a qualitative sense, while the estimates themselves only at best indicate the 

order of  magnitude. With these reservations, the same as in the case o f  the mantle o f  

Earth, an estimation of  the electrical conductivity o f  the Venusian asthenosphere 

(100-200 < l < 760 kin) can be assumed (Zharkov and Trubitsyn, 1980) in the form 

o a ~ 10-4-10 -3 O h m  -1 cm -1, (40) 

while for the lower mantle, 

a ( l ~  10akin)~  10 -1 Ohm-1 cm -1 
and (41) 

a( l  ~ 2840 k m ) / a ( l  ~ 1000 k i n ) ~  102. 

3.5. THE MECHANICAL QUALITY FACTOR Qu 

Only hypotheses can be formed as to the mechanical quality factor Qu, as for the elec- 

trical conductivity of  the mantle. Due to the high temperatures, the quality factor of  the 

Cytherean crust should not  be more than 

Qu ~ 300-100 when l <~ 70 km. 

The quality factor o f  the asthenosphere should be even less, i.e., 

Qu ~ 80-200 when 70 ~< I ~< 760 km. 
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In the lower mantle, the quality factor should be even higher, i.e., 

Q~ ~ 200-500, 800 < 1 < 2800; 

although, exactly as in the case of  Earth, we may expect a zone of low Qu at the bottom 

of the mantle and, probably, at the boundary between the lower and upper mantle. If  
Venus has a molten core, its quality factor should be large, Q >> 103. 

For a solid interior core (if it exists!), the quality factor should be much less, Q~, 
(100-500), than that for a molten core. 

3.6. LARGE-SCALE STEADY STRESSES IN THE MANTLE OF VENUS 

Due to the disequilibrium of the planets of the Earth group, i.e., the fact that the planet- 

ary figure deviates from the equilibrium figure, large-scale steady tangential stresses are 

created in their interiors, which are maintained over the course of geologic intervals of 
time (108-109) yr by rigid zones of the crust and mantle. The deviation of the planet from 

the hydrostatic-equilibrium state can be explained by data on the gravitational field of  

the planet (Zharkov and Trubitsyn, 1978). The non-hydrostatic nature of the planet is 
characterized by non-hydrostatic values of the coefficients in the expansion of the 

external gravitational potential. In the case of Earth and Mars, the maximum stresses are 
occasioned by the non-hydrostatic nature of the quadrupole moment ~J2 = (J2 _ j o )  

(cf. Table I). The other coefficients for these planets are appreciably less than ~J2. In 

the case of Venus, the quantity 2x J2 ~ J2 is of the order o f J  3 and appreciably larger than 

the other coefficients t (Ananda et al., 1980). Considering this and the fact that this 

entire discussion is by its nature qualitative, we shall estimate the scale of the tangential 

stresses in the interior of Venus, regarding them as mainly determined by the quantity 

A J2. 

We shall now explain the method which enables the estimation of the steady tangential 

stresses in the planets of the Earth group by virtue of  A J2 :~ 0. Let us consider a hom- 

ogeneous model of  the planet with a surface represented by a sphere of radius equalling 

the mean planetary radius R. On the surface of our model we shall situate a thin layer 

with mean density equalling that of the planet, while the thickness of this layer and its 

distribution over the surface of the planet shall be chosen to produce the non-equilibrium 
portion of the quadrupole field ,of the planet, which is equal to 

AV- GM(R) 2AJ2P2(c~ (42) 

where we have used the standard designations and 0 is the polar angle, which equals the 

complement of the latitude. Then it is easy to determine the distribution of the ampli- 
tude of the sought layer e2(0) over the surface of the planet 

e2(0) = e2oP2(cos 0), e2o = -- ~RAJ2, (43) 

t The coefficient J3 has only just been determined with a very large error and naturally its value may 
be considerably lowered by a future refinement. 
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where P2 is the second Legendre polynomial. The presence of the weight layer at the sur- 

face of the planet leads to non-hydrostatic stresses in its interior. It is clear that the 

stresses are proportional to the linear amplitude of the layer [e20[, its density Po, and 
gravity go, i.e., the stress is proportional to the weight of the layer, adjusted to the unit of 

area. The maximum tangential stresses for a homogeneous planet model are obtained in 

the center. In due time, these have been found by Jeffreys to be equal to 

(rz)max = ~ g o P o R ( J 2 - - J ~  whenr = O. (44) 

Using the data in Table I, we find it easy to calculate (r2)max for all the planets of the 
Earth group: 

Mercury Venus Earth Mars 

(r ~)rnax, bar 19.6 5.6 a 17.2 3 2.4 
8.4 b 

a Data ofAkim etal. ,  (1978). 
b Data of Ananda et al., (1980). 

The homogeneous, continuously elastic model of the planet simplifies the actual situ- 

ation too much. The actual planets have molten cores or sufficiently-warmed solid cores 
which cannot withstand non-hydrostatic loads for a prolonged time of (10s-109) yr. 

Therefore, a two-layer model consisting of a molten core with a mean density o f o  i and 

a radius r e and of an elastic silicate shell with a mean density of p, capable of withstand- 

ing non-hydrostatic tangential stresses over the course of long intervals of time, is more 

realistic. The core may consist of either the actual core or the core and a portion of the 
lower mantle which, by virtue of  the high temperatures, cannot withstand non- 

hydrostatic loads over the course of geological intervals and thus behaves as a liquid over 
large intervals of time. The presence of a molten core results in the fact that the stresses 
will be displaced from it into the elastic shell where, depending on the radius of the 

effective molten core, they may considerably increase. Thus, we must solve a problem in 

the theory of elasticity concerning the stresses in a two-layer planet model, resulting from 

a ponderable layer arranged on its surface and providing the non-hydrostatic component 
of the quadrupole gravitational moment. The problem mentioned above has been solved 
for a two-layer model of Venus with average parameters of  the core and mantle (Zharkov 
and Zasurskiy, 1981). The results of a calculation of the three principal tangential stresses 
r~, r~ and ~'a are graphically shown in Figs. 7-9 for three values of the polar angle 
0 = rr/2, 0, and zr/4, i.e., for the equatorial (0 = rr/2), polar (0 = 0), and bisectorial 

(0 = 7r/4) planes of the planet for A J2, according to the data of Akim et al. (1978). (For 
A J2, according to the data of Ananda e t  al. (1980), the values of the stresses will be 1�89 
times greater). The largest tangential stresses, rmax, are achieved on the equatorial plane 
of the planet (Figure 7) at the boundary between the mantle and core (r c = 3210km, 
while 
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Fig. 7. Principal tangential stresses in the equatorial (0 = ~r/2), polar (0 = 0) (see Figure 8), and 
bisectorial (0 = ~r/4) (see Figure 9) planes of  the  planet. For  AJ~, according to the data of (Akim et 

aL, i978). (1) rl ,  (2) z~, (3) %, when 0 = 0, r l  -= r~, % = 0. 

r m ~  ~ 1 . 4 5 0 g o R A J ~  ~ 13.5bar, (45) 

with an error of -+ 40%, due to the uncertainty of J2 (cf. Table I). Consequently, the 
presence of a molten core entails an increase in the stresses in the lower mantle of Venus 
by roughly 2.4 times over the stresses given above for the homogeneous model�9 As can be 
seen from Figures 7-9, the stresses in the silicate shell of Venus drop off rapidly from 
values of ~ 10 bar near the core to values o f ~  1.5 bar at a depth o f ~  100 km. The most 
important conclusion to be considered from the calculations should be the low level of 
stresses in the interior of Venus. This is yet another indication of the hot interior of the 
planet. The mean level of stresses in the lower mantle of Venus apparently lies in the 
interval of (3-10)bar. In the upper mantle of the planet (l <~ 760 km), excluding its litho- 
sphere (l ~< 200-100km), the viscosity of the planet is substantially lower (cf. next para- 
graph) than its viscosity in the lower mantle (l > 760 km), as a result of which the stresses 
should be displaced from the upper mantle into the lithosphere and lower mantle. The 
level of stresses in the asthenosphere of Venus (100-200 ~< I ~< 760 km) should be about 
1 bar or less. 

As is well known, in the Earth the thickness of the seismically-active surface layer is 
roughly 15 kin. The geothermic gradient at the surface of Earth is "" (20-30) ~ krn -1. Con- 
sequently, at the lower boundary of the seismically-active layer of Earth, the temperature 
is (300-450) ~ The mean temperature of the surface of Venus is 460 ~ (cf. Table I). On 
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Fig. 8. See caption to Figure 7. 
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Fig. 9. See caption to Figure 7. 

this basis, we may presume that Venus does not possess an outer seismically-active layer. 

In connection with this and the low level of  tangential stresses in the interior of  Venus, 
we may conclude that the planet is aseismic. 

Due to the currents or convection in the mantle of  Venus, the gradients of  the hydro- 
dynamic velocities are not  equal to zero, which leads to dynamic viscous tangential 
stresses. We shall not  consider these, due to the incomplete statement of  the problem. 



MODELS OF THE INTERNAL STRUCTURE OF VENUS 167 

3.7.  A RHEOLOGICAL MODEL OF THE CRUST AND MANTLE 

A rheological model is constructed in the following manner (Murrell, 1976; Zharkov and 

Trubitsyn, 1980; Zharkov, 1982). The irreversible deformation due to the creep e is 

represented in the form of three terms as 

e = o~ lg t + (3 tm + 3`t, (46) 

where a, /3, and 3' are functions of the tangential stress r, the temperature T, and the 

pressure p, and t is the time. The exponent m lies within the interval (1/3-1/2). The first 

two terms in Equation (46) describe the non-steady creep. Under small deformations 

e ~< 0.01 and temperatures of T<~ 0.02Tin, the first term is dominant, while for the con- 
ditions in the interior of Venus it is unimportant and will not be considered below; the 

third term describes the stage of steady creep, which appears under sufficiently high 
temperatures and deformations of e > 0.1. The non-steady creep is related to the defor- 
mational strengthening which is due to the presence of dislocations in crystals. The 

dependence of 13 and 7 on r and T has been established experimentally to be of  the form 

a = /30 e -H ' /k r  ~ 10 -4-10-s at 7 <~ 1 kbar, (47) 

= 3`0 e -n2/kr,  (48) 

where n "" 2-3 when 100 <~ r ~< 1 kbar and n > 3 under the large stresses for oxides and 
silicates. In Equations (47) and (48),/2 is the shear modulus, k is the Boltzmann constant, 

H1 and H2 are the enthalpies of activation, while the constant p ~ 1 when r < 1 kbar and 

takes on larger values for larger stresses. 
We shall first consider the non-steady creep and then move on to the steady creep. An 

important parameter of the medium is the time of non-steady creep G,, which is deter- 

mined from the condition that the rate of non-steady creep ~t has been reduced to the 

value of the rate of steady creep ~ .  Further, it is convenient to exploit the law than the 

total deformation e t = ~ t ~  ~- 0.1 under non-steady creep does not depend on the time 

of deformation, the temperature, or the stress. This leads to formulae which relate tss and 

the effective viscosity rh, : 

or 
t~ ~ 2.5 x 1o-15(n,,/~), (so)  

where t** is in years when ~7~, is expressed in poises and r is in bars. The theological model 
of  the lithosphere is characterized by the time t~ and the effective viscosity r/ss. The value 
of the parameter t~ is determined by the fact that, if the duration of the tectonic 
process is less than t~,, then there only takes place a non-steady creep and the integrated 
deformation is less than 0.1. The dependence of the creep on the pressure is included in 

the activation enthalpy H1 andH2. 
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Three approaches are used in this problem (Zharkov, 1983). One of the methods starts 
from the assumption that the activation enthalpy for self-diffusion H is proportional to 

the melting temperature - i.e., H(p)  ~ ~Tm(P ) - while the quantity } ~ 20-40 is very 

large. In geophysics, the melting temperature of the mantle and that of the core are esti- 

mated by means of the Lindemann formula (15) and we get 

Y(p)  = H,oo(; 1oo/0q))2~3 [Oq)/O~oo] ~, (51) 

where 1 = 100 km has been taken as the reference depth. 

In the second method, the standard thermodynamic formula is used, of the form 

H(p)  = E* + V 'p ,  (52) 

where E* is the energy of activation (when p = 0) and V* is the activation volume, both 
assumed to be constant. In fact, E* and V* are unknown functions of the density, and 

therefore, strictly speaking, Equation (52) can be used only for small pressures, p ~ KT,  

where K T is the isothermal modulus of compression. 
In the third method, the equations 

H(p)  = E*(p/po) L, L - ~ l n H  _ V*K T (53) 
lnp E* 

are used. The coefficient L is similar in meaning to the Gruneisen parameter - it is a weak 
diminishing function of the density L = L(p) and can only be considered constant to a 

first approximation (Zharkov and Kalinin, 1971). 

At low pressures, formula (53) is equivalent to Equation (52), while at high pressures 

it properly accounts for the effective dependence of L* and V* on the density. 

Moreover, being an explicit dependence on the density, it enables a qualitative and 

proper estimation of the change in the activation enthalpy due to the density jump under 
the phase transitions in the mantle of Venus. 

The question as to the effective viscosity, which characterizes the high-temperature 

steady creep, is complicated. The effective viscosity depends not only on the above- 
enumerated parameters, but also the partial oxygen pressure in the silicates, which is 
unknown. Therefore the treatment of this question has been simplified. 

In silicate mantles, the fundamental role belongs to the two mechanisms of creep - 

diffusional and dislocational - and correspondingly two coefficients of viscosity ~9i and 
r/2 are introduced, from which a general expression is constructed for the effective vis- 
cosity of the mantle: 

771 �9 7?2 
r~eff = (54) 

r h + 7? 2 �9 

Under stresses of z > 1 bar, 72 < rh prevails (Zharkov, 1983). Employing the exper- 
imental data for peridotite (cf. Schubert, 1979; Murrell, 1976; Zharkov, 1983), and 
assuming a peridotite mantle, we can write for 77 = ~Teg = 72 the simplified formula 
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n = l a x  10 3 [ l b a r ~ [ .  e r k3.a65] poise, 
] \6.4 • 10 bar 

T >  1373 K, (55) 

where T is the absolute temperature, 9-, the value of the tangential stresses in bars; and/~ 
is the modulus of shear in bars. The reference level was chosen to be the depth 
l = 100kin, where p = 32kbar and the enthalpy at this depth H * =  126kcalmole -1 + 
pV*= 136.2kcalmole -1, where, in conformity with Ross et al. (1978) and Schubert 
(1979), it was assumed that V* = 13 .4 cmB mole -1, whereas L from Equation (53) is 

equal to 2.5. Equation (55) allows us to evaluate the distribution of the effective viscosity 
in the mantle of Venus, after assigning the temperature distribution and selecting a specific 
value of r. Performing numerical experiments for the temperatures shown in Figure 5 
(creates 3 and 5), and considering that in zones of high viscosity in the lower mantle 
stresses of 10-20bar may be concentrated, while in the upper mantle the stresses are 
small (of the order of several bars). Taking into account the reduction in L in Equation 
(53) (if we compare H from Equation (53) with H resulting from Equation (51) then over 
the extent of the mantle L = L(p) should diminish from 2.5 to 2.1), a rough estimate can 
be made for the viscosity of the lower mantle, amounting to 

r /~  (1023-102s) poise, 
r ~ (10-20) bar, 

(56) 
l >  750 kin, 

and, correspondingly, the viscosity of the upper mantle 

r~(lO2~ r ~  lbar,  ( 1 0 0 - 2 0 0 ) k m < l < 7 5 0 k m .  (57) 

In what follows we shall discuss the matter of the boundary between the upper mantle 
and the lithosphere, and the thickness of the Cytherean lithosphere. Using Equations 
(56), (57) and (50), we obtain estimates for the time of non-steady creep in the lower and 

upper mantle, given by 

2 .5x(10T-109)yr  l > 7 5 0 k m ,  
t~  ~ (58) 

2.5 x(10s-106)yr  ( 100 -20 0 )k m <I  < 750km. 

A rheological model of the lithosphere can also be constructed after Murrell (1976) or 
Zharkov (t983). For 70km of basalt crust, the rheological parameters for dolerite are 

assumed, while the mantle is modeled with a peridotite composition. Then, after assigning 
the level of stresses in the lithosphere and the temperature distribution, it is easy to cal- 
culate the time of non-steady creep tss and the effective viscosity, as functions of the 
depth. 

4. Convection 

A survey on convection in the mantles of the planets of the Earth group has been written 
by Schubert (1979). Schubert believes that convection transpires across the entire mantle 
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in the planets of  the Earth group. The present author maintains a different theory, in 
accordance with which convection takes place independently in the upper and lower 

mantles of the Earth (and Venus) and both convective systems interact on their bound- 
ary (Zharkov, 1983). Similar views are shared by MacKenzie, Richter, and Turcott. 

We shall suppose that in Venus - as in the Earth - gravitational differentiation has long 

been accomplished, and does not contribute to the formation of the heat flux of the 

planet. In accordance with O'Nions et  al. (1979) and Wasserburg and De Paolo (1979), an 

exchange of material between the upper  and lower mantle of  Earth can be disregarded, 

but the convection takes place independently in the upper and lower mantles (Zharkov, 

1983). We shall suppose the same for Venus. The main sources of  heat are the radioactive 
impurities in the crust and mantle, the original heat, and the heat flux from the core to 

the mantle, which has been estimated in the section on 'thermodynamics of the core', 
Qe = 2.86 x 1019ergs -1 = 0.9 x 1027ergyr-k 

We shall assume that the mean rate of radiogenic evolution of heat in the non- 
differentiated silicate mantle of Venus is the same as in the non-differentiated mantle of 

the Earth, 4.8 x 10-6/~Wkg -1 (O'Nions et  al., 1979) (in fact, Venus may be depleted in 

potassium with respect to the Earth). The mass of the mantle of Venus, 3.4 x 1027g, is 

roughly divided between the upper mantle + crust and the lower mantle, as 1.08 x 1027 

and 2.33 x 1027g, respectively. Since the lower and upper mantle do not exchange 

material, the radiogenic evolution of heat in the lower mantle coincides with the original 

value of 4.8 x 10-6/IW kg -I, while the upper mantle is depleted in radioactivity, due to the 

concentration of the latter in the crust (cf. Section 3.3). We shall ignore the radioactivity 

of  the upper mantle of Venus and consider that the convection there is caused by the 

heat flux supplied from the lower mantle at the bottom. The radiogenic evolution of heat 

inside Venus as a whole, and individually in the upper mantle + crust and in the lower 
mantle is shown in Figure 10. 

Let us consider the convection in the upper mantle of Venus, produced by a heat flux 

supplied from below F, the size of which is generally unknown. According to the esti- 
mations in Section 3.3, it is difficult to conduct a large heat flux across the lithosphere. 

In the estimates according to Equation (38), for the lower limit we shall assume 

Ft  ~ 20ergs - lcm -2, and for the upper limit, F h ~ 40ergs - l cm -2. The complete heat 
flux will be obtained by adding to F the evolution of heat in the crust, equalling 

10 erg s -1 cm -2, according to Figure 10. We shall model the upper mantle by a flat layer 
with a thickness d~ = 650 km and constant physical parameters, i.e., with 

g ~ 1 0 3 c m s  -2, a ~ 3 x l 0 - S K  -1, Cp ~ 1.2xl0Vergg-XK -1, 

Pl ~ 3.7g cm-3, X = 10-2cm2s -1, v -~ 3 x 102~ -t,  (59) 

F ~ (20-40) erg s -1 cm -2, 

where the standard designations g and v have been used - the coefficients of the thermal 
diffusivity and of the kinematic viscosity, respectively. Then, the flux Rayleigh number is 
given by 
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Fig. 10. Total radiogenic evolution of heat in the entirety of Venus. Shown separately axe the 
evolution of heat from the decay of  K, Th, U, and the sum of  U + Th + K, the evolution of heat in 

the lower mantle 0.68 (U + Th + K) and in the upper mantle + crust 0.32 (U + Th + K). 

agFd~ 
R F - (60) pCp• 

which is equal to 

RF(I-2)  X 8 x 106. (61) 

The critical value is RFc ~ 103, and thus estimate (61) indicates that the convection in 
the upper mantle of Venus is strongly developed and, at the boundaries of this mantle 

there should be formed thermal boundary layers with a thickness of 81, in each of which 
the temperature drop AT1~2 takes place, where AT1 is the super-adiabatic temperature 
difference in the upper mantle. The Prandtl number, Pr = u~ X ~ 3 x 1022, is practically 
equal to infinity and therefore all the convection parameters, averaged over the hori- 
zontal, can be expressed by the number RF (Zharkov, 1983) as 

/ ~ \ 3 / 4 [  \1/4 
dl 1/4 a13/41 r I |vX~ , (62) dl 61 ~ 2~-gamR~ , AT1 Nu = 26~' \PCpx] \ozg] 

Fq~a2Rl~=x/di ,  a l ~ 0 . 2 ,  a 2 ~ 0 . 1 ,  

where ul is the characteristic speed - the speed of the boundary layer or the speed of the 
hot ascending or cold descending fluxes. The Nusselt numberNu characterizes the effec- 
tiveness of the convective export of heat. Substituting in Equation (62) the values of the 
parameters (59) and (60), we find that 
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N u  ~ 16, 6~ ~ (20.5-17,2)km,  2xT~ ~ (184-309)K,  

a~ ~ (1.4-2) cm yr -1. (63) 

The convective cells in the upper mantle of  Venus are approximately isometric, and 

their horizontal dimension is of  the order of  the depth of  the layer dl. The characteristic 

time for the establishment o f  a steady convection is 7-K1 ~ d~/rr2X ~ 1.3 x 109yr, which is 

not generally large; however, it is substantially larger than the time of  export of  heat 

from the upper mantle, which is r l  ~ d l / f q  ~ 4 x 10Vyr. The time of  thermal relaxation 

of  the lithosphere is also calculated as 7"K1:~'1 ~" l~/rr2X ~ 3 x 107yr, where we have set 

12 = 100 kin. Consequently, the time of  thermal relaxation o f  the crust and upper mantle 

o f  Venus rK, BM <~ 108 yr is small, as the intensity of  radiogenic evolution of  heat is virtu- 

ally unchanged in such an interval of  time. 

With a flux o f F  ~ (20-40)  erg s -1 cm -2, supplied from the lower mantle, weak thermal 

boundary layers are formed on the boundaries of  the upper mantle, of  a thickness of  

about 20 km and temperature drops of  ATa/2 ~ (100-150)K.  Finally, the convection in 

the upper mantle increases its effective thermal conduction by 16 times, and N u  ~ 16. 

The independence of  convection in the lower mantle from the convection in the upper 

mantle was apparently occasioned during its formation by a jump in the viscosity of  two 

orders of  magnitude at the depth of  the second phase transition (l ~ 750kin). As a result 

of  the separation of  the crust from the upper mantle, this boundary is also a weak 

chemical boundary. For the lower mantle, we shall assume the values o f  tlle parameters 

g ~ 1 0 3 c m s  -2, a ~ l . 5 x l 0 - S K  -1, p ~ 4 . 9 g c m  -3, 

q2 ~ 2.35 x 10-Tergcm-3s -1, d2 ~ 2.08 x 108cm 
(64) 

Cp ~ 1.2 x 107ergg-lK-1, v ~ (1-10) x 1023cm2s -1, 

X ~ 3  x 10-2cm2s - ' ,  

where q2 is the heat production in the lower mantle. 

The heat flux from the core into the mantle is Qe = 2.86 x 1013ergs-lcm -2 or 

Fe_, n = 22 erg s -1 cm -2. The production of  heat in the lower mantle due to radioactivity, 

QHM ~ q2 VHM ~ 11.3 X 1019 erg s -1, is four times as large as the heat conducted in the 

mantle from the core. If  we further consider that the thermal inertia of  the lower mantle 

is large, rHM ~ 109y, then - in accordance with Figure 10 - the effective production of  

heat here may be even larger. Thus the main contribution of  heat to the lower mantle 

comes from internal heating. 

The heat flux from the core into the mantle creates a thermal boundary layer at the 

bot tom of the mantle (Zharkov, 1983). Let us assume that this layer is located at the limt 

of  convective stability, when the critical value of  the flux Rayleigh number is attained 
RFr ~ 103. 

This permits us to estimate the thickness of  the layer 33 and the temperature incre- 

ment in it AT3 : namely, 
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2 \1/4 
olJ41PCpx~vi ~-1,~ 53 \ / 630 kin, 

Fc-m53 (65) 
2xT3 790 K, pC.x 

These estimates should obviously be regarded as upper limits of 53 and AT3. Reducing 
these by a factor 2, we shall consider that 53 ~ (300-630)km and AT3 ~ (400-790)K. 

In the case of convection with internal heating at large Rayleigh numbers, a thin 
boundary layer forms near the upper boundary of the convective cell, which is converted 
into a narrow descending flux, adjacent to the right vertical boundary of the cell (in the 
case of a cell with clockwise motion). In this case, the horizontal speed of the boundary 

layer u=, the vertical speed of the descending flux Uz, Uz ~ u=, the approximately equal 
widths of the layers 52, and the Nusselt number N u  are expressed in terms of the non- 

dimensional number R o (Zharkov, 1983) 

a g q 2 d  5 
R q  pCpx2v 2.6 x l0 s, 

ux ~'0.8R~/S•  u~ "" a.6R~/Sx/d2, 5z = 1.5R~I/Sd2, (66) 

N u  ~. 0 .8R  o . 

Consequently, 

U x ~ 0 . 5 3 c m y  -1, u z ~ l c m y  -1, 5 2 ~ 2 6 0 k m ,  N u ~ 9 . 6 .  (67) 

Using the Nusselt number N u ,  we shall determine the temperature increment 2xT2 in the 
boundary layer at the upper boundary as 

AT2  ~ q2d~ /pCpxNu  ~ 600 K. (68) 

In the convective cells of the lower mantle, there are two characteristic speeds. One is 
u ~ u= ~ u=, the speed of the boundary layer and descending flux; the second is U, the 
scale of the speed in the remainder of the cell. 

The vertical component of the latter speed Uz can be determined by means of the law 

of conservation of mass U=d2 ~ Uz52; the quantity of matter flowing into the boundary 
layer is equal to the drain in the descending flux - i.e. to 

52 260 ~ 0.125 cmy-k  (69) 
U~ ~ u~ ~ ~ 1 x 2080 

The characteristic time is rI4M ~ dz /Uz ~ 1.7 x 109y, the time of transport of material 
from the bottom of the lower mantle to its boundary layer at depths of 800-1000 km. 

This is the time of thermal inertia of the lower mantle. The physical meaning of 
r~M consists in the fact that the heat exported to the boundary layer during the modem 
epoch was formed at the bottom of the mantle rHM years ago, when the rate of radio- 
genic evolution of heat was significantly larger. According to Figure 10, the evolution of 
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heat in the lower mantle of  about (1.5-1.7) x l09 yr ago was ~ 1.6 x 1020 erg s -1. Adding 

to this the flux from the core into the mantle, we find 1.9 x 102~ dividing this by 

the area of  the surface of  Venus, we find F ~ 40 erg s -1 cm -2. 

Let us again consider the question o f  the thickness of  the lithosphere of  Venus, choos- 

ing a temperature at its base which is capable o f  sustaining a flux o f f  ~ 40 erg s -1 cm -2. 

Let the thickness of  the lithosphere coincide with the thickness of  the crust l = ll = 

70 kin. Then, using Equation (37), it is easy to find that the temperature at the base of  the 

crust is 2060 ~ The absurdity o f  this result indicates that a planet with a relief and a 

level o f  stresses in its interior of  ~ lObar cannot possess a temperature o f ~  2060 ~ at a 

depth o f  70 km. The solution of  this dilemma is the fact that only a portion of  the heat 

evolved in the lower mantle is transmitted to the upper mantle, while another portion is 

used to heat up the lower mantle itself. Let half the heat of  the lower mantle be trans- 

ferred to the upper, the other half being used for its heating. When F = 20 erg s -1 cm -e, 

we obtain a temperature of  1360 ~ at the base of  the crust, which is rather more reason- 

able. The other portion of  the flux evolves 1.16 x 10aTerg in 4 x 109yr. Dividing this by 

the heat capacity of  the lower mantle, 2.8 x 1034ergK -~, we determine that it should be 

heated to 420 K, which is fully acceptable. 

Let us briefly formulate the conclusions from the above estimates. The heat flux from 

the interior o f  the planet can hardly exceed the value of about 30ergs-~cm -2. In the 

convective, adiabatic mantle, the super-adiabatic temperature increment is formed in the 

thermal boundary layers in the upper mantle AT1 < 200K from Equation (63); in the 

lower mantle AT2 ~< 600K from Equation (68) and ATa ~< (400-800)K from Equation 

(65). The adiabatic temperatures at the mantle/core boundary are ~ 2900 K (cf. Figure 5). 

Consequently, it is reasonable to consider that the actual temperatures at the mantle/core 

boundary lie within limits of  "~ (3500-4500)K.  The thermal boundary layers of  the 

mantle are zones o f  reheating and, consequently, should be zones o f  reduced quality Qu" 
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