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Abstract. The application of the Lock-Crisp-West (LCW) theorem to positron-annihilation 
angular-correlation data for copper and germanium as well as to Compton profile data for 
germanium is presented and discussed. Deviations from the LCW prediction are observed 
for copper and for germanium, attributable to the positron's presence. In germanium the 
Compton results indicate near agreement with the LCW expectation; the sensitivity of 
the theorem is analyzed. 

It has been known for a long time [1] that the angular 
correlation of annihilation radiation measures the 
real momentum distribution ~(p) of electrons in a 
crystal (as modulated by the positron momentum 
distribution), and not the electronic distribution in k 
space. Thus one can interpret long-slit angular distri- 
butions in a metal as cross sectional cuts of the Fermi 
surface only in an approximation that neglects the 
positron contribution as well as the higher momentum 
components (HMC) of the electron wavefunctions [2]. 
Assumptions must also be made about the shape of 
the contribution due to electrons in filled shells. The 
same problems of HMC and of core subtraction 
arise in the interpretation of Compton profile 
measurements [3], although positron effects are of 
course absent. 
In a recent paper [4] Lock et al. have derived an 
important mathematical connection, the LCW theo- 
rem, that allows a simple transformation of the 
momentum distribution obtained either by Compton 
profile or positron angular correlation measurements 
into the electronic distribution in k space. More 
specifically, if Nuk(pz ) represents the momentum 
distribution along the direction normal to the (ijk) 
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planes of the reciprocal lattice (p~ = mcO, where 0 
is the angle between the long-slit gamma counters 
in the positron case) the LCW theorem states that, 
in a certain approximation, the function 

fijk(Pz ) : Lij k ~ Nijk(Pz q- nLijk) (n in teger )  (1) 
n ~  - -o3  

should reproduce the functional variation of the 
cross sectional areas of the actual Fermi surface in 
a repeated zone scheme. The contribution to Fuk(p~) 
from full zones is a constant independent of p=. 
In (1) Luk is the spacing of the (ijk) planes; for 
convenience we have modified the LCW definition 
by multiplication with L u g -  in our expression the 
average, 

L / 2  

(Fijk) = 1/Lijk S Fijk(pz)dPz, 
-L/2 

is equal to the area of NUk(p~), independent of the 
orientation [ijk]. The LCW theorem holds in the 
following approximation: a) The electron wave- 
functions and the annihilation probability must be 
computed in the independent particle approximation 
(IPM); b) the sum ZalCa(k)) 2, where the Ca(k) are 
the Fourier coefficients of the electron-positron 
wavefunction product, must be k-independent, as 
discussed in [4] (a single plane-wave positron wave- 
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Fig. 1. The projection of the Fermi surface of copper onto p~p~ 
plane for p= along the [100] and [110] direction, in the repeated 
zone scheme, and the sketch of the respective F~ik(p~). The region 
of the reduced zone scheme contributing to the LCW construction 
is indicated. Note that only where the surfaces centered in different 
zones do not overlap is the F~jk(p= ) proportional to a single cross 
section of the reduced-zone Fermi surface. (The dashed lines in 
FUk show the region of overlap) 

function is a sufficient condition). In this paper we 
study the applicability of the theorem to positron 
data for various orientations in copper and to 
Compton and positron measurements in germa- 
nium. 
In Fig. 1 we have indicated qualitatively the parts of 
the Fermi surface that can be obtained from the FUk 
function, if the LCW theorem holds true in copper. 
It is to be noted that even for the best orientation 
(i.e. [110]), when the stacking along p: is least dense, 
only part of the actual Fermi surface can be obtained 
unambiguously. In other directions the oscillations 
of F~ k decrease and smaller parts of the Fermi surface 
are left unsuperimposed. For example, Fl l  1 for 
copper exhibits less than 1% oscillations and is 
nowhere directly related to a single Fermi surface 
cut. 
In Fig. 2 we have compared the F~j k curves for the 
three principal directions in copper obtained by the 
LCW prescription from the experimental Nijk(pz ) 
with those obtained using the cross sectional area 
variation of the parametrized copper Fermi surface 
of Halse [5], superimposed on a constant correspond- 
ing to the closed shells. In order to compare FUk 
amplitudes we have assumed the same 16 % conduc- 
tion electron contribution used by LCW. The 
experimental points for N~j k were taken in our 
laboratory by Thompson [6] (the curves along [110] 
and [100], with 0.5 mrad resolution) and Cushner [7] 
([111] direction, with 0.3 mrad resolution). We have 
not folded the experimental curves about p~ = 0, in 
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Fig. 2. The function Filk(p=) for the [ll0J, [1001, and [ l i l ]  direc- 
tions constructed by the LCW prescription from positron angular 
correlation curves (data points), and from the cross sections of 
the copper Fermi surface with (dashed line) and without (solid 
lines) many-body correction. Note the expanded scale of the [111] 
plot compared to the other two curves. Typical statistical un- 
certainties are smaller that the size of the data points except in 
the [1 l l] plot where they are indicated by error bars 

order to exhibit the symmetry of the data. We note 
that although good agreement is obtained between 
experiment and theory along the [110] direction, in 
agreement with the results of LCW, the experimental 
F~ oo exhibits a much larger oscillation than predicted 
by theory. We can obtain better agreement in the 
[100] direction if we use 25% for the conduction 
electron contribution, a percentage more in accord 
with previous estimates [7, 8], but only at the expense 
of worsening the I110] fit. This discrepancy between 
experiment and theory can be due either to a break- 
down of the LCW theorem because of a non-plane 
wave positron wavefunction or due to positron- 
electron correlation effects (or both). (It is to be noted 
that the LCW prediction of a constant, orientation 
independent .F(p=) for the filled bands does not 
require isotropic momentum distributions.) In order 
to check the importance of the latter effect, we have 
also plotted in Fig. 2 the FUk curves based on a 
theoretical Nijk(p=), worked out by Cushner [7], 
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that includes the anisotropy of the Fermi surface 
[-parameterization by Roaf [9] in this case, but the 
Roaf and the Halse curves yield indistinguishable 
Fijk(p= ) -- s], multiplied by the momentum-dependent 
enhancement factor due to positron-electron correla- 
tion predicted by Kahana [10], using the appropriate 
r s for copper. Again a 16 % conduction band contribu- 
tion has been assumed. It is noted that these curves 
improve somewhat the fit between the [110] and 
[100] curves, but not enough to resolve the major 
discrepancy noted above. Correlation effects based 
on a more realistic two-band model, rather than on 
the empty lattice as in Kahana's case, have been 
studied by Fujiwara et al. [11], but the enhancement 
effect at the Fermi surface, relative to that at the 
center of the zone, is found to be of the same mag- 
nitude. 
The fit of the copper FUk curves was, of course, based 
on the use of a constant for the filled bands, as 
predicted by the LCW theorem. It is therefore 
important to study experimentally the extent to 
which an insulator does yield a constant for Fuk. 
Most insulators, however, give rise to a Gaussian- 
like, bell-shaped NUk curve with very small aniso- 
tropies. We show in an appendix that the Fqk curves 
formed from Gaussian distributions - using arbitrary 
but physically reasonable values of the shift dis- 
tance L - display very small oscillations, indepen- 
dently of the LCW theorem. This implies that data 
of extremely high precision will be required to de- 
monstrate the vanishing of oscillations at a particular 
value of L (Lijk) that the LCW theorem predicts. 
On the other hand the LCW theorem leads also to 
a constant F(p=) in the case of semiconductors, 
where N(p=) is non-Gaussian and highly anisotropic. 
We have thus decided to test the applicability of the 
theorem to germanium, where both Compton [12] 
and positron data [13, 14] are available. 
In Fig. 3 we have plotted F~ lo(P=) generated using the 
Compton data of Reed and Eisenberger (from which 
a calculated isotropic core momentum distribution 
has been subtracted), as well as that obtained from 
positron data taken recently in our laboratory [14]. 
As in the case of copper, the [110] direction has the 
largest shift distance and thus provides the most 
sensitive test. We notice that the positron curve 
(which includes a small core electron contribution) 
exhibits a nonconstant F(p:) with a ~ 2 % oscillation 
amplitude, as compared to the Compton curve 
which has a maximum ~0.8% amplitude. The 
Compton curve was obtained from a recent re- 
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Fig. 3. Fi~0(p= ) for germanium, constructed from positron (solid 
points) and Compton (open circles) momentum distributions 

evaluation by Reed and Eisenberger of their data 
published in [12]. The original data contains some 
unphysical oscillations in N(pz), due to an unfolding 
technique, that can substantially alter the shape of 
F(p~). We find that the positron result does not follow 
the LCW theorem, which would require a constant 
F(p~) for germanium. The nonconstancy of F(pz) 
obtained from the Compton experiment is smaller; 
it either reflects the effect of departures from the 
IPM due to electron-electron correlations, or it could 
be due to a small remaining uncertainty in the 
deconvolution problem. [Unlike the positron angular 
correlation, where the effective angular resolution 
is small (0.5 mrad), the Compton data, because of a 
much wider inherent resolution, requires deconvolu- 
tion.] In order to test the sensitivity of the LCW 
theorem for the nearly constant F(p=) Compton 
data, we have also computed F(p~) while varying L 
about its actual value as given by the lattice param- 
eter of germanium. IfF(p~) is LCW theorem governed, 
the oscillation amplitude should have a minimum 
at the physical L. A purely Gaussian-like distribution 
should have of course a continuously decreasing 
amplitude as L ~ 0 .  In Fig. 4 we plot 

[Fmax(Pz) - fmin(Pz)]/[.Fmax(Pz) + Fnlin(Pz)] 

for the Compton data as a function of L and find 
indeed a clear minimum close to the physical value 
given by the lattice constant. We conclude that in 
spite of the observed small deviation from a constant 
value, the F(p~) for the Compton data indicates the 
near applicability of the LCW theorem to Compton 
momentum distributions. It would be important 
to obtain high precision Compton data for a metal 
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Fig. 4. The amplitude of oscillations in Fz lo(P~) from the Compton 
data as a function of the shift distance Lifo, see (t). The arrow 
shows the physical L 110 obtained from the lattice parameter of 
germanium 

Appendix 

F(p=) is an even periodic function and may be expanded in the 
Fourier cosine series: 

F(pz)= ao/2 + ~ a, cos(2n~pz/L). 
n = l  

It is easily shown from the definition (1) ofF(p=), that 

a, = 2R(2mz/L), 

where R(x) is the Fourier integral transform of N(pz). If we assume 
the normalization 

~ N(p=)dp==l, 

then ( F )  = %/2 = 1. If N is the Gaussian function 

N (p~) = (~o V ~)- ~ exp [-- (p/po)2], 

we obtain a , = 2 e x p  [-(n~po/L)Z]. Suppose we now form F(p=) 
using the shift distance L = po (i.e. ~ 1.2 x HWHM); this leads to 
az=2exp(-~z2)~-10 -4, and to much smaller values for the 
higher Fourier coefficients. Any function having a nearly Gaussian 
shape will have similarly small coefficients. 

like copper in order to test the applicability of the 
LCW theorem to metal systems, as was done for 
positrons. 
In conclusion, the LCW theorem provides one, in 
the case of the Compton profile, with a powerful 
tool to test the validity of the IPM, to obtain the 
shape of at least parts of the Fermi surface from 
momentum distributions and, in the case of the 
angular correlation of annihilation radiation, to 
check the importance and influence of the positron 
wavefunction. 
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