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A Satisfactory Treatment of Equality and Operator Constraints
in the Dubovitskii-Milyutin Optimization Formalism?

H. Haigin®

Abstract. The formalism of Dubovitskii and Milyutin is very attractive
but, up to now, it could not be applied to optimization problems involving
equality and operator constraints. In the present paper, the formalism of
Dubovitskii and Milyutin is extended to this more general situation.
Theorem 2.1, the main result of the paper, is applied to the standard mathe-
matical programming problem in normed linear space and an abstract
maximum principle is obtained.

1. Introduction

During the last few years, many papers have been devoted to obtaining
necessary conditions in mathematical programming which could be applied
to optimal control problems (Refs. 1-8). In parallel with these papers, one
must mention the papers of Gamkrelidze (Ref. 9) and Dubovitskii and
Milyutin (Ref. 10). The relation between Gamkrelidze’s approach and the
mathematical programming approach is relatively clear and has been already
commented on by Neustadt (Ref. 3) and Halkin (Ref. 5). The formalism of
Dubovitskii and Milyutin is very attractive but, in its present stage of develop-
ment, gives results which are weaker than those obtained in the papers
mentioned above. In this paper, we extend the formalism of Dubovitskii and
Milyutin to include these stronger results.

For the sake of simplicity, the results of the present paper are given
within the framework of a normed linear space. The reader should be aware
that these results can be extended to an arbitrary linear topological space or
even a linear quasitopological space (see Lobry, Ref. 11).
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2. Problem Statement and Theorem

In many optimization problems, one may express the optimality of a
certain element by stating that a certain finite family {S; : € I} of subsets of
a normed linear space X has an empty intersection,® i.e.,

OS{,: . (1)

The two essential parts of the formalism of Dubovitskii and Milyutin are
these:

(a) To eachset.S;, associate a convex set £2; which is such an appropriate
approximation of .S; that it is possible to prove that relation (1) implies

N2 = 2. @)
el
(b) From Relation (2), prove that the family {£2, : ¢ € I} is separated in
the following sense: there exists a set of continuous linear functionals
{w, : i € I'} over the normed linear space X such that () ¥;e; w; = 0, (8) w; # 0
for some 7 € I, and (y) wy(x) = 0 whenever i and x € 2, .

In this paper, we shall consider situations in which we can prove that
relation (1) implies that the family {£2,:7 e} is separated, but* for which
we could not prove that relation (1) implies relation (2).

Before stating Theorem 2.1, we shall give a few definitions.

Definition 2.1 (Refs. 10-11). A subset £ of a normed linear space X
is an interior convex approximation to a subset S of X if (i) £ is open, (ii)
Q is convex, (iii) 0 € £, where 2 is the closure of 2, and (iv) for all ¥e £,
there exists an ¢ > 0 such that | x — ¥ | < e and 5 € (0, €) imply nx € S.

Definition 2.2 (Ref. 3). A subset £ of a normed linear space X is a tangent
approximation to a subset S of X if there exists a p > 0, a continuous real-
valued function ¢ defined® on U = {x: x € X, | » | < p}, and a nonzero con-

3 The empty set will de denoted by &.

¢ In the particular case treated by Dubovitskii and Milyutin, all but at most one of the sets 2;
are open, and in that case one can prove (see Lemma 4.2) that relation (2) holds if, and only if,
the family {£,: i € I} is separated. In this paper, we consider situations for which several of the
sets £2; could fail to be open and, hence, for which we cannot say that relation (2) holds if the
family {2 i€} is separated,

5If x is an element of the normed linear space X, then | x | will denote the norm of x.
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tinuous linear function % defined on X such that (i) {x: x € X, h(x) = 0} = &,
(1) {x: x € U, ¢(x) = 0} C S, and (iii) for all ¥ e U, we have
lim (1fe)lp(ex) — Mex)] = 0.

Definition 2.3 (Refs. 2, 3,6). If % is a positive integer, we shall say that
a subset {2 of a normed linear space X is a k-convex approximation to a subset
S of X if (i) 2 is convex, (i) 0 € 2, and (iit) for all sets {x; ,..., x;} with [ < k&
elements in general position® in £2 and for all real numbers o > 0, there exist a
continuous function { from? co{xy,.., x;} into S and a real o > 1o
such that | al(x) — x | < o whenever x € co{x, ,..., x;}.

Theorem 2.1, If [ = {—p,.,m + 1} and if {S;zicl} and {Q;: i e}
are families of subsets of a normed linear space X such that (i) (;o; S; = @,
(ii) for 7 = —upu,..., 0, the set £, is an interior convex approximation to the
set S; , (iii) for ¢ = 1,..., m, the set £, is a tangent approximation to the set S;,
and (iv) £,,., is an (m + 1)-convex approximation to the set .S, , then the
family {€;: i € I} is separated.

Dubovitskii and Milyutin have considered only the case m = 0, and in
this case the proof of Theorem 2.1 is very easy. In order to apply Theorem 2.1
with m = 0 to the standard optimal control problem, Dubovitskii and Milyutin
have thus been obliged (a) to lump equality constraints x € S;, ¢ = 1,..., m,
and operator constraint x € .S,,,, into a single constraint ¥ € Ny, ue1 S;
and (b) to prove that, if w* is a continuous linear functional such that
o*(x) >0 for all xe (V.. w2, then 0* = w; + - + w,,y, where
@] yurey Wyyy are continuous linear functionals such that wy(x) > 0 whenever
x € ;. This second step is justified by Dubovitskii and Milyutin (Ref. 10,
p. 41) under some further assumptions which are not required in Theorem 2.1
given here. Moreover, even under these assumptions, this second step requires
an (algebraic) topological argument which is not given in Ref. 10, but for
which the reader is referred to the classical work of Pontryagin ez al.

3. Properties of Convex Approximations

In this section, we shall give three lemmas concerning intersection,
mapping, and topological properties of convex approximations.

8 The set {%; ,..., ¥;} is in general position if xs — x; ,..., x; — %y are linearly independent,
7 The convex hull of {x; ,..., a;} is denoted by co{wy ,..., x:}.
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Lemma 3.1, If X is a normed linear space, if 2, C X is an interior
convex approximation to a set S; C X, if £, C X is a k-convex approximation
to a set S, C X, and if £, N 2, # @, then 2, N £, is a k-convex approxima-
tion to the set ;N S, .

Proof. Let! <k andlet {& ..., x} C (2, N §,) be in general position,
Since {2, is an interior convex approximation to the set 5; and since the set
cofxy 4., %} is compact, we know that there exists an € > 0 such that
lx — & | < e for some &€ cof{xy,..., x;} and ne (0, €) imply gxe.S;. Let
o >0 and let o* = min{e, €}. Since £, is a k-convex approximation to the
set S, , we know that there exist a function { from cofx, ,..., x;} into .S, and
a real o > 1/o* such that | of(x) — x| < o™ whenever x € cofxy,..., %}
Since o* < ¢, the function { maps co{#; ,..., ¥;} into .Sy, and Lemma 3.1 is
proved.

Lemma 3.2, If X and Y are normed linear spaces, if QC X is a
k-convex approximation to a set S C X, if p > 0, if ¢ is a continuous mapping
from U = {m x€ X, | x| < p}into Y, and if 4 is a continuous linear mapping
from X into ¥ such that, for all £ U, we have
lim ol plex) — hlex)|je = 0,

€0,

then A(£2) is a k-convex approximation to ¢(S N U).

Proof. Let {y;,...,v;} with / <k be in general position in #(£2), and
let ¢ > 0. Let %, ,..., x; € 2 such that y; = A(x;) for i = 1,..., . The elements
%y ,..., %, are in general position. Since the set co{xy ,..., x;} is compact, there
is an n > 0 such that | ex | << p and

| plex) — h(ex)lfe < of4,

whenever €€ (0,7) and | x — ¥ | <% for some ¥ € co{x, ,..., ;3. For every
P € cof{ Yy youes Y1} let ¥(y) = (yl( P)seens ¥ ¥)) be the barycentric coordinates
of y with respect to { Y1 seey Vih th at is, y() is the unique element of R!such
that y{(y) =0 for i = S yly) =1 and y = Ti1y(y)y;. Let
g(y) = Zz_l v ¥) ;. The functxon g is an affine mapping from co{yy ,..., ¥}
into co{xy ..., %} such that 2(g(y)) =y for every yeco{y;,.,¥;} and
glh(x)) = x for every x € cofw ,..,x;}. Let L < 4o be such that
I B(w)] <L | x| for all x e X. Let o* > 0 be such that

(1 +L)o* <ofd, o*<n (*P<pld, Ao*max{|z;|:i=1,.1} <p.
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We know that there is an « > 1/6* and a continuous function {* from
co{xy ,..., x;} into .S such that | al*(x) — & | < o whenever x € cofx; ,..., ¥}
We now define a mapping { from co{y,,...,y;} into Y by the relation
Uy) = o(L*(g(»))). We remark immediately that o > 1/o* = 1/o, that { is
continuous (since { is the composition of continuous functions), and that
{(y) e (S N U) whenever y € co{y, ,..., ¥;}, since

PO < L al¥(w) —x o+ | & ffa < (0% + p/4 < pf2,

whenever x € co{«y ,..., ;}. We conclude the proof of Lemma 3.2 by showing
that | al(y) —y| < o whenever yeco{y,,..,y;} or, equivalently, that
[ ap({*(x)) — A(x)] < o whenever x € co{w, ,..., x;}. Indeed,

| ap(£¥()) — h)] < | h(TH(x)) — h(w) + | ag(LH)) — ch(CHE)| <L | al¥(w) — |
1 (U)oL @) ~ M) L) | (1) <Lo* + 04 < /4 + of4 <o

This concludes the proof of Lemma 3.2.

Lemma 3.3. If 2 CR*is a (k + 1)-convex approximation to a subset
Sof REandif Qeint 2, then 0 e S.

Proof. If 0cint 2, then there is an ¢ > 0 and a set {y; ,..., Y.} C 2
in general position such that | y| < e implies y € co{y; ,..., Y41} Since £2
is a (k 4 1)-convex approximation to the set S, then there exist a continuous
function { from co{y, ..., ¥4} into S and an « > 2/e such that

sup, |od(y) —yl<ef2.
+1

YECO{Yy. .. a ¥y

We define a continuous function % from co{y; ,..., ¥4} into itself by the
relation h(y) = y — «f(y). Let y* be a fixed point of z (Brouwer theorem);
then, «f(y*) = 0, that is, {(y*) = 0, which implies 0 € S. This concludes
the proof of Lemma 3.3.

4. Some Consequences of the Hahn-Banach Theorem

In this section, we shall state and prove a few results related to the
Hahn—Banach theorem.

Hahn-Banach Theorem. If £, and O, are disjoint, nonempty convex
subsets of a normed linear space X and if £, is open, then there exists
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an affine, continuous nonconstant functional w defined over X such that
w(x) >0 for all x € Q; and w(x) <O forallxe 2,

Lemma 4.1, If % is a concave function on a linear space X, #(0) = 0,
Q = {x: x € X, h(x) > 0} is nonempty, and if w is a linear function on X such
that w(x) > 0 for all x € 2, then, for some A > 0, we have A(x) < w(x) for
all x € X. Moreover, if % is linear, we have AMi(x) = w(x) for all x € X.

Proof. Let S = {(w(x), A(x) — f) : x € X, ¢t > 0}. The set .S is convex
and 0 ¢ int .S; hence, there exist constants « and B, not both zero, such that
aw(x) + B(A(x) — ) >0 for all xe X and all £ > 0. This implies g < 0
and aw(x) + BA(x) > 0 for all x e X. There is an x* € X such that A(x*)
and w({x*) > 0, that is, aw(x™) > | B | A(x*) > 0, which implies o« > 0. If
we let A = —B/a > 0, we have M(x) < w(x) for all x € X. This concludes
the proof of Lemma 4.1.

Lemma 4.28 If Q,,7=0,1,.., &, are convex sets in a normed linear
space X such that (i) 0 Q; for i = 0, 1,..., &, (ii) 2, is open for i = 1,..,, &,
then the two following statements are equivalent: («) Vim0, 4 = & and
(B) the family {£2; : i = 0,..., k} is separated.

Proof. We begin by proving the easy implication (B8) = («). Let
Wy 5e.ry 0y, be the continuous linear functionals such that (i) wy + -+ + w; = 0,
(i) not all w; are zero, and (iii) 7 € {0,..., &} and x € Q; imply wy(x) > 0.
From (i) and (ii), there are at least two indices, 7 and j, 7 # j, in {0,..., &}
such that w; % 0 and w; 7 0. There exists then at least one index /in {1,..., &}
such that w, # 0. If x € Ny, 1 £, then wyx) > 0 for all # =0,..., & and
wx) > 0. We have then wy(x) - +++ -+ wy(x) > 0, which contradicts (i).
We shall now prove the implication («) = (5). Let

Ky = {(%1 sy %) 120y = =0 = ap €8},

and let K, = 2, X *-+ X £2,. The sets K, and K, are disjoint convex subsets
of X* such that 0 ¢ K, , 0 € K, and K, is open. Hence, by the Hahn-Banach
theorem, there exists a continuous, nonzero linear functional @ on X% such
that w(wy ,..., &) > 0 for all (xy,..,2,) € K, and (%, .., %) <O for all
(%1 3oy %) € Ky . We have w(%; .., %) = wy(xq) + -+ -+ wp{xg), where
@] 5., wp, are continuous linear functionals on X, not all zero. Let

8 Lemma 4.2 is stated in Dubovitskii and Milyutin (Ref. 10) and proved in Lobry (Ref. 11).
The proof given here is new.
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wy = —(wy + -+ wp). The functionals wy, wy,..., w; satisfy the three
requirements (1) wy -+ @3 4+ @y, = 0, (ii) not all w, are zero, (iii) 7 € {0,..., &}
and x € £, imply wy{x) > 0. This concludes the proof of Lemma 4.2.

Lemma 4.3, If ©,, ¢ =0,..., &, are convex sets in a normed linear
space X and if w is a nonzero continuous linear functional on X such that
() 0€Q; for i = 0,..,, k, (ii) £; is open for i = 1,..., k, (ii) Nieg,.. 2 & # 9,
(iv) o(x) =0 for all x€ ;. £, then there exist continuous linear
functionals wy ,..., wy on X such that (&) @ = wy + *++ + o, and (B) i € {0,..., k}
and x € 2, imply w,(x) > 0.

Proof. Letwy ;= —wand 2, = {x: v X, w,4(x) > 0}. By applying
Lemma 4.2 [(«) = (B)] to the sets £,,..., £2;,;, we obtain functionals
wy¥,..., wi,y such that (i) we* + -+ + w},; = 0, (ii) not all of these functionals
are zero, and (i) w,*(x) > 0 whenever 1€ {0,..., k- 1} and xe ;. We
have w},, = 0, since otherwise, by Lemma 4.2 [(8) = («)], we would have
Nizo,... 2 $2; = @. If wf,; # 0 and wf,,(x) > 0 for all x in the open set 2y, ,
then w},;(x) > 0 for all x in £, ; and, by Lemma 4.1, there exists a A >0
such that w},; == Awg,; . We conclude the proof of Lemma 4.3 by letting
w; = (1/A) w;* for i = 0,..., &.

5. Proof of Theorem 2.1

By repeated applications of Lemma 3.1, we know that the set

Q=000 10NNy

is an (m -+ 1)-convex approximation of the set
S=8_,N8 N NSNS,.,.

If 2 = @, then Theorem 2.1 is a direct consequence of Lemma 4.2, If m = 0,
then we have S = &, and hence 2 = @. From now on, we shall assume
that m > 0 and that 2 # &.

For i = 1,...,, m, let p; be a positive number, and let ¢; and %; be two
functions satisfying the requirements stated in the definition of £, as a tangent
approximation to the set S;; let A" = (h ,..,, h,)) and ¢* = (91 ,..., ,,). By
Lemma 3.2, we know that the set 2+(£2) is an (m + 1)-convex approximation
of the set ¢H(S N U), where U = {x:xe X, | x| < min,_; . p:}.
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We cannot have 0 € int 2+(Q), since, by Lemma 3.3, we would then have
0 € ¢*(S N U), which would contradict the assumption Vo . w1 S = &
Since £H{2) is a convex subset of R™, we know that there is a vector
A= (A yoey Ayy) 7 O such that 375 Ah(x) > 0 for all x€ Q. For i = 1,..., m,
we let w; = —Ah; . Since &; =0 for all 1e{l,..., m} and since A, #% 0 for
some 7* € {1,..., m}, it follows that w;. 5% 0. If 315 Ak, = 0, we set w; = 0 for

i = —p,..., 0, m -+ 1; otherwise, the functional Y, ; A/, is continuous, linear,

nonzero, and nonnegative on £2 = (V... . om1 £2; ; hence, by Lemma 4.3,
™

we have 3, ANh = o, + 0+ wy F @pay, Where w_y ., @y, @pg

are continuous linear functionals such that wi{x) >0 if xe &, and
i€ {~ty..., 0, m - 1}. The functionals w_, ,..., w,,; satisfy all the require-
ments stated in Theorem 2.1.

6. Abstract Maximum Principle

In this section, we recall a rather general form of the abstract maximum
principle for mathematical programming problems and we prove that it can
be derived from Theorem 2.1.

We are given nonnegative integers p and m, a normed linear space X,
a subset L of X, and a function ¢ = (p_, yoss §_3, Pg » Py »erer P from X into
Rwtm+l The problem is to find an £ e 4 such that gy%£) = min,.; gy(x),
where 4 = {x: x) <0 for i = —p,..., —1; px) =0 for { = 1,..., m and
x € L}. An element £ satisfying this condition will be called an optimal solution
of the given problem.

We assume that the function ¢ = (¢_, ,..., ¢,,) is continuous and that
there exists a continuous function % = (k_,,..., k,) from X into Retm+1
such that

M lim |96 + Hx) — (é + D/ x] =0;
(1) k; is convex for 7 = —pu,...,0 and linear for 7 = 1,...,m.

We assume, moreover, that there exists a set M C X which is an (m + 1)~
convex approximation to the set L — £.°

Abstract Maximum Principle. If £ is an optimal solution of the
given problem, then there exist a nonzero vector A = (A_, ,..., A,,) € Ru=+mHl

3 We denote by L — £ the set {x — Z:xelL}.
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and a continuous linear function [ = (I_,,..., [,) from X into R«tm+l such
that

(i) YAk <Y Alx) <O forall xel;

T et e v
(i) AN<0 for = —p,.,0

(i)  Ap(#) =0 for 7= —p,., —1;

(v) for i= —pu,..,0, wehave [(x) <hfx) forall xecX;

) for i=1,.,m, wehave [, =h;.

Proof. We define the sets
S;={x —%:xeX, @) <0} I {=—p,.., —1,
So={x—2:xeX, @x) <g#)}
Si={x—%:3eX, o) =0} if {i=1,..,m,

Spg =L — &

and
Qy={x:xeX, o) -+h{x) <0 i = —p.., —1,
Qo ={m:xeX, hix) <0},
Q, ={x:xeX, h(x)=0 i i=1,.,m,
Loy = M.

If, for some i* € {—p,..., 0}, we have 2+ = & or if, for some * {l,..., m},
we have hyx = 0, we may set Ax = —1, A; = 0 for all ie{-—y,.., m} with
i = 1*; and, for each i = —p,..., m, we may set /; to be a continuous linear
support functional to %; (see Lemma 6.2 stated and proved below). From
now on, we shall assume that Q, ¢ @ for all € {—u,..., 0} and that 2, # 0
for all i€{l,..., m}. From the stated assumptions, we know that, for every
i = 1,..., m, the set £, is a tangent approximation to the set S; and that 2, ,
is an (m - 1)-convex approximation to S,,,. Moreover, for every
[ = —fy..., —1, the set £2; is an interior convex approximation to the set .S,
(apply Lemma 6.1 given below to the case ¢ = @, , £ = h;, o = 0). The set
£, is an interior convex approximation to the set S, [apply Lemma 6.1 to the
case p = gy, b= Iy, @ = @g(#£)].

If #£1is an optimal solution of the given problem, then .., 13 S;= &
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and, from Theorem 2.1, we know that the family {Q,:{= —p,..., m -+ 1} is
separated. We have then w_, (%) + ... + w,(*) <O for all xe 2, ., = M.
We note immediately that, if ¢, (£) < 0, for some ¢ € {~p,...,— 1}, we have
Oeint £2;, and hence w; =0. Let [ = {i:ie{—p,..., m}, w, =0}. If ie ],
let A; =0 and let /; be a continuous linear support functional for #;
(Lemma 6.2). If i¢ ], ie{—pu,.., 0}, we apply Lemma 4.1 to the case
h= —h;, ® = w;, and we obtain a A; = —A < 0 such that A /(%) < wy(x)
forall xe X. If i ¢ ], ie {l,..., m}, we apply Lemma 6.3 given below to the
case h = h; , w = w;, and we obtain a A; = A 7= 0 such that A;2,(x) = w,(x).
For all i¢ J,ie{—p,..., m}, welet [, = w;/A;. This concludes the proof of
the abstract maximum principle.

Lemma 6.1. If ¢ and % are continuous functionals on a normed
linear space X, if £¢ X, if a > (&), if % is convex and A(0) = 0, if

L. | ¢(#) + A(x) — & + x)ifl x| =0,

if S = {x:ox) <o} and if Q= {x: xe X, ¢(#) + A(x) < o} is nonempty,
then £ is an interior convex approximation to the set S — #.

Proof. If a > ¢(#£), then £eint S and O eint 2, and 2 is (trivially)
an interior convex approximation to the set S. Let us assume that o = @(%).
If y €2, then A(y) < 0. Let 0 = —A(y) > 0. Since % is continuous, there
exists a p >0 such that |x — y| <p implies A(x) < —o/2. Moreover,
since 4 is convex and #(0) = 0, we have A(xt) < —(o/2)t whenever £ & (0, 1]
and |x — y | <p. There is then a 6 €(0, 1] such that #e (0, 8) and
|x —y| <pimply

| (%) + h(tx) — (£ + )| < (o/2)t,
that is,
P& -+ 1) — 9(8) < (/2)¢ + h(ts) < (o12)t — (o120 =0,

that is, £ -+ #x € S. If we let € = min{5, p}, we have then tx € S — £ whenever
| x — vy | < eand te (0, €). This concludes the proof of Lemma 6.1.

Lemma 6.2.1° If % is a continuous convex functional on a normed
finear space X with #(0) = 0, then there exists a continuous linear functional
I defined over X such that /(x) < A(x) for all x € X. The functional / is called
a support functional of &.

10 Jemma 6.2 is a well-known consequence of the Hahn-Banach theorem.
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Proof. The subsets 2, = {(x, t): xe X, > h(x)} and 2, = {0} of
X x R satisfy the conditions of the Hahn-Banach theorem; hence, there
exists a nonzero continuous linear functional w defined over X x R such
that w(x, 2) > 0 for all (x, £) € 2, . There exist a continuous linear functional
l; defined over X and a real number « such that w(x, £) = I;(x) + o for all
x€ X and all te R, If [;(x) + ot > 0 for all x € X and all ¢ > h(x), it follows
that « > 0. We have then (1/«) (%) 4 A(x) >0 for all xe X. By letting
I = —(1/a) [, , we conclude the proof of Lemma 6.2.

Lemma 6.3. If 4 and « are nonzero linear functionals on a linear
space X such that w(x) >0 for all x € X with %(x) = 0, then thereisa A # 0
such that M(x) = w(x) for all x e X,

Proof. LetS = {{w(x), A{x)): x € X}. The set Sis convex and 0 ¢ int S;
hence, there exist constants « and 8, not both zero, such that aw(x) -+ ph{x) > 0
for all x € X, that is, such that aw(x) -+ BA(x) = 0 for all x € X, since X is a
linear space. We have o and 8 # 0 since w and h = 0. By letting A = —8/q,
we conclude the proof of Lemma 6.3.
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