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Abstract. An analytically continuous, one-dimensional model of the vegetation-atmosphere interac- 
tion is created which is ‘multi-layer’ in concept, and therefore similar in principle to previous 
numerical simulation models (except that it also includes the effect of surface water on the vegetation). 
Mathematical development of this model yields a ‘combination equation’ similar in form to that 
produced by single-source, Penman-Monteith models; and demonstrates that the interaction is indeed 
capable of conceptual representation as a simple electrical analogue, but that all property transfers are 
subject to a ‘surface’ resistance. In this way, it is shown that ‘multi-layer’ and ‘single-source’ 
descriptions are more similar than they appear at first sight: the differences between the two 
approaches become apparent and in this way the assumptions and approximations involved in the 
single-source hypothesis become explicit. 

1. Introduction 

It is more than a quarter of a century since Penman (1948) attempted to 
formulate a physically based, mathematical description of the vegetation- 
atmosphere interaction, one of the most important features of which is the way 
that the sun’s radiation is partitioned into other forms of energy. The equation he 
produced describes long-term evaporation from short vegetation when this vegeta- 
tion is not subject to physiological restraint. Subsequent work has attempted to 
generalize this initial study and two alternative approaches have usually been 
adopted, either to make a ‘single-source’ assumption, or to attempt a multi-layer 
‘simulation’: they are sometimes considered as ‘competing’ descriptions. 

In an attempt at generalization, Monteith (1965) formulated a combination 
equation which included some physiological dependence in the fokm of a param- 
eter r,, the ‘surface* resistance to vapour flux. The equation assumed that both 
vapour and sensible heat fluxes experience the same aerodynamic resistance. rA, 

and that this resistance was proportional to the aerodynamic resistance seen by 
the momentum flux. The equation has the form: 

AA+w,(e,(T,)-ez) 

hE= rA 

A+y l+‘E [ 1 
0) 

rA 

where e, and T, are the vapour pressure and temperature at a height z ; e, (T,) is 
the saturation vapour pressure at temperature T, ; A is the mean slope of the 
saturated vapour pressure curve between T, and T, (the surface temperature of 
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the vegetation); A is sensible plus latent heat; and y is the psychrometric 
‘constant’. In this equation r, was assumed to be primarily dependent on stomata1 
resistance and to reflect, to a fair approximation, changes in that resistance. 

Suspecting that any shortcomings in the interpretation of r, as a stomata1 
resistance might primarily be a result of the assumption that rA was applicable to 
all properties, Thorn (1972) made a further attempt at generalization by acknow- 
ledging the existence of differences in the coefficients describing the transfer of 
vapour, sensible heat and momentum between individual vegetative elements and 
the canopy airstream. Thorn’s work represents a useful extension of the Penman- 
Monteith equation (Equation (l)), in that it defines a parameter, rsT, called the 
‘bulk physiological resistance’, which, since it acknowledges the differences men- 
tioned above, might be expected to be more closely related to stomata1 resistance 
than r,. Nevertheless, the treatment maintains the assumption that each flux can 
be considered as being created or destroyed at one level in the canopy, though not 
necessarily at the same level; and that all the latent heat flux originates inside an 
average stomata1 cavity at that level when the canopy is dry. 

The ‘single-source’ approach has the advantage of simplicity and practicability 
(and there is some evidence for its adequacy in ‘dry canopy’ conditions, e.g., 
Black et al., 1970). On the other hand, the multi-layer, numerical simulation 
technique (e.g., Waggoner and Reifsnyder, 1968; Lemon et al., 1971) is superior 
in that it is physically more plausible. 

The purpose of this paper is to attempt to unify current attitudes by demon- 
strating that it is analytically possible to start from an ‘elemental’ description of 
the interaction (similar to that used in numerical treatments, but including the 
effect of surface water on the vegetation) and derive a ‘combination equation’ 
similar to that produced by the single-source approach. It is hoped that this 
process will bring increased knowledge of the parameters present in the ‘combina- 
tion equation’ and a better understanding of the assumptions involved in the 
single-source treatment. 

2. The Concept of ‘Ditlusive’ and ‘Diversive’ Resistance 

In all that follows, horizontal homogeneity is assumed. The wind speed, tempera- 
ture and vapour pressure at height z are represented by U(Z), T(z), and e(z), 
respectively; and the effective surface temperature of the vegetation at this level 
by T,(z). In a similar way, the fluxes of shearing stress and sensible and latent 
heat are represented by T(Z), H(Z), and hE(z), respectively. It is assumed that 
these fluxes can be related to the gradients of wind speed, temperature and 
vapour pressure by the diffusion equations: 

ad.4 
T(2) = -&f(z) T 

aw) 
H(z) = -pqGf(~) -g- 
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where KM(z), K&z), and K,(z) represent the ‘eddy diffusivities’ for momentum, 
sensible heat and water vapour, respectively. The corresponding ‘diffusive’ resis- 
tances between levels z1 and zZ are defined by the equations: 

-3 

rfy(z1,zJ = 
J 

K&z) dz (5) 

21 
=2 

&yF(Z1, z2) = J K;(z) dz (6) 

21 
=2 

rVF(zl, z*) = J K-,‘(z) dz. (7) 
=I 

There is a close similarity between this diffusive resistance and ‘aerodynamic 
resistance’, but in the sense assigned to this term by (say) Thorn (1971; 1972), the 
two are not identical. The diffusive resistance does not include all the aerodynam- 
ical resistance seen by the flux, or parts of that flux. In particular, it does not 
include that resistance between the flux source (on an individual vegetative 
element) and the canopy air stream, where the transfer is not primarily controlled 
by eddy diffusion. It is merely the parameter relating total, vertical fluxes to their 
respective ‘potential’ differences. 

At any level z within the canopy, there can be sources and sinks of flux, the 
strengths being related to the divergence of the total flux at that level. In a 
one-dimensional model, the source strength in the crop is presumably also related 
to the difference, at each level, between conditions in the mean canopy air stream, 
and at the flux source on the vegetative element, e.g., 

V . H a [T,(z) - T(z)]. 
The ‘diversive resistivity’ puts this relationship, at this stage hypothetical, on a 
formal basis. Accordingly the ‘diversive resistivities’ for momentum, sensible heat 
and latent heat pz”(z), p:“(z), and p?“(z), respectively, are defined by the 
equations: 

ao)= ---u(z) 
az p PE%) 

aW(zN T,(z) - T(z) -= 
az pep pDHI”(z) 

(8) 

(9) 

WE(z)) pep edT,(z))- e(z) 
az =r P”v’“(Z> * 

(10) 
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It is not convenient at this point to establish the physical entity of these resistivities 
in any formal or rigorous way: this is quite complex and forms the subject of 
Appendix 1. However, for purposes of illustration, it is useful to select from that 
work the almost intuitive, approximate results: 

pE:“( 2) = P”(z) 

u(z)E=fiJL(z) 

pF”(z) = P”(Z) 
u(z)CH(z)L(z) 

and 
1 

p”,‘“(z) = - 
[ 

P”(z) 

L(z) 
kTO(Z> + 

u(z>c”(z> 1 
which apply for a dry canopy, and the result: 

pyyz) = P”(z) 

u(z)cv(z)L(z) 

(13) 

(14) 

which applies for a totally wet canopy. In these equations CM, CH, and C” are 
average transfer coefficients between individual vegetative elements and the air 
stream for momentum, sensible heat and water vapour, respectively; and PM, PH 
and P” are ‘constants’ of proportionality, called ‘shelter factors’, which, amongst 
other things, take account of aerodynamic interference between these elements. 
The parameter rSTo(z) is the average stomata1 resistance at level z, while L(z) is the 
leaf area index per unit height at that level (or more correctly leaf area per unit 
volume). 

Although the formalism in Equations (8) to (14) is similar to that used by Thorn 
(1972), conceptually the ideas expressed in these equations are very similar to 
those of the multi-layer model of (say) Waggoner and Reifsnyder (1968). How- 
ever, expressing these concepts in ‘continuous’ rather than ‘finite-difference’ form 
gives rise to entities with the relative dimensions of resistivity rather than 
resistance. It is important to remember that the rigorous analogue of electrical 
resistivify is the reciprocal of eddy diffusivity (e.g., Kz); and also that the now 
conventional use of the term ‘aerodynamic resistance’ is not dimensionally 
precise, since this entity has dimensions of (Resistance X L*). The parameters here 
called ‘diversive resistivity’ are similarly poor electrical analogues in that they also 
contain a dimensional factor L*. In this way, the name ‘diversive resistivity’ is 
merely an expression of their dimensional content with respect to diffuse resis- 
tance. 

Equations (8), (9), and (10) embody the fundamental difference between 
‘single-source’ and ‘multi-layer’ models with regard to the role played by the 
aerodynamic transfer resistance between individual elements and the airstream. In 
single-source models, this resistance forms part of the Penman-Monteith 
‘aerodynamic’ resistance. In the course of the following, it will become apparent 
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that its r&e in a simple electrical analogue is more correctly that of a ‘surface’ 
resistance. 

It is not hard to see how confusion could arise: the mathematical distinction 
that ‘diffusive’ aerodynamic resistance applies to the total vertical flux, while 
‘individual element’ aerodynamic resistance and stomata1 resistance together 
apply to the separate contributions to that flux, is lost in the simplification of the 
‘single-source’ hypothesis. Identities may have been assigned by the implicit 
observation that both canopy flow and individual element resistances can be 
regarded as ‘aerodynamic’, since they are associated with air motion. However, 
the physical processes responsible for stomata1 and ‘individual element’ resistance 
are to a certain extent similar, at least for properties other than momentum; and 
both are related to area, a blatantly ‘surface’-like characteristic. The association 
between ‘individual element’ and stomata1 resistance is explicit in equation (13). 
Obviously the reassignment of this ‘individual element’ resistance carries with, it 
the implication that all property transfers are subject to some kind of surface 
resistance, which is additional to the intrinsic surface resistance at the surface-air 
interface (Shuttleworth, 1975), and usually dominates that resistance. The vapour 
flux, however, sees a further ‘surface’ resistance, the stomata1 resistance, when the 
canopy is dry, and some portion of that resistance (Appendix 1) when partially 
wet. 

The consequences of this reassignment at the single-leaf level appear trivial, 
and it is of course still possible to make a ‘Monteith type’ extrapolation to the leaf 
surface through the ‘boundary-layer’ part of the surface resistance in order to 
deduce the ‘internal’ or ‘stomatal’ part: the change is mere nomenclature. How- 
ever, the author believes that even at this level a conceptual reassignment is 
worthwhile since it helps to clarify the process by which the behaviour of 
individual leaves can be combined to deduce the behaviour of the whole 
community. 

3. A ‘Height-Dependent’ Available Energy 

All models of the vegetation-atmosphere interaction rely on the conservation of 
energy: it is convenient here to apply this principle in its more general form as the 
continuity equation for total energy. In one dimension this takes the form: 

(1% 

where, for each form of energy k, 6& represents the ‘charge’ or energy storage at 
level z, while ik represents the ‘current’ or energy flux at that level. 

Included in this summation are: 
(1) the latent heat of the water vapour in the air, for which: 

q1= FA(Z) PC, e(z) (16) 
Y 
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and 

il = Z(z) (17) 

where FA is the fractional volume of air per unit volume of crop; 
(2) the sensible heat in the air, with: 

qz = F~(z)pcJ(z) (1% 

and 

i2 = H( 2); (1% 
(3) the sensible heat in the biomass, for which: 

q3=(l--F~hw~T&) (20) 

i3 = b(z) (21) 

where &, and cB are the density and specific heats of the biomass, respectively, 
and TB its average temperature, while b is the vertical flux of sensible heat in the 
biomass; 

(4) the net, all-wavelength radiation, RN (defined positive into the surface), for 
which 

q4=0 

i4 = -RN(z); 
(5) the chemical energy in the biomass, with: 

(22) 

(23) 

q5 = C(z) (24) 

i5 = c(z) (25) 

where C is the energy stored chemically in the biomass and c is the flux of 
chemical energy through the biomass. 

Neglecting other contributions, e.g., the sensible heat of any liquid water 
present within, and possibly moving through, the crop gives: 

FAPCP [ 1 Lae+aT +(I-FA)pBcB%+$ 
yat at 

= -~-~-~+!t!$~. (26) 

It is convenient to collect the first two terms in this equation as: 

s=FAPC, tg+& +(l-FA)PBCB%, 
[ I 

(27) 

calling the resulting parameter, s, ‘energy storage’. In addition, familiarity is 
enhanced by relabelling the third, thus: 

ac 
p=-$ (28) 
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with p regarded as the net rate of energy uptake per unit height (volume) resulting 
from the combined processes of photosynthesis and respiration. The fluxes b and 
c (or more correctly their first spatial derivatives) are regarded as negligible, so 
that Equation (26) simplifies to the form: 

a& aW3 +a2 
--p+,,=- a2 a.2. 

The terms on the left-hand side of this equation can conveniently be combined as 
the parameter a, the available energy per unit height (volume), that is: 

u(z)= -s-p+a$ 
and Equation (29) written as: 

a(w +E 
u(z) =- az az' 

To obtain A, the total available energy, Equation (30) is integrated through the 
vegetation to the level h, the top of the crop, i.e., 

h 

A= a(z)dz 
5 
0 

=-S-P+[R,-R,(O)] 

where S is the total energy flux into storage, given by: 
h 

(32) 

0 

and P is the rate at which energy is absorbed chemically by the whole crop; R, is 
the downward flux of net radiation into the crop from above; and RN(O) is the flux 
out below. (Hereafter, RN should be regarded as a number and not a function.) 

The equivalent integral form of Equation (31) is: 

A=hE,+H,--A0 (34) 
where 

Ao=hEo+Ho (35) 
and AEI, and Hh are the total fluxes of latent and sensible heat out of the crop 
above, and hEo and Ho the equivalent fluxes into the crop from the soil. Very 
often Equation (34) has been written as: 

A’=,iE,+f& (36) 

where A’ is given by: 

A’=-S-P+RN-G (37) 
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with G, the heat flux into the soil, equal to: 

G = RN(O) - [AEo + Ho]. 

4. The One-Dimensional Combination Equation 

Once the divergence of the latent heat flux inside the vegetation has been 
assigned the analytic form of Equation (lo), it is possible to integrate this 
divergence through the crop to produce an expression for the total flux. If local 
energy conservation and vertical diffusion are introduced into this integration 
through Equations (31), and (3), and (4), respectively, a ‘combination equation’ 
results which, within the limits of a one-dimensional approach, describes the net 
evaporation produced in the vegetation-atmosphere interaction. The mathemati- 
cal details involved in the derivation of this equation are outlined in Appendix 2; 
the resulting equation takes the form: 

AE 
h 

= AA’+ (PCP + W/QI 
A + YE(~ + rch) 

(38) 

where 

6 = y[ r511(A’ - A,,) + rcAEo] (39) 

YE = 

with 
h 

(40) 

h 

h 

0 . 

(44) 

(45) 

where (6T)’ and (Se)‘, the weighted means of the differences between the values 
of temperature and humidity in the canopy and the values at the top of the 
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canopy, are defined by: 

and 

I. 

I [T(h) - T(z)l[p~~vl-’ dz 

(6T)‘=o h 

I hJ1 dz 
0 

(46) 

h 

I 
[e(h)- 4z)lbDIvl-’ dz 

(aey=” h (47) 

bmJ1 dz 
0 

The functions pDIV(z) and p’brv(z) are defined in terms of the diversive resistivities 
for vapour and sensible heat from the equations: 

PDI”(Z) = pY(z)+$ &y(z) (48) 

PtdZ) =t PExZ>. (49) 

The value of D, the vapour pressure deficit, used in Equation (38) is that 
applicable at the top of the vegetation, which is in this respect the ‘screen’ height. 
When the deficit is monitored at a new (higher) level, rR, providing there is no flux 
divergence between h and z R, the combination equation preserves its general 
form (see Appendix 3), and extending Equation (38) to a higher level is equival- 
ent to a simple and fairly obvious redefinition of the parameters A, rH, rv, and yE, 
thus: 

rH+r;)I=rH+rAH (50) 

rv+ r$= rv+ rAv (51) 

YE+Y;= 
rC [ 1 --P 
rH 

Y  (52) 

where 

A+A,,= h + A”‘rAH 
rH + rAH 

(53) 

32 

rAH = 
5 

[KH(~)]-~ dz 
h 

=R 

rAv = 
s 

[Kv(z)lpl dz 

h 

(54) 

(55) 
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and A”’ is the mean gradient of the saturation vapour-pressure curve between 
T(zR) and T(h). 

In this respect, a change in screen height is of no fundamental significance, and 
within the constant flux layer all heights are equally valid. It is convenient here to 
retain a screen height coincident with the top of the vegetation. It is worth 
noticing that it is possible to extend the generality of definitions (42), (43), (46), 
and (47) to higher screen heights by making the replacement h-+ zR and setting 
p&(z) = pDIv(z) = w  for h < z s zR. 

The combination equation, Equation (38), can of course be written in its 
diagnostic form as: 

(56) 

in which /3 is the Bowen Ratio above the crop and rr is the ‘isothermal resistance’, 
defined by: 

r =pc,D I y A” (57) 

The similarity between Equation (56) and that deduced by Thorn for the bulk 
physiological resistance, r sT (Stewart and Thorn, 1973, Equation (6)), is striking, if 
not unexpected. However this equation contains the extra factor [hE,J(hEh - AE,)], 
to take account of the flux from beneath the vegetation; and an extra term to take 
account of differences in the spatial distribution of the sources of latent and 
sensible heats. It also differs fundamentally in that r, is not a pure measure of 
bulk stomata1 resistance but depends to some extent on the size of the 
aerodynamic resistance between the vegetative elements and the canopy air 
stream, i.e., 

h 

in dry canopy conditions. Obviously the extent to which Thorn’s parameter, rsT, is 
a measure of bulk stomata1 resistance depends not only on the assumptions he 
makes about values of rH and rv, but also in a complicated way on the extent to 
which the inclusion of this extra resistance on the left-hand side of Equation (56) 

is compensated by its inclusion as the extra term 
right-hand side. 

[ (1 + P)rJ, l-2 ’ ( “o)] on the 

5. Equivalent Electrical Analogues 

We have now shown that it is possible to start from an elemental, multi-layer, 
one-dimensional description of the vegetation interaction and deduce a ‘combina- 
tion equation’ containing parameters very similar (but not identical) to those 
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ew(T,) A---j CEO T, -d-b ; /-o 
LATENT HEAT FLUX SENSIBLE HEAT FLUX 

Fig. 1. Schematic diagram representing electrical analogues of the exchange of latent and sensible 
heat fluxes at the vegetation-atmosphere interface which give rise to the ‘generalized combination 

equation’. 

occurring in the Penman-Monteith equation (or more particularly Thorn’s version 
of that equation). All previous models can be considered as describing the 
interaction in terms of an equivalent electrical analogue: the difference between 
‘single-source’ and ‘multi-layer’ models is merely the complexity of the analogue 
used. With this in mind it is conceptually interesting to consider what equivalent 
circuit produces Equation (38), the combination equation derived in Appendix 2. 

Figure 1 describes an analogue model in which currents of both latent and 
sensible h,eat leave a moist vegetative surface at temperature T,, pass through 
respective ‘surface’ resistances R v and RH, and then, in confluence with the 
currents hEo and Ho (from below the vegetation), pass through ‘aerodynamic’ 
resistances rv and rH. Direct analogy with Ohm’s Law gives the immediate results: 

-Hh’k T,,-TO=- 
PCP 

T  _ T  = -(Hh-Ho)& 
0 s 

PCP 

AE,,rvy (A& - AEo)Rvy eh-e,(T,)= -~- 
PC, PC, . 

(601 

(61) 

Obviously the left-hand side of (61) can be written in the form: 

eh-e,(T,)=-D+e,(Th)-e,(To)+e,(To)-e,(T,) 

=-D+A[T,-T,]+A’[To-T,] (62) 

where D is vapour-pressure deficit at height h and A and A’ are the mean 
gradients of the saturated vapour-pressure curve between Th and To, and To and 
T, respectively. Combining Equations (59), (60), (61), and (62), and rearranging, 
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yields an equation identical to (38) providing RH and R, are assigned the values: 

A’RH 
Rv=rC-- 

Y . 

In this way the complexities of the one-dimensional description of the vegetation- 
atmosphere interaction are capable of simple representation in terms of an 
elementary electrical analogue. It is important to remember however that the 
analytic complexity is still present in the assignment of the resistances used. 

This electrical analogue differs fundamentally from single-source models in that a 
finite surface resistance is used for both energy fluxes: indeed it is the essence of 
the multi-layer approach, embodied here in ‘continuous’ form, that the transfer of 
all properties is subject to this type of resistance. Further, it is to be anticipated 
that the effective resistances seen by other types of flux should be formally similar 
in definition to rH, rv, r:, and, with this in mind, it is convenient at this stage to 
consider momentum flux. 

To preserve the comparison, a screen height is chosen which is coincident with 
the top of the vegetation; the bulk resistance to the exchange of momentum 
between this height and the surface is then defined from the equation: 

(In this analysis the sign of T is negative.) Integrating Equation (8) through the 
crop gives the result: 

h 

T,, - 70 = -p 
I 

u(z) 
E dz. 

0 

It is easily seen (by direct substitution of this last equation) that the bulk exchange 
resistance, rR, can be written in the form: 

h 

I [&,-U(~)][P:"]-~ dz 
,,2 0 +bh - 70). 1 

h 
Th ?h 

h 

I 
[pz”]-’ dz 

I 
[p”M’“]-’ dz 

(66 

0 0 

Figure 2 describes an electrical analogue model of the momentum exchange in a 
vegetation-atmosphere interaction which is identical to that for latent and sensible 
heat exchanges. According to this model, u#, is given by: 

-ThrM (Th -TO)& 
Uh=-- 

P P 
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us= 0 

Fig. 2. Schematic diagram representing an electrical ahalogue of the exchange of momentum at the 
vegetation-atmosphere interface. 

which substituted into (65) gives: 

Comparing this with Equation (66) allows identification of ‘surface’ and 
‘aerodynamic’ resistances to momentum fluxes, given by the expressions: 

h 

[I&-l = 
I 

[&“I-’ dz 
0 

and 

where 
rh 

h s [u(h)- u(z)][pg”]-’ dz 

(Su)‘=.” h 

I [p~v]-l dz 

(67) 

(68) 

(6% 

0 
which are similar to Equations (42) to (47). Thus, momentum exchange can be 
treated like latent and sensible heat exchanges but the effective surface resistance 
is simpler: the treatment of energy fluxes is complicated by the extra inter- 
relationship of total energy conservation. 

It is emphasised that subdividing the resistance to momentum flux in this way is 
not new in concept, e.g., see Thorn (1971); what is new is the interpretation of the 
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resulting fractions. Here, the ‘uniform canopy wind speed’, ii, is assigned the 
analytic form: 

ii = u,, - (au)’ (70) 

6. Discussion 

It has been shown that both ‘single-source’ and ‘multi-layer’ models of the 
vegetation-atmosphere interaction are similar in as much as both can be shown to 
yield combination equations with a broadly similar form, and that both can be 
regarded as equivalent to simple electrical analogues (although in the multi-layer 
case this simplicity is more apparent than actual). 

There remain, however, important differences, firstly with respect to fluxes from 
the soil, and secondly in the way the aerodynamic ‘boundary-layer’ resistance is 
introduced into the model. The consequences of these differences determine the 
plausibility of the simple single-source assumption in a particular application. It is 
not of course possible to make general statements about the practical importance 
of these differences; this will depend on particular meteorological conditions and 
crop characteristics. However, within the limits of the one-dimensional assumption, 
it should be possible, by comparing (say) Equation (56) with its single-source 
counterpart (e.g., Stewart and Thorn, 1973, Equation (6)), to determine whether 
the single-source hypothesis is valid in any particular case. 

At the risk of denegrating the generality of this analysis, it is perhaps worthwhile 
considering this procedure in more detail. In this context the equation 

introduced by Stewart and Thorn (1973) is regarded as a definition of the ‘bulk 
physiological resistance’, rsT, used in their tiork where r: and ry are the 
‘aerodynamic’ resistances to the transfers of sensible heat and water vapour as 
defined in that analysis. The object is to estimate how reliable a measure rsT is of 
rsToM, the resistance of all the stomata acting in parallel, i.e., to test the 
hypothesis: 

(72) 

To do this we combine Equations (56) and (71) in the form: 

[ 
AP 

+ -(rT-rH)-(rS;T--rV) . (73) 
Y 1 
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To assist in understanding how the several terms of Equation (73) interact, it is 
perhaps instructive to place this equation in some actual numerical framework. 
The data given by Stewart and Thorn (1973) are probably adequate for this 
purpose, especially since, in this case, the sizes of the terms allow us to make 
fairly arbitrary approximations and assumptions. For the purpose of this illustra- 
tion, it is probably adequate to assume (on the basis of the figures presented in 
Table 1 of that paper) that 

It is further assumed that rH and rv can be set equal to the ‘eddy diffusive’ part of 
these resistances, and (on the basis of the same Table) that the ‘eddy diffusive’ 
and ‘boundary-layer’ parts are of equal size (3 s m-r). We make the additional 
assumption that the functions pvfuF and pHIup are constant (independent of 
z) through the active canopy, and that they are equal to each other; while, for the 
purposes of illustration, we set A/y = A’/? = 2 and p = 1.5. 

These several assumptions are equivalent to setting: 

6(LAI) 
Pt?I”(Z) = ~ 

L(z) 

and 

PDI”(Z) = & km(Z) + %LAI) 

inside the active canopy, where (LAI) is the leaf area index. 
Within these assumptions, the degree of equivalence between rsT and rsToM 

depends on the form of the functions L(z), rsTo(z) and a(z), and on the size of 
the ratios (A,/A’) and particularly (A& - AEo)/hEh. For Thetford Forest in clear 
sky, mid-day radiation conditions, similar to those described by Stewart and 
Thorn (1973) (viz,., A’ = AEh + Hh = 500 - 600 W m-‘), the net radiation meas- 
ured beneath the canopy, RN(O), is typically 50 W rne2; while the measured soil 
heat flux is typically 20 W me2: these correspond to a value of 30 W mm2 for AO. If 
(say) half of this energy appears as latent heat flux from the soil, then, bearing in 
mind that the measured latent heat flux above the canopy is typically 200 W me2 
in these conditions, it is possible to make the following estimates: 

(““,,,^“) = 0.925 

and 

2= 0.06. 
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Variations in the particular form of L(z), r sTo(z) and a(z) affect Equation (73) 
through r, but their major effect is through the value of the integral I1 whose 
value might be altered by a factor of two or three. However, for the purposes of 
this illustration, it is convenient to assume that there is no variation in stomata1 
resistance through the canopy. This simplifies the evaluation of the terms in 
Equation (73) considerably, and makes their values independent of the particular 
forms of L(z) and a(z). With this assumption 

so that 

Pm”(z) = 
(rSTOM + 9NLAI) 

J-42) 

r, = rsToM+ 9 s m-’ 

Substituting all the values into Equation (73) yields: 

rST = 0.925 rSTOM. 

The agreement between rST and rsToM is therefore fairly good for the values of rsT 
(in the region 100 s m-‘) presented in that paper. 

7. Concluding Remarks 

It is important to remember that the theoretical description of the vegetation- 
atmosphere interaction presented in this paper depends ultimately on the validity 
of a one-dimensional approach. The artificiality of this assumption gives rise to 
empirical ‘shelter factors’ and puts limits on the validity of the theoretical 
formalism produced. The analysis also depends on the assumed validity of the 
diffusion equation, which could also put limits on its applicability. 

It is easily seen that, even in one dimension, the general description of the 
vegetation-atmosphere interaction is very complex, perhaps too complex for 
direct practical application in any predictive sense. This is of some importance 
since it implies that the prediction of evaporation might always have to rely on 
simplified and less precise treatments: the precise determination of evaporation is 
perhaps only possible (even as a long-term average) by direct measurement. 

A large part of this paper has been devoted to demonstrating that the concept 
of a ‘combination equation’ has validity even in a multi-layer model of the 
vegetation interaction. The author sees danger in that this will add further to the 
stature of the ‘combination equation’ approach to evaporation ‘measurement’, and 
foster the erroneous belief that the detailed measurement of meteorological 
variables, specifically for use as input to a combination equation (which a priori 
involves making assumptions about other parameters in the equation), represents 
a direct measurement of evaporation. 
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Appendii 1. Formulation of Diversive Resistivity 

The diversive resistivity isthe parameter relating the divergence of a mean flux at 
a height z to the difference, at that height, between mean air conditions and 
average surface conditions. It controls the contribution made to the total fluxes by 
the portion of vegetation at height z. It is a function of a parameter called here 
the ‘true surface resistance’, and denoted by RsM, RsH, and R,“, for momentum, 
sensible heat and vapour, respectively. In general, the true surface resistance 
consists of two parts: firstly, the ‘intrinsic surface resistance’ (Shuttleworth, 1975); 
and secondly, the aerodynamic resistance seen by the flux in diffusing from the 
surface into the air stream at height z. This is more complicated for the vapour 
flux from a ‘dry’ canopy, because most of the surface responsible for that flux is 
separated from the visible surface of the vegetation by the additional aerodynamic 
resistance it sees in the stomata1 fissure. It can of course be made to appear more 
simple by the introduction of the term ‘stomata1 resistance’. 

(a) THE FLUX FROM INDIVIDUAL ELEMENTS 

Consider an individual vegetative element i of area ai, surface temperature 7’si 
and wetness factor Wi, this being the ratio of the area of the free water on the 
surface to the total surface area of the element. Consider first the resistance to 
vapour flux, and assume that the vegetative element has a ‘local’ surface resis- 
tance which is equal to the stomata1 resistance ri”” over the ‘dry’ fraction of the 
element and equal to the intrinsic surface resistance to vapour flux RI” over the 
wet portion of the element. If these resistances are assumed to act in parallel, 
the effective resistance from the vapour source to the air in immediate contact 
with the vegetative element is given by: 

1 Wi (lAWi) -- 
@S-z+ $TO (Al.l) 

or 
ST0 

Rys= ri 
l+ wi/4(z) 

(Al .2) 
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where 
ST0 

&)Ji -RF. 

RY 
(A1.3) 

Obviously RF' reduces to rsTo when the element is dry and to RF when 
completely wet. 

Similarly, but more simply, RF' and RF', the ‘local’ surface resistances to 
sensible heat flux and momentum flux, respectively, for element i are given by the 
intrinsic surface resistances to these parameters, that is, by: 

and 

Rf- = R,H (A1.4) 

RF’= R,M. (A1.5) 

Once in the air, the fluxes diffuse into the air stream flowing over the particular 
element. In this context, the portion of flux originating on element i is regarded as 
being ‘in the air stream’, at level z, when its transfer begins to be primarily 
controlled by the eddy diflusion, at which point the effective vapour pressure, air 
temperature and wind speed are represented by ei, YJ and Ui, respectively. In 
diffusing from the surface into the air stream, the fluxes see aerodynamic 
resistances RF*, RF* and RF* given by: 

Ry*= 
[&CVt% +)I-’ (A1.6) 

RF*= [UiCH(% +i)l-’ (A1.7) 

Ry*= 
[UiCM(Ui, 4i)l-’ (Al .8) 

where Cv, Cifl and CM are the transfer coefficients for vapour, sensible heat and 
momentum for the element i exposed at an angle of incidence 4i to a wind speed 
Ui. Hence the total resistances seen by the elemental fluxes of vapour, sensible 
heat and momentum between the internal origin on element i and the air 
stream at level z, RJ, Rff and Ry, respectively, are given by: 

etc., that is by: 

ST0 

Rz= li -+ [ UiCi”( Z&y 4i)l-l 
1 f Wi/Jdi 

(A1.9) 

(A1.lO) 

(Al.ll) 
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while the total fluxes leaving the element i, fy, f? and f?, are given by: 

(A1.12) 

(A1.13) 

(A1.14) 

(b) DEFINITIONS 

At this stage it is convenient to define mean transfer coefficients F, CH and CM 
at level z by the equations: 

v C UiCY c ‘z’=J-i-if Cai [ 1 (A1.15) 

(A1.16) 

(A1.17) 

and the elemental area per unit height L(z) by: 

L(z) = Limit Cai [ 1 dz+O dz 
(A1.18) 

with all the summations extending to the elements i between the levels z and 
(z +dz) and over unit area of crop. When the element is a leaf, and the plan area 
is used, then L(z) is the Leaf Area Index per unit height. It is also convenient to 
define an average wetness factor W(z) at level z, and an average stomata1 
resistance rsTo(z) in a similar way by the equations: 

W(z) = 25; 
C [ 1 aiwi 

c ai 

[ rsTo( z)]-r = Limit 
Cai/ryO -[ 1 Cai dz-o 

(A1.19) 

(Al .20) 

with the range of summation similarly restricted. 
It is also convenient to introduce the ‘elemental modifiers’ yv, $, -y,v, ry”, 

yyc and yw which take account of the individuality of element i with respect to 
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the mean parameters at level z. They are defined by the equations: 

(ew(T,i)-ei>rv=e,(T,(z))-ee(z) 

(Tsi-Ti)yF= T,(Z)-T(Z) 

(ui)YY = U(z) 

Cy(Uiy ~i)~~"= C"(Z) 

Cr(Ui, +i)rF'"= C"(Z) 

where 

R "3 _ kro(z) 
- 1+ W~)P(Z) 

and 

rs-ro - R‘: 
dz>= RV * I 

(A1.21) 

(A1.22) 

(A1.23) 

(c) SHELTER FACTORS 

Combining these definitions with Equations (A1.12), (A1.13) and (A1.14) gives 
the results: 

y;[ yiwR “3 + yyy”‘CR x^] 

fi” = cpq 
T,- T 

y~[R~+Yf"YFI,CRH,A] 

where 

RV,A = [u(z>cv(z)]-’ 

R "*=[U(2)CH(2)]-' 

R ~*=[U(2)C"(2)]-'. 

(A1.24) 

(Al .25) 

(A1.26) 

(A1.27) 

(A1.28) 

(A1.29) 

These equations can be made to appear more simple by the introduction of the 
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‘product modifiers’ py, p? and p? defined as: 

pi” = y~yiy/iv,c 

pp = y~yiMYIH,C 

p,f,f = yfyfy~C 

and the ‘hybrid modifier’ Oi defined from: 

(A1.30) 

(A1.31) 

(A1.32) 

Wi = yi”yw (A1.33) 

(bearing in mind that oi reduces to -y,v when the canopy is dry or completely wet). 
The resulting simplified equations are: 

fM=pai -’ -=. 
#R ‘-f + p,“R M.* 

(Al .34) 

(A1.36) 

Consider now a volume of crop of unit cross-sectional area between heights z and 
z-t dz; and consider, for example, the momentum flux. There is a flux T(Z) 
flowing into the volume from below and a flux T(Z +dz) out above. The difference 
between these fluxes is the sum of the contributions fi” inside the volume, i.e., 

~(z+dz)-r(z)=z f? 

=-put 
ai 

-. 

i yyRy+pyR”** 
(A1.37) 

It is convenient to define two height-dependent terms r”(z) and P”(z) such that: 

c ai -. Cai 

y?Ry + p,vR M*A r”(z)Rfn +P”(z)R= 
(A1.38) 

which is an identity in the situation TM= r”, pM= PM for all i, with equivalent 
terms P”(z) and P”(z) (corresponding to py and pv), and r”(z) and L!“(z) 
(corresponding to # and tii) for the sensible heat and vapour fluxes, 

These functions have the effect of decoupling the individual contributions to the 
summation and replacing them by a fraction of the sum of an equal number of 
‘average’ elements. They are identical in concept to the ‘shelter factors’ used by 
Thorn (1971, 1972) in as much as they are (at worst) no more than a mathemati- 
cal device in which to shroud the complexity of elemental interference by 
introducing apparent simplicity into the equations. Their conceptual similarity 
with the ‘shelter factor’ is emphasised by the fact that P”(z), PH(z) and Pv(z) 
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are identical to the shelter factors for momentum, sensible heat and vapour as 
used by Thorn (197 1, 1972) in the approximation RIM = RI” = RSSV= 0, apart 
from the fact that Thorn makes the extra implicit assumption that r,E = 1 (which is 
equivalent to setting Ui = ii) and that he also assumes the shelter factor is height 
independent. The term ‘shelter factor’ is adopted for the functions PM, PH and 
P” in the following discussion. 

The need to contain such essentially empirical factors is a result of using a model 
which is fundamentally based on horizontal homogeneity: their presence reflects 
the fact that this assumption is not perfect inside the crop. No doubt it would be 
possible in principle to evaluate the summation on the right-hand side of 
Equation (A1.38) explictly if the details of the canopy were known: it might even 
be possible to do this in practice, with a large digital computer. However, the 
value of the summation would be so particular in time and space as to be of trivial 
importance from a practical standpoint, and of no real interest theoretically, 
introducing no new understanding. These empirical factors are retained for this 
reason. 

(d) REDUCITON TO DIVERSIW RE~I~TIVITY 
Making use of the definition: 

2 = Limit 
T(Z +dz)- T(Z) 

dz+0 dz 1 
with Equations (A1.37) and (A1.38) gives: 

a7 -24 -= C 
p r”(z)R”;‘+ P”(Z)RMA 

T,imit 
az [ 1 dz+O dz 

which combined with Equation (A1.18) becomes: 

a7 -uL(z) -= P 
az l-(~)R,“+l’~(z)R~’ 

(A1.39) 

(A1.40) 

Equations describing the divergences of sensible and latent heat fluxes follow 
by direct analogy thus: 

aH ix&)- m)luz) 
at=% H 

r (z)RF + PH(z)R”” 

[dT,(zN - e(z>lUz) 
R(z)R~~+P”(z)R~’ 

(A1.41) 

(Al .42) 

Comparing these equations with Equations (8), (9), (10) gives immediately: 

pZ”(z) = 
l+(z)R,M + P”(z)RMA 

J-4) 
(Al .43) 

pEI”(z) = 
rH(z)R?+PH(z)RH,* 

L(z) 
(A1.44) 
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PFYZ) = 
~I(z)R~~+P”(z)R~ 

L(z) 

295 

(A1.45) 

which are the mbst general results. 
Using the assumptions RIM K RMsA and RF CC RH,*, which are usually valid, and 

incorporating (A1.27), and (A1.28), reduces Equations (A1.43) and (A1.44) ‘to 
the more useful form: 

f&y( 2) = P”(z) 
u(z)CM(z)L(z) 

and 

pgyz) = P”(z) 
u(z)CH(z)L(z) ’ 

(A1.46) 

(A1.47) 

It is of course possible to write a simfledequation for the diversive resistivity 
for vapour flux with the assumption RVFS<< RV,* thus: 

PYW = P”(z) 
u(z)C”(4L(z) (A1.48) 

but it must be remembered that this can only be used when the canopy is 
completely wet. If the crop is not completely wet, and if it is assumed that over a 
horizontal plane inside the crop the fractional variation in vapour-pressure deficit 
and stomata1 resistance is small, and further that the crop is equally ‘wet’ 
throughout, then wi = rvrw can be set equal to one for all i. Further making the 
assumption that all the elements in the crop are aerodynamically identical, gives 
the approximate result: 

py(z) = 1 
L- 

kdz) P”(z) 
L(z) 1+ W(Z)/L(z)+ u(z)C”(z) 1 

where 

(A1.49) 

(Al SO) 

and where W(z) is the average Wetness Factor at height z. When the crop is 
completely dry, W(z) = 0 and (A1.49) reduces to: 

&yz) = 1 
[ kdz)+ P”(z) - . L(z) u(z)C”(z) I (A1.51) 
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Appendix 2. Tbe Derivation of a Generalized Combination Equation 

Most of the concepts are introduced and assigned mathematical formalism 
elsewhere but before proceeding, it is convenient to introduce the identities: 

and 

Ed)- e&%)) = A[W)- T(z)1 (A2.1) 

e,(T,(z I)- Ed) = A’[T&) - T(z)1 (A2.2) 

in which h is the level of the top of the vegetation, where the temperature and 
vapour pressure are T(h) and e(h), respectively, and A and A’ are the mean 
slopes of the saturated vapour-pressure curve between the temperature T(z) and 
T(h), and T,(z) and T(z), respectively. 

Rewriting Equation (4) as: 

de Y Wz) -= --- 
a.2 PC, K"(Z) 

and integrating from z to h gives the result: 

h 

while rewriting and integrating Equation (3) gives: 

h 

which combined with (A2.1) gives: 

h 

A 
e,(W))-Ed) = -PC, . 

z 

Taking the identity: 

(A2.3) 

(A2.4) 

(A2.5) 

ew(T,(z))-e(z)=[e,(T,(z))-e,(T(z))l-[e,(T(h))-e,(T(z))l 

-[e(z) - e&W))1 
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and introducing (A2.2), (A2.5) and (A2.3) gives: 

e,(T,(z))-e(z) = A’[T,(z)- T(z)]+D 

where D is the vapour-pressure deficit at the top of the vegetation, i.e., 

D = e,(T(h)>-e(h). 

Combining Equations (9) and (31) gives the result: 

T,(z)-T(z)=m .(,)_3.y 
PC, [ 

while (10) can be rewritten in the form: 

e,(T,(z))- e(z) =- - 
&‘“(z) y d(AE) 

PC, az . 

(A2.7) 

(A2.8) 

After some mathematical manipulation, introducing Equations (A2.7) and (A2.8) 
into Equation (A2.6), yields the result: 

h h 

p,~,~=[pblva(z)]+~+~ 1 sdz’-1 sdz’ (A2.9) 
V 

where z z 

(A2.10) 

and 

PDIV = p”v’” + p&v. (A2.11) 

Dividing Equation (A2.9) by p DIV and integrating from ground level through the 
crop gives the result: 

h 

A@, - AE,, = PbI”U(Z) 

PDIV 

dz+~i~+~/~/~dz~ 
0 0 0 z 

h h 

- (A2.12) 
0 L 
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It is convenient to define the parameters r:, r,, rH 

h 

r:= 
dz v-1 

-1 

P&V 
0 

h 

I-1 
-1 

dz 
r, = 

PDIV 
0 

h 

I- dz 
rH- 

KH 

h 

and rv from the equations: 

(A2.13) 

(A2.14) 

(A2.15) 

(A2.16) 

and to introduce &rv, fiDIV, kv, kH and 8, normalized versions of the parameters 
p&m, PDIV, Kv, KH and a, which are defined by: 

PDIV 
bDIV = - 

rc 

(A2.17) 

(A2.18) 

kv = r&Kv (A2.19) 

kH = rfrKH (A2.20) 

It is also convenient to introduce A(z) and e(z), renormalized versions of H(z) and 
E(z), defined by: 

(A2.22) 

(A2.23) 

Introducing Equations (A2.17) to (A2.23) into Equation (A2.12) produces the 
result: 

AE,,-AEo=%411+- P@ A rfr f-6 
+ - - H& - - A&& 

rc yr, Y rc rc 
(A2.24) 
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in which 11, I2 and I3 are defined by: 

h 

I = 
1 

I 

1 
fibIvadz 

i&XV 
0 

h h 

h h 

0 .? 

Introducing Equations (34) and (36) into (A2.24) gives: 

where 

A0 = Ho + So. 

Rearranging (A2.28) gives: 

where 

hE 
h 

= AA’+ (P@ + a)/rH 

A + YEO + ch) 

(A2.25) 

(A2.26) 

(A2.27) 

+% F &(A’- A&) -+& (A2.28) 
c 

(A2.29) 

(A2.30) 

6 = y[r:I1(A’- A,) + rcAEo] . (A2.31) 

(A2.32) 

rH = 12rA (A2.33) 

rv = 13r&. (A2.34) 

These later definitions of rH and rv are not particularly convenient: it is fairly 
easily shown, by combining Equations (A2.18), (A2.20), (A2.22), (A2.26) and 
(A2.33) and then introducing Equation (3), that rH has the alternative form: 

(A2.35) 
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where h 

I 
[T(h) - ~(~I[PDIvI-~ dz 

(xl-)‘=” h 

I l-~rml-~ dz 
0 

Combining the equivalent equations for vapour flux yields: 
P+ (se)’ 

rv= --- 
Y A& 

where 
h 

I 
[e(h) - dz)lb~~~l-’ 

(6e)‘= O h dz. 

I bmJ1 dz 
0 

(A2.36) 

(A2.37) 

(A2.38) 

It is perhaps worth noting that it is possible (by combining Equations (A2.2), 
(A2.7) and (A2.8)) to obtain an equation similar to Equation (A2.30) which 
applies at each level in the canopy, namely: 

(A2.39) 

where 
Nz) = edT(zN- e(z) 

A’=Ce,(T,(z))-e,(T(z))ll[T,(z)- T(z)1 

+3 
FH 

T  = P”(z) 

v C”(z) 

P”(z) 
Ffl=r 

c (2) 

which equation is very similar to that applicable to a single leaf. 

Appendix 3. ‘Screen Height’ Changes in the Generalized Combination 
Equation 

It is necessary to know how Equation (38) is changed when the ‘screen height’ is 
changed from h, the top of the vegetation, to a new (higher) level, zR. It is 
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assumed that there is no flux divergence between the levels h and zR, i.e., 

hE(z) = hEh = AE 
for h 6 Z s zR. 

The diffusion equations, Equations (3) and (4); yield after rearrangement and 
integration: 

and 

e(z,)-e(h)=-hE> rAv 
P 

(A3.1) 

T(z&- T(h) = -II-$ rAH = -(A;;hE) 
P P 

where : 

rAV = I 
K;’ dz 

h 
and 

=R 

TAH = 
I 

K&l do. 

h 

(A3.2) 

(A3.3) 

(A3.4) 

Introducing the identity, 

where A”’ is the mean gradient of the saturated vapour-pressure curve between 
T(zR) and T(h), and combining this identity with Equations (A3.2) and (A3.1) 
yields: 

pc,D = pc,D’+ A”‘A’r,.,, - hE[A”‘r,, - yrAV] 

which, when introduced into (38), yields, after some manipulation, 

d”A’+(PcPD’+@ ., 
hE= 

r;; 

A”+$ l+lr. [ 1 rt: 
where 

A,, = Ah + AN’f-.w 
r& 

rh=rAH+rH 

rc= rAv+ rv 

(A3.5) 

(A3.6) 

(A3.7) 

(A3.8) 

(A3.9) 
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