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INTRODUCTION 

Of the many polypeptide growth factors, transform- 
ing growth factor beta (TGF-13) appears to be rela- 
tively unique in its global effects on cell growth and 
differentiation (1). In addition to its complex growth 
regulatory activities on essentially all cell types, 
compelling evidence has accumulated over the past 
5 years documenting the role of TGF-13 as a potent 
immunomodulatory molecule (2). Quickly evident 
were its profound immunosuppressive actions and 
many diverse inhibitory effects in vitro. These ob- 
servations were promptly followed by therapeutic 
trials of the peptide in experimental models of 
inflammation and immune-mediated disease. Al- 
though in many cases TGF-13 has fulfilled its prom- 
ise as an immunotherapeutic agent, continuing in- 
vestigations have revealed the bifunctional nature 
of the peptide. Thus, as both an immunosuppres- 
sive and a potent proinflammatory molecule, 
TGF-[3 orchestrates events vital to the initiation, 
progression, and resolution of immune-mediated 
inflammatory responses. These opposing effects are 
likely controlled by the cytokine's selective produc- 
tion and latency, as well as receptor modulation and 
differential susceptibility of target cells at various 
stages of development, maturation, and activation 
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(Table I). As the seemingly contradictory nature of 
TGF-13 continues to be unraveled and knowledge of 
its role in host defense continues to expand, we 
must remain cognizant that TGF-13 is but one me- 
diator, albeit an influential one, in the cytokine 
network that regulates the immune system. 
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TGF-13 SYNTHESIS AND ACTIVATION 

Synthesis 

At least five homodimeric polypeptides, which 
share 70-80% homology and many biological activ- 
ities (reviewed in Ref. 1), are represented in the 
highly conserved TGF-13 family. Of these multiple 
forms, only TGF-131, -132, and -133 have been iden- 
tified in mammalian species, and differences in 
cellular origin and actions between these isoforms 
are now being recognized. The gene for each of the 
isoforms is located on a different chromosome and 
differential expression may occur through distinct 
cell-specific regulatory mechanisms. The peptides 
are encoded as preproproteins of 390-412 amino 
acids with signal peptides of 20-23 amino acids at 
the N terminus (3). Two major transcriptional start 
sites for TGF-131 mRNA have been identified, with 
two promoter regions containing binding sites for 
the transcription factors, NF-1, SP-1, and AP-1 
(4-6). 

TGF-131, -132, and -133 have a 4- or 5-amino acid 
processing site and, after signal peptidase and pro- 
teolytic cleavage, are processed to the 112-residue 
forms (12.5 kD), which have in common 9 cysteine 
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Table I. Factors Determining Biological Effects of TGF-[3 

Latent or active TGF-13 
TGF-13 isoform 
Target-cell type 
State of cell differentiation 
Resting or activated cells 
Receptor type and number 
Influence of other growth factors 
Binding proteins 
Presence of antagonists 
Extracellutar matrix 

residues and the C-terminal sequence, Cys-Lys-- 
Cys--Ser-COOH (3). The processed mature TGF-[3 
homodimer (25 kD) is biologically inactive or latent 
due to its noncovalent association with the 75-kD 
glycosylated latency-associated protein (LAP), 
which is covalently linked to a 135-kD binding 
protein (1, 7). 

Activation 

The above complex requires activation to release 
the biologically active molecule, which then binds 
to the receptor to initiate signal transduction. The 
masking of TGF-I3 activity by its association with 
the LAP proregion dimer is important in protecting 
cells that make TGF-[3 from the molecule's potent 
regulatory effects and in controlling the pleiotropic 
paracrine activities. In all forms of TGF-[k except 
TGF-132, LAP contains the fibronectin cellular rec- 
ognition (RGD) sequence (8), raising the possibility 
that the latent complex or, possibly, free LAP binds 
to cells through this domain or via an alternative 
heparin binding site (7). The ability of TGF-13 to 
bind to matrix molecules may be pivotal in localiz- 
ing, focusing, and concentrating its activities. The 
dynamic interaction between growth factors such as 
TGF-13 and the extracellular matrix is likely essen- 
tial to the evolution of inflammatory events (9). 

Intense interest in the activation of the latent 
complex, a crucial regulatory step in TGF-t3 bioac- 
tivity (I, 10), has led to new insights into the 
physiologic mechanisms of activation of TGF-13. 
The LAP carbohydrates appear to be essential to 
maintaining latency since sialidase and glycosidases 
are effective activators of TGF-13 (11). The latent 
complex reportedly binds, at least on bovine aortic 
endothelial and smooth muscle cells, to mannose 
6-phosphate/insulin-like growth factor II receptors, 
where, once bound, it becomes susceptible to pro- 
tease activation (12). These proteases, including 
plasmin and cathepsin, and transient exposure to 

acidic conditions (6) partially activate the latent 
molecule (13). The activation of TGF-[3 is likely a 
multistep process, involving cells such as gamma 
interferon (-/IFN)-treated monocytes (14) and in- 
flammatory macrophages (15) which generate siali- 
dases and proteases within an acidic microenviron- 
ment (16, 17) to activate the latent complex. Once 
activated, TGF-t3 binds either to cellular receptors 
or to one of several binding proteins. Although the 
latent form of the molecule circulates with a half-life 
>90 min, active TGF-I3 is cleared from the circula- 
tion within minutes (18). Thus, latency confers 
stability, target-ceU specificity, and a means for 
extracellular control of the broad spectrum activi- 
ties of this ubiquitous molecule. 

PROINFLAMMATORY ACTIVITIES OF TGF-13 

Inflammatory-Cell Recruitment 

The nearly immediate release of TGF-[3 by plate- 
lets (19) at sites of injury or immunologic challenge 
provides an important clue that TGF-13 has an 
agonist role in the sequence of events constituting 
an inflammatory response. Platelets represent the 
most concentrated natural source of TGF-I3, pro- 
ducing nearly 20 mg/kg (20). It is difficult to fathom 
that a molecule with only immunosuppressive po- 
tential would be one of the first mediators released 
in an inflammatory cascade. In fact, the notion of 
TGF-[3 as a promoter of the inflammatory process 
has been borne out in subsequent studies. Orig- 
inally identified as the most potent chemoattractant 
for monocytes with activity in the femtomolar con- 
centration range (21), TGF-13 has more recently 
been found to have chemotactic activity for both 
neutrophils (22-24) and T lymphocytes (25). More- 
over, the recruitment potential of TGF-13 has been 
confirmed in situ following direct injection of the 
native or recombinant molecule intradermally (26) 
and intraarticularly (23, 27). Whereas locally ap- 
plied TGF-13 initiates leukocyte infiltration (28), this 
response is absent in monocytopenic animals (29). 

In defining the underlying molecular signals re- 
sponsible for this proinflammatory activity of 
TGF-[3, evidence now indicates that TGF-[3 influ- 
ences mononuclear phagocyte recruitment by four 
interrelated pathways: modulation of integrin 
expression, increased monocyte--matrix adhesion, 
enhancement of matrix-specific collagenase secre- 
tion, and chemotaxis (21, 30) (Table II). In order for 
circulating monocytes to exit the vascular bed at 
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Table H. Immunoregulation by TGF-I3 

Proinflammatory Immunosuppressive 

1' Integfins ~ ROI, NOI 
1' Collagenase ~ TGF-13 receptors 
1' Chemotaxis ~ IL-I receptor 
t' Th 1 lymphocytes 1̀  IL-lra 
1" Cytokines ~ Hematopoiesis 
1' Matrix ~ Proliferation 

~, LAK, NK, CTL 

sites of injury, they become enmeshed in a clot or 
adhere to the vascular wall, subsequently encoun- 
tering the basement membrane, a barrier of type IV 
collagen, laminin, and fibronectin, which they must 
traverse. The signals regulating these events are not 
well delineated, although the cytokines interleukin 
1 (IL-1), tumor necrosis factor (TNF), and "ylFN 
appear to be influential in certain aspects of this 
process (31-33). Considering that TGF-13 has been 
shown to inhibit adhesion of leukocytes to endothe- 
lial cells in vitro (34), it is unclear how TGF-13 
induces leukocyte accumulation at injection sites in 
vivo. However, one mechanism whereby TGF-13 
may initiate the requisite cell--cell and cell-matrix 
interactions is by virtue of its ability to enhance cell 
surface integrin expression (30). 

Integrins are heterodimers composed of an et and 
a [3 subunit (32, 33) which form transmembrane 
links between the extracellular matrix and the cel- 
lular cytoskeletal elements. Functionally, the 132 
heterodimers mediate cell-cell interactions, 
whereas the ~1 integrins (VLA) foster cell-matrix 
binding. In response to picomolar levels of TGF-13, 
monocyte c~3131 receptors, which interact with cell 
binding domains of laminin, collagen, and fibronec- 
tin, increase. Besides a3131, monocyte fibronectin 
receptors (ot5131) also increase as previously shown 
for mesenchymal cells (35). Augmentation of inte- 
grin receptor expression is reflected by increased 
mononuclear phagocyte adhesiveness to structural 
matrix substrates. 

Negotiation of a path through the matrix to the 
site of inflammation requires leukocyte release of 
matrix-degrading enzymes. To this end, monocyte 
production of the 92- and 72-kDa gelatinase/type IV 
collagenases is augmented by TGF-[3 (30). This 
response is quite specific since circulating mono- 
cytes require an appropriate stimulus, such as 
TGF-[3, to synthesize and secrete this enzymatic 
activity. Consequently, the rapid release of TGF-13, 
first by platelets and then by inflammatory cells 
themselves, can serve as a powerful recruitment 

factor, mediating integrin expression, attachment, 
and coUagenolytic activity in a finely tuned scenario 
enabling the leukocytes to marginate, undergo dia- 
pedesis, traverse the basement membrane, and 
commence extravascular directed migration. 

Mononuclear-Celt Activation 

Once at the site of injury or inflammation, the 
recruited leukocytes are subject to regulation by 
higher concentrations of a plethora of potential 
mediators and cytokines, including TGF-13. For 
example, levels in excess of 20 ng/ml of active 
TGF-13 have been reported in inflamed synovial 
fluids (15, 36, 37). Understanding the mechanisms 
regulating the exuberant production of this peptide 
may elucidate the immunopathology of diseases 
such as rheumatoid arthritis. Within inflammatory 
sites, several types of cells are capable of producing 
TGF-13, including activated lymphocytes, macro- 
phages, neutrophils, and synovial fibroblasts (15, 
37-43). Moreover, TGF-fl has been shown to aug- 
ment its own secretion in many cells, setting in 
motion both autocrine and paracrine circuits of 
potentially cyclic release. The autoinduction of 
TGF-fll transcription is mediated by AP-1 (Jun- 
Fos) binding sites in the TGF-131 promoter (6). 
Monocytes, responding to picomolar concentra- 
tions of TGF-13, demonstrate increased mRNA 
expression and secretion of both TGF-fll and 132 
peptides (40). Activated T cells also transcribe and 
translate both TGF-~I and TGF-[32 (42). Accord- 
ingly, expression of TGF-13 mRNA appears most 
abundant during active inflammation and cell- 
mediated immune reactions (44). 

Apart from its capacity to promote cell recruit- 
ment, TGF-13 is a potent regulator of other critical 
cell functions. At picomolar concentrations, TGF-13 
increases resting monocyte mRNA levels for IL-I, 
TNF, platelet-derived growth factor (PDGF), basic 
fibroblast growth factor (bFGF), and IL-6 (21, 27, 
39, 40-47). The secretion of IL-1, TNF, and IL-6 
(40, 45, 47) can trigger a cytokine cascade in which 
each of these molecules plays a part. For example, 
induction of IL-1 stimulates T cells posttranscrip- 
tionally to produce elevated levels of active TGF-13 
(48), which can further increase IL-1 synthesis (40) 
in a positive feedback loop. In addition to cyto- 
kines, TGF-13 induces Fc~/RIII (CD16) on newly 
recruited monocytes (49, 50), which together with 
increased adhesion molecules, promote phagocytic 
activity and the release of toxic oxygen radicals in 
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vitro (49) and in vivo (51, 52). Thus, one of the 
principal actions of TGF-13 in monocytes may be to 
control gene transcription, albeit transiently (53), 
for a series of biologically active molecules that 
control many of the subsequent events in the in- 
flammatory process. 

The effect of TGF-[3 on T lymphocytes, originally 
considered to be exclusively inhibitory, now ap- 
pears to be more complex. TGF-[3 has recently been 
shown to function in a costimulatory capacity to 
regulate T-cell proliferation triggered through the 
T-cell receptor/CD3 complex (54). Moreover, expo- 
sure ofCD4 ÷ murine T cells to TGF-13 results in the 
rapid conversion of putative precursors (CD45RB 
high, Pgp-I low) to mature memory CD4 cells as 
characterized by loss of CD45RB, increased 
expression of Pgp-1 (CD44), increased proliferative 
capacity, and secretion of lymphokines (IL-2), all 
traits consistent with the T-helper cell type I phe- 
notype (54, 55). The differentiation state of the cell 
appears to be particularly critical in determining 
how the cell will respond to TGF-[3, with naive T 
cells induced to proliferate and the growth of ma- 
ture T cells (CD45RB low, CD44 high) subject to 
inhibition. At sites of immunologic challenge the 
initial rapid release and accumulation of TGF-~ 
would be conducive to the generation of THI cells, 
which are essential to the evolution of delayed-type 
hypersensitivity and antigenic memory. Localiza- 
tion of this subset of cells within the lesion may be 
facilitated by the TGF-13 regulated increase in CD44 
(33). 

The identification of TGF-[3 at sites of inflamma- 
tion (15, 36, 37, 43, 56), coupled with the conse- 
quences observed following local injection of 
TGF-13 (23, 26, 27), implicates the peptide as play- 
ing a critical role in the early phases of an inflam- 
matory response (Table II). While functioning to 
promote inflammatory events, aberrant expression 
of TGF-13 may have pathologic consequences. In 
this context, locally administered TGF-13 exacer- 
bates an ongoing inflammatory lesion as demon- 
strated in an experimental model of synovial inflam- 
mation and tissue destruction (57). 

Inhibition o f  TGF-fl-Mediated Recruitment and 
Activation 

If TGF-13 is, in fact, contributing to the chronicity 
of arthritis and other lesions, then specific antago- 
nists of TGF-13 should be able to block the progres- 
sion of disease or, possibly, induce regression. In 

animals receiving an arthropathic dose of bacterial 
cell walls, a single injection of anti-TGF-13 intraar- 
ticularly reversed the sequelae of events culminat- 
ing in joint destruction. Whereas the isotype control 
antibody had no appreciable effect, anti-TGF-[3 
administered to the contralateral joint suppressed 
both the acute neutrophil-mediated synovitis and 
the chronic T cell-dependent and monocyte- 
mediated destructive phase of the arthritis. These 
data establish a very strong association between the 
enhanced TGF-~ identified in synovial fluids and 
tissues of arthritis patients (15, 36, 37, 43) and the 
pathophysiology of this disease. In another disease 
model, antibodies to TGF-t3 also suppressed the 
progression of experimental glomerulonephritis 
(59), indicating that abnormal expression of this 
otherwise normal chemotactic and growth factor 
can be pathologic. 

TISSUE REPAIR AND FIBROSIS 

Wound Healing 

After the initial inflammatory reaction, TGF-13 
plays a critical role in resolution of the response and 
in tissue repair and fibrosis. The response initiated 
solely by TGF-13 is self-limited and reversible (26, 
27), likely due to the short half-life of TGF-[3 (18), 
down-regulation of TGF-13 receptors (49, 60), and 
the fact that TGF-[3 cannot prevent leukocyte pro- 
grammed cell death (PCD) (61). However, in con- 
cert with other inflammatory mediators as well as 
with matrix components, TGF-13 regulates many 
processes including angiogenesis, chemotaxis, 
fibroblast proliferation and controlled synthesis and 
degradation of the extracellular matrix, necessary 
for tissue repair (1). Fibroblasts recruited by TGF-13 
(27, 62) are indirectly stimulated by this cytokine to 
proliferate through the induction of PDGF (63) and 
PDGF receptors (64). Subsequently, the production 
of fibroblast collagen, fibronectin, and glycosamino- 
glycan is directly upregulated by TGF-[3 (1, 26, 65). 
Moreover, many of the effects of TGF-13 on connec- 
tive tissue regeneration and neovascularization (26, 
27, 66) may well be secondary to the induction of 
mediators by the infiltrating mononuclear phago- 
cytes. Compounding the TGF-[3-mediated matrix 
regeneration is the TGF-13 enhanced production of 
protease inhibitors and suppression of proteolytic 
enzymes (67, 68). The net effect of this differential 
regulation of matrix proteins, enzymes, and enzyme 
inhibitors is the accumulation of matrix proteins 
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Table 111I. Potential Therapeutic Applications of TGF-13 

Local administration 
Soft tissue repair 

Wound healing 
Decubitus, diabetic, vascular ulcers 
Bums 
Periodontal lesions 
Retinal tears 

Hard tissue repair: fractures 
Psoriasis 

Systemic administration 
Antiinflammatory agent 
Autoimmune diseases 
Organ transplants 
Osteoporosis 
Malignancies 

and scar formation (26), which can be taken advan- 
tage of clinically to promote deficient wound heal- 
ing (69, 70) (Table III). 

Fibroproliferative Disorders 

Beyond the normal regulation of inflammation 
and scar formation, aberrations in persistence, pro- 
duction, or regulation of TGF-13 may be important 
in excessive matrix generation. TGF-[3 apparently 
must be present in a regulated amount, since insuf- 
ficient levels of the peptide may impede inflamma- 
tory and healing processes, and excess TGF-[3 
potentiates chronic inflammatory and fibrotic le- 
sions. In this regard, TGF-13 is a potent upregulator 
of collagen gene expression (71-73), indicating its 
potential role in fibrotic disorders of the liver (56, 
74, 75), lung (76, 77), and skin (78). Moreover, a 
spectrum of connective tissue disorders including 
rheumatoid arthritis, sceleroderma, myelofibrosis, 
and hepatic, intraocular, and pulmonary fibrosis 
exhibits substantial TGF-[3 mRNA and peptide syn- 
thesis (15, 36, 76, 78-82). These observations show- 
ing an increase in TGFq3, especially TGF-132 (78, 
81), are consistent with a role for overexpression of 
the molecule in pathologic processes. Whether this 
abundance of TGF-13 is the consequence of in- 
creased synthesis or absence of regulation is un- 
clear. 

Unregulated TGF-[3 may result from inadequate 
levels of binding proteins and clearance (83, 84) or 
lack of antagonists such as IL-4 (85). In vitro, both 
~/IFN and TNF counteract the profibrotic activity of 
TGF-13 (86), and impo.rtantly, patients with chronic 
hepatitis C show decreases in both liver TGF-[31 
mRNA and procollagen type 1 mRNA following 
alFN therapy (79). Thus, regulation of production 

and bioactivity of this cytokine influence the out- 
come of an inflammatory response. 

REGULATION OF RECEPTORS 

The ability of cells and the local milieu to gener- 
ate TGF-t3 in a form that binds to cellular TGF-13 
receptors is crucial to the progression of inflamma- 
tory events. Once dissociated from the latency- 
associated peptide, the active form of the TGF-13 
interacts with its specific cell surface receptors to 
mediate its multiple biologic activities. With few 
exceptions, cells express TGFq3 receptors, and 
coupled with the diversity of its effects, this peptide 
appears somewhat unique in its broad spectrum of 
effects on normal as well as pathologic immune 
responses. Thus, the study of TGF-13 receptors and 
their modulation is of prime importance for under- 
standing the mechanisms by which TGF-[3 elicits its 
biologic effects and for identifying mechanisms to 
control the effects of this pleiotropic peptide. 

Receptor Characterization 

Based on size, three classes of TGF-[3 receptors 
have been characterized: type I 53-kDa binding 
glycoprotein, type ii 85- to l l0-kDa glycoprotein, 
and type III dimer composed of 250- to 350-kDa 
proteoglycan subunits (87, 88). Of these different 
forms, types I and II appear to have signal trans- 
ducing capabilities (89-91), whereas type III recep- 
tors, which consist of the glycosaminoglycan resi- 
dues heparan sulfate and chondroitin sulfate 
attached to a 100- to 140-kDa core binding protein, 
appear to function in a ligand storage capacity 
and/or to interact with extracellular matrix constit- 
uents (88). Soluble forms of the type III receptor 
have been detected which bind TGF-13 similarly to 
the membrane bound form (92). Although not iden- 
tified on hematopoietic cells, a type IV (60-kD) and 
a type V (400-kD) glycoprotein receptor have re- 
cently been reported (93, 94) but their functional 
characteristics have not been established. No sig- 
naling occurs following ligand binding to the type 
III proteoglycan (89). However, signal transduction 
pathways initiated via ligand binding to the types I 
and II receptors, which may number only a few 
hundred, have not been fully elucidated, with no 
demonstrated tyrosine kinase activity (95, 96), but 
possible involvement of G proteins (97). After clon- 
ing of the genes for these TGF-[3 receptors has been 
accomplished, a better understanding of receptor 
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function in transmitting signals to the cell interior 
will be forthcoming. 

Receptor Modulation 

The number of TGFq3 receptors on cell surfaces 
varies with the cell type and with the level of 
maturation or activation, providing a basis for dif- 
ferential sensitivity and regulation of cellular func- 
tions in response to TGF-13 (Table I). This differen- 
tial regulation may provide a crucial mechanism for 
reversing the potentially cyclic protagonist activi- 
ties of TGF-13. For example, resting human mono- 
cytes freshly isolated from peripheral blood possess 
-400 TGF-13 binding sites (binding constant, <I0 
pM), all type I receptors. In these circumstances, 
the monocytes are exquisitely sensitive to stimula- 
tion by TGF-13 (21, 53). As these cells become 
activated by inflammatory stimuli including ~/IFN 
or bacterial-derived lipopolysaccharide, the expres- 
sion of TGF-13 receptors is down-regulated. Conse- 
quently, these cells lose their sensitivity to TGF-13 
stimulation (21, 53), even though they are not 
globally suppressed since they may remain respon- 
sive to stimulation by other agents. 

In addition to activation-induced loss of TGF-13 
receptors, the type I receptors are acutely down- 
regulated or internalized (I"1/2 = 5 min) following 
exposure to TGF-13 as the receptor-ligand com- 
plexes are internalized (60). This measurable ligand- 
induced loss of TGF-13 receptors is somewhat 
unique to monocytes, probably because these cells 
express only one class of receptors, whereas many 
other types of cells express two or three receptor 
classes, masking receptor fluctuation. Subsequent 
receptor regeneration in monocytes is slow (60), 
and the incomplete regeneration of receptors, to- 
gether with the loss of TGF-13 receptors induced by 
inflammatory stimuli, is responsible for the reduced 
sensitivity of activated monocytes to TGF-13. This 
loss of sensitivity to TGF-I3 by activated monocytes 
may be a turning point in reversing an inflammatory 
response. 

Conversely, but with similar immunosuppressive 
consequences, T lymphocytes increase their 
expression of types I and II TGF-13 receptors and 
also express the proteoglycan binding sites for 
TGF-13 as they become activated (42, 89, 98). This 
dichotomy in receptor expression by these two cells 
central in an immune response may subserve the 
same function, namely, down-regulation of the re- 
sponse. Once T cells become activated, expressing 

increased TGF-t3 receptors, exposure to picomolar 
levels of TGFq3 may compromise the ability of 
these cells to proliferate and secrete certain cyto- 
kines (42, 55, 98-100). It is remarkable that TGF-[3 
stimulates naive CD4 cells to become memory cells 
and then ultimately blocks their further clonal ex- 
pansion in a negative feedback loop. Escape from 
suppression has been associated with loss of TGF-13 
receptors (101). Thus, whether the effects of TGF-[3 
on a cell are inhibitory or stimulatory depends in 
large part on the context (9). 

IMMUNE SUPPRESSION BY TGF-t3 

Growth Inhibition 

In several models of inflammatory disease, in- 
cluding adjuvant and bacterial cell wall-induced 
arthritis (102, 103), experimental allergic encephalo- 
myelitis (103-105), graft rejection (106), and reper- 
fusion-induced injury (107), systemically adminis- 
tered TGFd3 down-modulates organ inflammation. 
How TGF-~ promotes or inhibits immune pro- 
cesses remains elusive, yet the evidence appears 
solid that systemic, in contrast to local, administra- 
tion favors suppression (Table II). Significantly, a 
striking absence of generalized immune suppression 
was noted in experimental animals receiving TGF-~ 
systemically (102, 105), despite pronounced sup- 
pression of the localized immune responses. These 
observations are consistent with the resistance of 
resting lymphocytes, but increased susceptibility of 
activated T lymphocytes, to suppression. Probably 
the single most important determinant of the biolog- 
ical consequences of TGF-13 on a particular target 
cell is related to its state of differentiation (Table I). 
Such opposing effects of TGF-13 on cells at different 
times in their life cycle suggests the following 
sequence of events: TGF-13 is released early and 
functions in many capacities to promote inflamma- 
tion based on its stimulating effects on immature 
monocytes and T cells. Once these cells differenti- 
ate and become activated, they become susceptible 
to phenotypic modulation and functional inhibition 
by TGF-13. Under normal conditions, the transition 
from pro- to antiinflammatory responsiveness oc- 
curs with minimal disruption of host cell and tissue 
homeostasis. 

In T-lymphocyte populations susceptible to 
growth arrest, TGF-13 directly inhibits mitosis in the 
late G l phase of the cell cycle (99, 109) by an 
ill-defined mechanism. Inhibition involves regula- 
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tion of transcription of the early growth factor- 
dependent c-myc gene and of the transferrin recep- 
tor (110, 111). Moreover, in addition to these 
critical regulatory targets, growth inhibition may 
involve accumulation of the underphosphorylated 
retinoblastoma (Rb) gene product (111, 112). In 
addition to direct suppression of clonal expansion, 
TGF-13 may also suppress these events indirectly by 
inhibiting IL-1 receptor expression (113, 114) and 
by inducing synthesis of IL-1 receptor antagonist 
(IL-lra) (115, 116). IL-lra,  a 22-kDa protein which 
binds to the IL-1 receptor, has no agonist properties 
and blocks IL-1 binding and signal transduction, 
thereby aborting IL-l-dependent responses (117). 

The reported differential susceptibility of CD4 + 
and CD8 ÷ lymphocytes to TGF-13 inhibition of 
proliferation may further contribute to resolution of 
an inflammatory response, since inhibition of ma- 
ture CD4 + cells responsible for cell-mediated im- 
mune functions (44, 118) is near-complete, whereas 
TGF-13 is considerably less inhibitory (119) and may 
even promote (54) CD8 + lymphocyte growth. This 
resistant CD8 + population synthesizes products in- 
cluding IL-4, IL-5, and IL-10 which have additional 
immunosuppres sive actions (118). Under the appro- 
priate conditions, TGF-13 appears to foster the gen- 
eration of inhibitory feedback molecules and appar- 
ently works in concert with them to reverse immune 
processes. 

Inhibition o f  Hematopoiesis 

Another contributing factor to the immunosup- 
pression observed following systemic administra- 
tion of TGF-13 may be related to suppression of 
leukocytosis (102). A number of studies have shown 
that TGF-13 is an effective inhibitor of hematopoi- 
eric events, acting primarily on immature precursor 
populations (120-124), consistent, once again, with 
the concept that the effects of TGF-13 are linked to 
differentiation. While these in vitro studies have 
been useful for evaluating the direct effects of 
TGF-t3 in defined systems where, dependent on 
dose and duration, inhibition of essentially all lin- 
eages has been observed, the in vivo administration 
of TGF-13 more closely reflects the physiologic 
consequences of this peptide based on multisystem 
responses (102, 125). In animal models, exoge- 
nously delivered TGF-13 may not influence normal 
hematopoietic events to the same extent as that 
observed in animals undergoing intense hematopoi- 
etic activity. This conclusion is based on studies 

showing that the peripheral white blood-cell count 
of animals receiving only TGF-13 was not markedly 
suppressed, whereas animals with active inflamma- 
tion and exhibiting leukocytosis had markedly re- 
duced leukocyte numbers after systemic TGF-I3 
treatment (102). Similarly, in animals subjected to a 
lethal dose of ionizing radiation, in which induction 
of IL-1 and TNF is radioprotective, TGF-I3, albeit 
at very high doses (10 ix#mouse), reversed the 
host's ability to recover (126). Thus, TGF-I3's abil- 
ity to inhibit early progenitor bone marrow cell 
proliferation may include direct suppression of 
growth, but also reflect its capacity to antagonize 
IL-1. 

At a more physiologic level, recent evidence 
indicates that basal autocrine production of TGF-13 
by a subpopulation of early progenitors negatively 
regulates their cycling status and this may occur 
through interaction with the Rb gene product (127). 
In these studies, the addition of antisense, but not 
sense, TGF-I3 oligonucleotides enhanced colony 
formation of all lineages of early progenitors with- 
out any effect on late erythroid progenitors or 
macrophage colonies. Not only did antisense 
TGF-13 release hematopoietic progenitors from a 
quiescent growth factor-unresponsive state, but ex- 
ogenously added TGF-I3 completely blocked early 
multipotential progenitor colony formation (127). 
The control of hematopoiesis by basal autocrine 
production of TGF-[3 may, in turn, be subject to 
retinoid control, since normal systemic levels of 
retinoids are believed to regulate functional TGF-13 
expression in responsive cells (I28). Any augmen- 
tation of the basal TGF-13 levels or exogenous 
administration of TGF-[3 may then become immu- 
nosuppressive, at least in part, by limiting the 
number of available leukocytes. 

Additional Mechanisms o f  Immune Suppression 

In addition to inhibition of T-lymphocyte prolif- 
eration and hematopoiesis, other pathways may 
contribute to the impressive immunosuppression 
induced by TGF-13 in certain disease conditions. 
One of the earliest effects of elevated systemic 
TGF-13 might be elimination of lesion-centered 
chemotactic concentration gradients required for 
directed extravascular migration. In animal models 
of inflammation, exogenously administered sys- 
temic TGF-13 impairs inflammatory cell movement 
into the site of immunologic challenge (102). More- 
over, elevations in circulating levels of TGF-13 in 
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the autoimmune mouse strain MRL/Ipr are associ- 
ated with defective neutrophil migratory responses 
and phagocytic function (129). Another contributing 
factor to the suppressed host response may be the 
ability of TGF-13 to diminish rapidly and completely 
IL-1- or TNF-induced hepatocyte acute-phase pro- 
tein synthesis (130). 

In other in vitro systems, TGF-[3 antagonizes the 
activity of IL-1 and TNF, and this antagonism 
extends to other cytokines including IL-2, IL-3, and 
~/IFN (42, 99, 131-134). Besides antagonizing cy- 
tokine activity, TGF-13 may also inhibit the produc- 
tion of IL-I and TNF (46, 135). Inhibition requires 
pretreatment of mononuclear phagocytes with 
TGF-13 (37, I36), and when TGF-13 is administered 
after stimulation, TGF-13 is less or no longer inhib- 
itory (137), which may reflect the modulation of 
TGF-13 receptors (53). Although the inhibition of 
IL-1 was initially reported to occur posttranscrip- 
tionally (46), it appears that IL-I production is not 
inhibited but that TGF-13 coinduces IL-1 receptor 
antagonist (IL-lra), thereby masking IL-1 bioactiv- 
ity (115, 116). The induction of IL-lra, by virtue of 
its ability to block the plethora of IL-l-dependent 
inflammatory and immune phenomena, may be a 
key event in TGF-13-mediated immune suppression. 

Whether by cytokine blockade or by other mo- 
lecular mechanisms, TGF-13 also suppresses the 
development, activity, and/or differentiation of cy- 
totoxic T, LAK, and natural killer cells (108, 133, 
138-143), effectively compromising cytolytic func- 
tions. The ability of TGF-t3 to inhibit expression of 
the cytolytic pore-forming protein by CD8 + T cells 
likely contributes mechanistically to the overall 
decreased cytolytic activity (144). 

Another susceptible lymphoid target for TGF-13 is 
represented by cells of B lymphocyte lineage. Be- 
sides blocking their proliferative response, TGF-13 
inhibits IgG and IgM mRNA synthesis and protein 
secretion (145, 146). Inhibition of the switch from 
the membrane forms of p, and ~/-H chain mRNA to 
the secreted forms in stimulated B-cell cultures 
occurs without altering expression of Oct-2 or 
NF-kB (146). As a consequence of this decrease in 
membrane Ig expression and the capacity to secrete 
Ig in response to stimulation, B-cell responsiveness 
to antigens and antigen presentation are compro- 
mised. Related to its ability to inhibit B-cell growth, 
TGF-t3 promotes switching of IgM- or IgD-bearing 
B cells to cells bearing the IgA isotype (147-149). 
By inhibiting enhancement of FceR2 (CD23) expres- 
sion, TGF-13 can also be considered a negative 

regulatory molecule in IgE-mediated immune re- 
sponses (150). Thus, by a series of interconnecting 
pathways, TGF-13 suppresses immune cell func- 
tions, pivotal in termination of the immune re- 
sponse but with the potential, if unchecked, to 
cause pathology. 

ACQUIRED IMMUNODEFICIENCY SYNDROME 

Because of the association of TGF-13 with im- 
mune suppression, it was not surprising that aug- 
mented production of this cytokine was reported in 
patients with acquired immune deficiency syn- 
drome (AIDS), the prototypic disease of immune 
suppression. Moreover, in vitro infection of mono- 
nuclear cells with HIV-1 causes the cells to express 
and secrete a peptide identified as TGF-13 (52, 
151-153). Mechanistically, the HIV-1 tat protein 
appears to up-regulate TGF-I3 production (152), and 
typical of the self-perpetuating cyclic nature of 
cytokine regulation, TGF-13 induced by HIV-1 stim- 
ulates IL-6 production, and then IL-6 up-regulates 
TGF-13 (154, 155). Crucial to the manifestations of 
HIV-1 infection, TGF-13 enhances HIV-I replica- 
tion in cells of monocytic lineage and in PHA- 
stimulated peripheral blood mononuclear cells 
(156-158), although decreased viral replication oc- 
curs in the chronically infected U1 cell line (156). 
These data provide fairly compelling reasons to 
suspect that TGF-13 may play an important role in 
the spread of infection and/or disease progression 
by amplifying the existing viral load. Such an hy- 
pothesis is compatible with the recent observations 
documenting increased TGF-13 in the central ner- 
vous system of AIDS patients, a tissue highly 
susceptible to HIV-I infection (153). 

In addition to modulating virus expression, the 
increased production of TGF-13 likely contributes to 
impaired lymphocyte proliferative responses char- 
acteristic of AIDS; this impaired proliferation can 
be restored in the presence of antibodies to TGF-13 
(152). Increased levels of TGF-t3 may contribute to 
the HIV-induced CD4/CD8 inversion by promoting 
naive CD8 ÷ T-cell growth and suppressing mature 
CD4 + T-cell proliferation. The inability to confine 
TGF-I3 to localized areas of infection (53) may 
influence cellular functions elsewhere and acceler- 
ate the spread of opportunistic pathogens. 

That TGF-13 can suppress the expression of acti- 
vated macrophage effector functions, including the 
generation of toxic oxygen and nitrogen species 
(I36, 137, 159), may facilitate pathogen survival in 
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the tissues. In experimental models, systemically 
administered TGF-I3 facilitates parasite survival 
and the development of fatal infections. Not only 
did TGF-I3 exacerbate infection in susceptible ani- 
mals, but TGF-13 treatment of animals otherwise 
resistant to Trypanosoma cruzi caused a striking 
increase in parasitemia and mortality (160). Ele- 
vated levels of endogenous TGF-I3 have similar 
consequences since spleen cells of rodents infected 
with Trypanosoma cruzi, lymphocyte choriomenin- 
gitis virus (LCMV) or exposed to bacterial products 
produce sharply elevated quantities of TGF-I3 
which progressively suppress lymphocyte growth 
and macrophage oxidative metabolism (100, 160, 
161). Thus, if bacterium- or virus-infected cells 
manifest increased generation of TGF-I3 as has been 
shown not only for HIV-1 and LCMV (108), but 
also for CMV (I62), EBV (163), and hepatitis C 
(79), this cytokine may contribute to diminished 
phagocyte functions, as well as other immune- 
dependent sequelae associated with such infec- 
tions. These observations support the hypothesis 
that augmented TGF-t3 levels may exert global 
negative regulatory effects in conditions such as 
AIDS and provide impetus for identifying relevant 
antagonists which might alter the course of infec- 
tions and immune function in these patients. 

SUMMARY 

As we continue to explore the biology of TGF-13 
in the network of cells and mediators contributing 
to host defense, the mechanisms controlling 
whether the pro- or antiinflammatory effects of this 
peptide prevail will be unraveled. Understanding 
these basic mechanisms may offer new approaches 
for identifying agonists and/or antagonists and in 
which circumstances their use might be appropri- 
ate. The striking differences between local and 
systemic administration of this cytokine reaffirm 
that the functional consequences of any biologic 
mediator must be considered in context (9) and, 
furthermore, suggest avenues of therapeutic appli- 
cation (Table III). In summary, the central role of 
TGF-I3 in normal and aberrant host defense has 
become indisputable. 
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