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1. Introduction 

In 1983 H. Yoshida [Yos83] suggested a simple and easily verifiable 
criterion of the integrability of autonomous nonlinear systems of differential 
equations admitting a quasi-homogeneous group of symmetries. F. Gonza- 
lez-Gascon [Gon88] criticized the Yoshida method and pointed out some 
imperfections of the proof. He also outlined some ideas with the help of 
which one could construct a counter-example to the Yoshida theorem. In 
his later works [Yos87, Yos88, Yos89] Yoshida, in fact, gave up his original 
method. By means of a rather complicated technique suggested by Ziglin 
[Zig83], he found a non-integrability criterion for quasi-homogeneous sys- 
tems of a very special kind. He treated Hamiltonian systems where Hamilto- 
nians were the sum of kinetic and potential energies, and the kinetic energy 
was proportional to the sum of squared impulses while the potential energy 
was a homogeneous polynomial. Though some model physical problems are 
of the above type (a one-dimensional three-body system, the Yang-Mills 
system, etc.), the domain of applicability of the Yoshida criterion became 
sufficiently narrow. In particular, one is not able to deal with systems the 
nature of which is essentially non-Hamiltonian because of the energy 
dissipation. The author thinks that some ideas of [Yos83] are quite fruitful 
and can become a ground for further scientific investigations in this 
direction. The main goal of this work is an attempt to use arithmetic 
properties of the Kowalevsky exponents to test whether a system of 
differential equations is integrable or not. 

2. Basic lemma 

Let us consider an analytic system of differential equations 

i ,  = f ( u ) ,  u ~ C n, u = ( u l ,  . . . , u n) 

in a neighbourhood of the trivial stationary solution u = 0 (f(0) = 0). 

(i) 
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Let us denote the Jacobi matrix ~?f/Ou(O) of the vector field g(u) at u = 8 
as A. For  simplicity, we assume that  A is diagonalizable and that  the 
corresponding operator  has already a diagonal  form d i a g ( 2 ~ , . . . ,  2,). 

The basic idea. I f  system (1.1) has nontrivial integrals analytic in a 
neighbourhood of  a trivial solution u = O, then eigen values of  the matrix A 
have to satisfy certain resonant conditions. 

Lemma 1. Let de tA  # 0 ,  then if the eigen values 2t . . . . .  2~ of  the 
matrix A do not  satisfy any resonant  equality of  the following type 

kj2j=O, kj ~ N w{0}, ~ k j_>l  (2) 
j = l  . j= l  

the system of  equations (1) dos not  have any nontrivial integral analytic in 
a ne ighbourhood  of u = 0. 

Proof. We will use the p roo f  by contradict ion.  Let the opposite state- 
ment  hold. There is an analytic function 05(u) which is an integral of  (1). 
Then this function has to satisfy the following partial differential equat ion 

where ( . ,  .) means the s tandard scalar p roduct  in C". 
Wi thout  any loss of generality, we assume that  05(0) = 0. 
Let us expand the function 05(u) into the Maclaurin series 

O(u) = 05(1)(u) + 05(2)(u) + " ,  (4) 
where 05(~, k = 1, 2 , . . .  are homogeneous  polynomials  in u. 

Let us equate all the terms in (3) of  the same order  with respect to u to 
zero and consider the first form of  the Maclaurin expansion of  05(u) 

= @, . ) .  ( 5 )  

Here p ~ C" is a constant  vector. 
The corresponding equat ion for linear terms reads 

@, Au) = 0 (6) 

for any u. 
Therefore, p is an eigen vector of  the matrix A* = A with a zero eigen 

value, which contradicts the condit ion that  det A* # 0. 
Thus, the vector p has to be equal to zero. 
We suppose now that  we have proved that  05(1) = .  �9 �9 = 05(~_ ~) = 0. Then 

it follows f rom (3) that  05~k~ has to satisfy the following linear partial 
differential equat ion 

(D05(k~ ~ D05(k~ + 
(u),  A .  = (u)u:  =_ o. (7) ?u / j= 
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This means that the first nonzero term in the above expansion, for 
instance, the k-th differential of ~b(u) at the point u --- 0 ~b(k)(u) = D(~)q~(0, u) 
is an integral of the linearized system 

: a u .  (8 )  

Let us rewrite q~k) as a sum of elementary monomials 

qS(ki(Ul,-..,U ~)= ~ qSkl ~,(ul) k l " ' ' ( u " )  k~ (9) 
kl+"-+kn-k  

Then, as follows from (7), a resonant condition of (2) type has to be 
fulfilled for any nonzero coefficient ~ b k ,  ~, since 

E (kldLlq-''" q-kn~n)~)kl"'kn(ul) k ' ' ' "  ( un)kn ~ 0 '  
k 1+.. .+kn-k 

which contradicts the conditions of Lemma 1. The lemma is proved. 

(lO) 

Remark 1. The requirement of the analyticity of the vector field f ( u )  can 
be weakened. If we replace this condition with infinite differentiability, the 
statement on the non-existence of a nontrivial integral should be treated as 
the statement on the absence of a f o r m a l  nontrivial integral. 

Remark 2. The condition det A r 0 can be omitted because, in fact, the 
requirement of the absence of the resonant relationships (2) contains the 
above condition. 

We will use observations made in this Section to improve the Yoshida 
criterion. We will show, for instance, that a system of differential equations 
with a quasi-homogeneous symmetry group does not have "quite nice" 
integrals if eigen values of the Kowalevsky matrix are not resonant. 

3. Quasi-homogeneous and semi-quasihomogeneous systems 

Let us consider a system of differential equations smooth in a neigh- 
bourhood of the origin x = 0 

Jc = g(x) ,  x c (11)  

Definition 1. System (11) is called a quasi-homogeneous one of degree 
m with exponents s ~ , . . . , s n ,  s ~ , . . . , s n ~ 2 ~ , m e N ,  m < l ,  if for any 
Q e R+,x = ( x  1 . . . .  , x  ") all the components of the vector field g =  
(g x , . . . ,  gn) satisfy the following system of equalities 

gJ'(~oSlx 1 . . . .  , o S n x  n) = 0 s j + m  l g J ( x l ,  . . . , X n ) .  (12) 

We also give another definition. 
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Let H = d iag(h~ , . . . ,  h~) be a diagonal matrix with real elements. We 
will denote the following diagonal matrix d iag(#h l , . . . ,  #h,) as # n  where 
# ~ + .  

Definition 2. We will say that system (11) is quasi-homogeneous with 
respect to a symmetry group generated by the matrix H if 

g(#"x) = ~"+ ~g(x), (13) 

where E is a unit matrix. 
It is easy to see that equality (13) can be obtained from (12) by 

substituting ~o = #~, ~ = 1/(m - 1). It is also obvious that a quasi-homoge- 
neous system is invariant under the following transformation group 

x ~ #/~x, t ~# -~ t ,  H = ~S, S = d iag(s~ , . . . ,  &). (14) 

We will denote a quasi-homogeneous vector field as g~ bearing in mind 
its degree. 

Let us consider the following construction. We rewrite each component 
gJ of the right-hand side of system (11) as a Maclaurin sum 

gJ = Z g ~  k , , (x ' )~ l . . -  (x,)~,. (15) 

A vector k ~ N~, k = ( k ~ , . . . ,  k~,) will correspond to each nontrivial 
monomial of the above expansion. 

Definition 3. The total collection of geometric points corresponding to 
vectors k E ~n representing elementary nontrivial monomials of the compo- 
nent gJ is called the j- th Newton diagram ~j and its convex hull is called the 
j-th Newton polyhedron ~j. 

It is easy to notice that if the system of equations (11) is quasi-homoge- 
neous (g = gin) then the corresponding Newton diagrams lie on hyperplanes 
defined by linear equations 

S lk l  + ' ' "  + s j ( k j -  1) + ' "  + snk  n = m  - 1. (16) 

Definition 4. We will say that the system of equations (1 I) is semi-quasi- 
homogeneous if 

g(x) = gin(x) + ~(x), (17) 

where gin(x) is a quasi-homogeneous vector field, all the Newton diagrams 
of which lie on hyperplanes defined by equalities (16) and all the Newton 
diagrams of the vector field ~(x) lie either in half-spaces defined by inequal- 
ities 

s, kl  + . . .  + s j ( k j  - 1) + - - -  + s,,k~, < m  - 1 (18) 
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or in half-spaces defined by inequalities 

s l k l  + +sy(ky-  1) + . . .  + s n k ~  < m  - 1. (19) 

If inequalities (18) hold, we say that system (11) is positively semi-quasi- 
homogeneous. The quasi-homogeneous cut is usually said to be separated 
by positive faces of the Newton polyhedrons. In the opposite case (inequal- 
ities (19) hold) we will speak about negative semi-quasihomogeneity of the 
system under consideration. In this case the quasi-homogeneous cut is 
separated by negative faces of the Newton polyhedron. 

If system (11) is semi-quasihomogeneous, then under the action of the 
quasi-homogeneous transformation group 

x ~ l~HX,  t ~ #  It, t~ = Qm-1 (20) 

it becomes 

.t -= g~,(x) + ~(x ,  9), (21) 

where ~(x, ~o) is a formal power series either with respect to Q (positive 
semi-quasihomogeneity) or with respect to 0-1 (negative semi-quasihomo- 
geneity) without any constant term. 

Let the system of equations (11) be semi-quasihomogeneous. First of all 
we consider its quasi-homogeneous cut 

2 -- gm (x). (22) 

We look for a particular solution of (22) in the quasi-homogeneous ray 
form 

xo( t )  = t - n c  = t-~Sc, (23) 

where c ~ C" is a constant vector. 
If such a solution exists, the vector c has to satisfy the following 

algebraic system of equations 

t i c  q- gin(C) = O. (24) 

Let us make the following change of variables 

x = t-I~(c + u) (25) 

perturbing the particular solution (23). 
In these new variables, system (22) reads 

tit = Ku  + ~[(u), (26) 

where 

K = H + ~gm (C) (27) 
( T X  
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is the so-called Kowalevsky matrix and 

0g~ 
f (u )  = H e  + g,,,(c + u) - -~x (c)u. (28) 

Obviously, the expansion of the vector field J~ begins with terms of at 
least second order. 

If we make the logarithmic time change r = In t, the system of equations 
(26) becomes 

u' = Ku + Tf(u), (29) 

where prime means the derivative with respect to the new "time" r. 
This system of equations is absolutely analogous to (1). 
Let us now return to the perturbed system (11). We will consider two 

different problems depending on the "sign of semi-quasihomogeneity" of 
(11). 

(A) Let system (11) be positively semi-quasihomogeneous. We will 
search for integrals of this system in the form of formal Maclaurin series 

O ( X I ,  o o . , Y n )  ~ -  ~ ~ ) k l  . . . k n ( X l )  k l  " " " ( x n )  kn,  (30)  
k l>_O . . . . .  k,,>_O 

(B) Let system (11) be negatively semi-quasihomogeneous. We will 
search for polynomial integrals of this system, i.e. for those which have only 
a finite number of terms in (30). 

Let the case (A) take place and the system (11) have a formal nontrivial 
integral of (30) type then this integral can be rescaled with the aid of the 
matrix S, i.e. it can be rewritten as follows 

0(x) = 0,(x) + 0,+ ~(x) + - . - ,  (31) 

where 0,+i(x) are quasi-homogeneous functions of the degree l + i, i.e. 

0,+ i(o sx) = 0 '+ iO, + i(x). (32) 

After changing variables x ~#"~'x, t--+It-It ,  we can discover that in the 
case of positive semi-quasihomogeneity the system (21) has an integral 

0(x, o) = 0,(x) + 00,+T ix) + .  (33) 

This integral exists for any value of 0, so the shortened system (22) has 
to have a quasi-homogeneous integral 0(x, 0) = 01(x). 

Let now the case (B) occur. Then the integral (30) can be rewritten in 
the following form 

0(x) = 0L(x) + 0L+,(x) + + 0,_,(x) + 0,(x), L <l .  (34) 

Then system (21) has an integral 

4,(x, o~) = O,(x) + a - ' b , - , ( x )  + . . . ,  (35) 
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which is also defined for any ~o. Thus, (22) has to have a quasi-homogeneous 
integral qS(x, oo) = ~bt(x). 

Let the shortened system (22) have a quasi-homogeneous integral of 
degree l. We make the change of variables (25). After this transformation, 
the integral becomes 

4~,(x) = t-~'0l(c + u) = •(u ~ u), (36) 

where u ~  t -~ is a new auxiliary variable. 
The function q)(u ~ u) is obviously an analytic integral of the augmented 

system of equations 

u ~  - c t u  ~ u' = Ku +J'(u). (37) 

Let the Kowalevsky matrix (27) be diagonalizable and 21 . . . .  ,2 ,  be its 
eigen values. As follows from Lemma 1, in order that system (37) may not 
have an analytic integral, it is sufficient that no resonant condition of the 
following type 

-koct + ~ kj2j = O, ko, kj e N u {0}, ko + ~ kj > 1 (38) 
j = l  j = l  

is fulfilled. 
It is not difficult to prove that ~ = - 1  is an eigen value of the 

Kowalevsky matrix [Yos83]. The proof is rather simple. By differentiating 
(13) with respect to # and putting/~ = 1, we obtain 

8gin (x)Hx = (H + E)gm(X). (39) 
~x 

Therefore, the vector q = He is an eigen vector of the Kowalevsky 
matrix with the eigen value 2 = - 1 .  

Indeed, by using (24), we obtain 

8gm 
Kq = Hq + -~x (c)q = H=c + (H + E)gm(c) = - H e  = -q .  (40) 

Since e = 1 / ( m -  1), the resonance equalities (38) can be rewritten as 
follows 

-- l(k0 + (m - 1)kl) + (m - 1) ~ kj,~,j = 0. (41) 
j = 2  

If such equalities do not hold, the system does not have the necessary 
integral. 

We reformulate this result in the following form 

Theorem 1. Let system (11) be semi-quasihomogeneous. If the 
Kowalevsky matrix of its quasi-homogeneous cu t  is diagonalizable and its 
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eigen values ) q , . . . ,  2, do not satisfy any resonant condition 

k]2j = O, k~. E N u {0}, ~ k ] > l ,  (42) 
j =  1 j = l  

then the system of equations under consideration does not have any 
nontrivial polynomial integral. Moreover, if the system is positively semi- 
quasihomogeneous, there exist no smooth integrals which can be expanded 
into nontrivial formal Maclaurin series in a neighbourhood of the origin 
x = 0  too. 

4. How can one use the above method if there exists a single 
nontrivial integral? 

We are going to consider now a more "tricky" situation when the 
system under consideration (11) has a single nontrivial integral. That means 
that the quasi-homogeneous cut (22) must also have a nontrivial integral. 
As was shown in [Yos83], the following statement holds. 

Lemma 2. Let the truncated system (22) have a quasi-homogeneous 
integral el(x) of degree l such that p = 041/Ox(c ) r 0. Then among the 
Kowalevsky exponents there is the following number ,i = cU. 

So, in a general situation at least one resonant relationship of (42) type 
must be satisfied. Further, without any loss of generality, we suppose that 
2 = c~l is the last Kowalevsky exponent ,k,. 

By using the modified technique suggested by Yoshida in [Yos87], we 
find a more refined criterion of non-integrability. 

Theorem 2. If system (11) has a nontrivial integral ~b(x) such that its 
quasi-homogeneous cut qSt(x) (a quasi-homogeneous integral of the short- 
ened system (22)) is nondegenerate on the "ray direction" c (p r 0), and the 
first n - 1 Kowalevsky exponents 2~,. . ,  2n ~ are not in an integer reso- 
nance, i.e. no equality 

n - - I  n--1  

E k]).j=O, kj'~Y_, E IU/ r  (43) 
j - ~  j = l  

is fulfilled, then any other nontrivial integral ~b(x) of (11) is a function of 
r i.e. 

~b = Y(r  (44) 

where .7 is a smooth function. 
The proof is based on several lemmas. 
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Lemma 3. Let system (11) have a nontrivial integral q~(x) and any 
nontrivial quasi-homogeneous integral tpq(X) of the cut system (22) be a 
smooth function of the integral 4~z(x), i.e. Oq = fg(qSz), then any nontrivial 
smooth integral ~p(x) of the entire system (11) is a smooth function of qS(x) 
(see (44)). 

Proof. With the help of the quasi-homogeneous change of variables 
X-+#Hx, t--+#-lt let us rewrite system (11) in the following form 

5c = g(x, ~) =gin(x) + ~ eJgm+~j(x), (45) 
j - 1  

where e -- ~, o- = 1 if the case (A) (positive quasi-homogeneity) takes place 
and e = ~-1, a = - 1  in the case (B) (negative quasi-homogeneity), g,,,+~j 
are quasi-homogeneous vector fields. 

We can also rewrite the integral ~b(x) of system (11) as follows 

qS(x, ~) = ~b,(x) + ~ Uq51+~;(x), (46) 
j = l  

where ~l+~s(x) are corresponding quasi-homogeneous functions. 
By analogy, after the above change of variables any other smooth 

integral q/(x) of (11) reads 

~I(X, ~) = ~l q(X) "q- E 13J~lq +aj(X)" (47) 
j-1 

Since $q = fY(~ ~(0)= f#, the function 

0(l~(x, e) = O(x, e) - fq(~ e)) (48) 

is also a smooth integral of system (45). This function is obviously of first 
order with respect to e. 

Let us consider the following function 

~p~ql~(x) = lim ~ 1~(1~(x, e), (49) 
e~0 

which is obviously a quasi-homogeneous function of a certain integer degree 
q~. This function is an integral of system (45) as e = 0, i.e. an integral of the 
truncated system (22). According to the assumptions of the lemma, 
6~ql~ = f#(o(~bt). So the function 

= 0(l (x, - ( 5 0 )  

is also an integral of (45) which has second order with respect to e. 
By repeating infinitely this process, we obtain that 

44x, = ( 5 0  
j=O 
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which is equivalent to the fact that  

= g ( 0 )  (52) 

for a certain smooth  function Y .  The lemma is proved. 
Let us now apply the change of  variables (25) to the cut system (22), 

which results in system (26). By changing the " t ime"  ~ = I n  t and lin- 
earizing the system obtained, we face the following linear system of  equa- 
tions 

u' = Ku.  (53)  

This system has obviously two nontrivial n o n a u t o n o m o u s  integrals 

exp( - cdr)D ~1~q~r (c, u) = exp( - :dz) (p, u ), (54) 

since p = O~l/~x(c) r 0 and 

exp( - aqr)D (k)~q (c, u) (55) 

for a certain integer k _> 1. 
That  is why, if we introduce an auxiliary variable u ~  e ~, the fol- 

lowing augmented  linear system of equations 

u ~  -c~u ~ u' = K u  (56)  

has two integrals 

q)(u ~ u) = (u~ u )  and ~ (u  ~ u) = (u~ (57) 

where ~(k~ is a certain homogeneous  form of  degree k such that  

= q(c,  u) .  58) 

Since p is an eigen vector of the Kowalevsky matrix K with an eigen 
value 2 = ~l, and the Kowalevsky matrix K is diagonal,  as was agreed 
earlier, we can assume that  p is parallel to the last basis vector e,, = 
( 0 , . . . ,  0, 1) which is an eigen vector of K with the eigen value 2~ = c~l. 
So the first integral (P of  (56) can be rewritten as follows 

OP(u ~ u) = (u~ n (59) 

with the accuracy up to a multiplicative constant.  
We should also bear in mind the fact that, as was also agreed earlier, 

the first eigen value of  the Kowalevsky matrix K is equal to )~1 = - 1  and 
the corresponding eigen vector q = Hc is parallel to the first basis vector 
el = ( 1  . . . .  ,0,  0). 

Lemma 4. Any integral of  the augmented  linear system of  equations 
(56) which is generated by a quas i -homogeneous  integral of system (22) 
does not  depend on the first variable ul. 
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Proof. Let us consider the quasi-homogeneous integral @q(X) of (22). 
Let tpq(X) be the derivative of Oq(X) calculated via (22) with respect to 

time 

~q(X) = \ ax  (x), gm(X) =-- O. (60) 

Therefore, for any natural number p, by using the Leibnitz rule, we 
obtain that 

- ~  i 0  

Since the operators D and c~fi?x are permutative, by choosing p equal to 
the first natural number k for which the differential of Oq(X) calculated at 
x -- c is nontrivial, we can get the following formula 

f / D(k)~q(C, u) = -~u (D(k)~q(C' U)), gm(C) = 

Since H c  = q = qe~ = (q, O , . . . ,  0), 

Ni (u) - 0 ,  

t ) -~u ~(k)(u), Hc  = O. (62) 

(63) 

which results in the fact that T(u ~ u) does not depend on the variable u ~. 
The lemma is proved. 

Lemma 5. Let all the assumptions about the integral ~b(x) of system (1 l) 
be fulfilled, then if system (11) has an integral functionally independent of 
q~l(x), the augmented system (56) has an integral which does not depend on 
u'. This integral will have the following form 

T* (u 0, u) = (u o),.tp(h)(u) = (u o)r0(h)(u 2 . . . . .  u , -1 ) (64) 

for a certain h ~ ~, where r e 7/ is possibly negative. 

Proof. Let us rewrite the integral T(u ~ u) in the following form 
k 

kIi(H O, gi) = (HO) q E O ( k - J )  (u2,  " " " ' H n -  I)(b/n)J" ( 6 5 )  
j = 0  

Since (u~ = c is an integral of (56) where c is an arbitrary constant, 
T can be rewritten as follows 

k 
lk[J(uO, 11) = E (HO) q lJ@(k-J) (H2, " " " ' ldn 1)cJ" ( 6 6 )  

j = 0  

Therefore, all the terms of the kind 

T * ( u  ~ u) = (u~176 . . . , u ' -  ') (67) 

are nontrivial integrals of (56) if only all the corresponding homogeneous 
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forms ~(k-j> are not identically equal to zero. Unfortunately, we cannot 
stop the proof of the lemma here since the case when 

"e(u ~ u) = ak(u~ (6S) 

where ak is a certain constant, is also theoretically possible. 
To overcome this situation, we consider another integral of (22) 

ako [,4, ~ko (J ~ = ~9 ~~ - ~o  ~. vw, j , (69) 

where k0 = k, q0 = q, ~/z(m = qq and ql is the degree of the quasi-homoge- r q 0  
neous function ~1]. 

The Maclaurin expansion of this integral at the point x = c has to 
vanish at least up to (ko + 1)-th order. Hence, the augmented system of 
linear equations (56) has an integral of the following kind 

t l l /(1)(U0, /4) 0 ql (1) = (u )  O(~)(u), (70) 

where v,(k~)'/'(~ (u)=D(k~tp~(e, u) and kl >k0. Again, if the corresponding 
integral of (56) has the form 

�9 ~I~(u~ u) = ak, (u~ k~, (71) 

we will consider the following integral of (22) 

(2) = /~(q,~ __ akl (Oi)kl (72) 
q; kl! 

and so on. 
As was pointed out in [Yos87], this process must terminate in a finite 

number o f  steps. In the opposite case there would exist an infinite increasing 
sequence of positive integers {&}Go such that the original integral r162 
could be expressed as follows 

J~ a 
- ~ )4i. 

6q --s~o kj! (q~' (73) 

But it would mean that the integral ~r is a function of the integral q~ 
which contradicts to the lemma's conditions. The lemma is proved. 

Proof of Theorem 2. If system (22) has a nontrivial quasi-homogeneous 
integral ~q(X) functionally independent of qSt(x), in accordance with Lem- 
mas 4 and 5, there exists a nontrivial homogeneous integral of the aug- 
mented system (56) in the following form 

�9 *(u ~ u) = (u~ u '~- 1), (74) 

where the function @<h)(u) has to satisfy the following partial differential 
equation 

- : ~ r O ( h ~ ( u )  + , K u  = - ~ r ~ , ( h ~ ( u )  + 2 #u  ~ (u) = 0. (75) 
j = 2  
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If, as earlier, we rewrite the function O(h) as a sum of elementary 
monomials 

O(h)(u2, ' ' ' , u ' ~ - l ) =  ~', Ok2.-~, ,(u2) k 2 ' ' ' ( u ~ - l )  k"-' ,  (76) 
k 2 + ' ' + k n  l~h 

we realize that for any nonzero coefficient Ok2.. kn _, the following resonant 
equality has to be fulfilled 

n - 1  

- r  + ( m -  1) Z kj j =0, (77  
j - 2  

which can be interpreted as a condition of (43) type since 2~ = - 1 .  Of 
course, that contradicts the theorem's condition that the first n -  1 
Kowalevsky exponents are not in an integer resonance. Finally, to com- 
pletely finish the proof, we should apply Lemma 3. The theorem is proved. 

Unfortunately, this theorem is of little use for Hamiltonian systems 
because in the Hamiltonian case there are always some resonances of a 
special type between eigen values of the Kowalevsky matrix [Yos83]. 
V. Kozlov [Koz92] has shown that the above resonances result from the fact 
that any Hamiltonian system possesses an invariant measure. 

5. Examples 

1. Let us consider a generalized two-dimensional system of the Volterra- 
Lotka type 

2 = x(~  + ax  + by),  29 = y (~  + cx  + dy).  (78) 

This system describes interaction between two communities (popula- 
tions of animals, branches of industry etc.) [Bar67, GMM71]. 

Let us find arithmetic conditions which coefficients of (78) should satisfy 
so that the system under consideration does not have smooth integrals in a 
neighbourhood of the equilibrium x ~-y = 0. 

Of course, this two-dimensional system with analytic right-hand sides 
cannot show chaotic behaviour and it is integrable in a sense. But neverthe- 
less, it is possible to assert that under some conditions integrals of this 
system are more or less "bad".  

First, as follows from Lemma 1, system (78) has no integrals which can 
be represented as formal power series if for any k~, k2 e N w {0}, k~ + k2 _> 1 

kl ~ + k2/? r 0. (79) 

The inequality (79) can be rewritten as follows 

--~ r 6 +. (80) 
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On the other hand, system (78) is negatively semi-homogeneous. Its cut 

(81) 

with exponents 

~;c = x ( a x  + b y ) ,  i '  = y ( c x  + d y )  

is a (quasi-)homogeneous system of degree 2 and 
sx =sy = 1. 

System (81) has a particular solution of the ray type 

b - d  c - a  
x = ~ / t ,  Y = t l / t '  ~ a d - c b '  tl a d - c b  (82) 

if ad - bc # O. 
The Kowalevsky matrix has obviously the following form 

K = ( l  + 2a~ + bq b~ ) (83) 
cq l + 2dt l + c~ " 

The corresponding characteristic equation d e t ( K - 2 E ) =  0 has two 
roots. 

(b  - d ) ( c  - a )  
21 = - 1, )-2 = 2 - (84) 

ad - cb 

Therefore, according to Theorem 1, the system of equations under 
consideration has no polynomial integral, if 

kl~ #k2.  (85) 

The inequality (85) can be rewritten as follows 

(b  - d ) ( c  - a )  
r Q+. (86) 

ad - cb 

2. Let us consider a perturbed oregonator model [Tys78]. 

2 = ~(y  - x y  + x - exz - gx  2) 

9 = ~ l ( _ y  _ xy  + f z )  (87) 

= l~(x  - ~ x z  - z ) .  

This system of equations describes a hypothetical chemical reaction of 
the Belousov-Zhabotinsky type where variables x, y, z mean concentrations 
of reagents. First, the unperturbed problem (e = 0) was investigated [FN74]. 
It turned out that properties of the perturbed system were completely 
different. Let us find arithmetic relationships on the system's coefficients 
guaranteeing that the system under consideration (87) has no integrals 
represented as nontrivial formal Maclaurin series. 

It is just impossible to obtain explicit formulas for eigen values of the 
linearized problem. Nevertheless, if all the eigen values have either strictly 
positive or strictly negative real parts, there is no integral which can be 
presented in the form of Maclaurin series. To obtain guaranteeing condi- 
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tions, we should apply the Routh-Hurwitz criterion (see, e.g. [Che61]). We 
are not going to give precise formulas here. 

Let us concentrate on the modified Yoshida method. System (87) is 
negatively semi-quasihomogeneous. Its cut can be written as follows 

2 =  - ~ x ( y  + g x )  

= - ~ - l x y  (88) 

=/~x(1 - ~z). 

This system is quasi-homogeneous of degree 2 with exponents 
sx = sy = 1, &. = 0. It is easy to find a particular solution of the ray type of 
system (88). 

x = { / t ,  y = ~I/t, z = ~, (89) 

~ = o:, rl = C ~ l o n g  ' ~ = g -1 .  

After some simple calculations we obtain the following expressions for 
the elements of the Kowalevsky matrix 

t --g~ 2 --0~ 2 ~ ) 
K =  --0~-2 + g 0 

0 0 - ~1% 

(90) 

This matrix has obviously the following eigen values 

21 = --1, 22=  1 --g0~ 2, 23= --~fiS. (91) 

According to Theorem 1, the system of equations (87) does not have 
any polynomial integrals if there is no resonant equality of the kind 

- k l  + (l -g~2)k 2 - ~f igk  3 = 0, (92) 

where kl, k2, k3 E ~ t) {0}, k 1 -~ k 2 + k 3 >_ 1. 
It follows from (92) that for fixed g, ~, fi one can find a set of small 

numbers s such that there will be no resonance of the above type. 
3. As a nontrivial example illustrating Theorem 2, let us consider a 

problem of integrability of the Euler-Poincar6 equations on Lie algebras 
[Arn66] studied in different branches of mathematical physics. Those equa- 
tions are also often called the Euler-Arnold equations. They are a quite 
natural generalization of the famous Euler equations describing dynamics of 
a rigid body with a fixed point when no external forces act. The Euler-Poin- 
car6 equations can be written as follows 

rh k ~- CJiko)'mj. (93) 

Here standard tensor notations are used when the summation with 
respect to repeating indexes has to be done. The constant numbers C{k are 
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the so-called structural constants of  a finite-dimensional Lie algebra 
g, co = (co l, . . . ,  co") are n-dimensional  vectors of  "angular  velocities" con- 
nected with co-vectors of "momen t s "  m = ( m l , . . . ,  m, )  as follows 

.rn; = Io.co' , (94) 

where I• is a positive definite symmetric tensor analogous to the inertia tensor 
for a usual rigid body. In this usual si tuation g = ~o(3). 

Equat ions (93) always have an "energy integral": 

| . . 

r = ~ Ljco'co j. (95) 

As usual there appears a question whether  any addit ional integrals of (93) 
exist. A lot of  works is devoted to the above problem (see, e.g., the m o n o g r a p h  
[FT88] and the literature cited therein). V. Kozlov [Koz88] has studied a 
related problem whether  system (93) possesses an integral invariant ( invariant 
measure with an infinitely smooth  positive density). For  low dimensions he 
gave an exhausting answer to the question stated. It turns out that  for n = 3 
only solvable Lie algebras can provide us with examples of  the Euler-Poincar6 
systems without  integral invariants. It goes wi thout  saying that  such algebras 
are also suspicious as being the cause of non-integrability. 

Thus,  let us confine ourselves to the case of  n = 3 and solvable algebras. 
According to [Koz88], there is a canonical basis {el, e2, e3 } such that  the 

only nonzero structural constants C~I~ are: 

C13 = _ C ~ 1  = ~, C23 = C21 = / ~  

C~3 = - -  C~2 = ~), C23 = C22 = ~5. ( 9 6 )  

We will also suppose that  

~c~ - f17 ~ 0. (97) 

To preserve the analogy with the rigid body dynamics,  let us denote the 
angular  velocity as co = (p, q, r). For  the inertia tensor I and its inverse 1-1, 
we introduce the following notations: 

I = B 1-1 = b . (98) 

F f 

We denote the angular  m o m e n t u m  as m = (x, y, _7). 
Then the corresponding Euler-Poincar6 equations read 

= - r ( ~ x  + ~ y )  

f~ = - r ( T x  + @ )  (99) 

= p ( e x  + fly) + q(Tx  + @) ,  

where p = a x  + dy  + ez,  q = d x  + by  + f z ,  r = e x  + f y  + cz. 
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The energy integral can be written as follows 

1 
T = ~ (xp + yq + zr) 

1 
= ~ (Ap 2 + Bq 2 + Cr 2 + 2Dpq + 2Epr + 2Fqr) 

1 (ax 2 + by 2 + cz a + 2dxy + 2exz + 2fyz). z -  

2 

( 1 o o) 

K = 

ally, the Kowalevsky matrix reads as follows 

1 - e X  - c~w 

- e Y  - 7w 

a X  + d Y  + c~u + 7v 

- f x - f l w  

1 - f Y -  ~Sw 

d X  + b Y + fiu +cSv 

where the following notations are introduced 

u = a ~  + d r / + e ~ ,  v = d ~  + b r / + ~ ,  

2" = e~ + fir/, Y = 74 + c5{. 

- c X  f y )  - - c Y  

1 + e X +  

(102) 

w = e~ + f r / +  c~, 
(103) 

We know a priori two roots of its characteristic polynomial A~:(fi) 

21 = - l ,  23=2 .  (104) 

The second one appears due to the existence of the nondegenerate 
homogeneous integral (100) of degree 2. Therefore, the quadratic polyno- 
mial P ( 2 ) = 2 2 - 2 -  2 must divide AK(2). We can easily calculate the 
quotient of AK(2) divided by P(2) 

Q(2) = 2 - 2 + (c~ + 6)w. (105) 

Hence, 

22 = 2(w) = 2 - (c~ + 3)w, (106) 

and we only need to calculate the magnitude w. 

System (99) is homogeneous with quadratic right/hand sides so it can be 
treated as quasi-homogeneous and semi-quasihomogeneous. Integral (100) 
is, of course, nondegenerate on any ray direction r 

It is more or less easy to prove that equations (99) have the following 
particular rectilinear solution 

x = ~/ t ,  y = r//t, z = ~/t ,  ( l O l )  

where ~, r/, ~ are, strictly speaking, complex numbers I~l 2 + Ir/I 2 + I~l 2 ~ o. 
But it is difficult to find values of 4, r/, ~ explicitly. So, to calculate the 

Kowalevsky exponents, we have to do the following technical trick. Gener- 
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To solve this problem, we should notice that equations for ~, r/have an 
"almost" closed form 

(1  - ~ w ) ~  - f i w t  1 = 0 

- y w ~  + ( l  - 6w)tl = O. (107) 

The above system of linear equations has nontrivial solutions if and 
only if its determinant is equal to zero. Therefore, 

1 ~ +(5 + X/(-~--- 6)2 + 4fi~/ 
w = - ( 1 0 8 )  

2 - fir/ 

If 

).(w) r 6 ,  (109) 

where the magnitude w is given by (108), there is no resonance of (43) type, 
and any smooth integral of (99) which can be expanded into formal power 
series with respect to x, y, z or p, q, r is functionally dependent on T. 

Let us consider two interesting particular cases. Let 

= 6  =0.  (110) 

Then 

2 2 = 2  (111) 

and system (99) becomes suspicious as being integrable. 
As follows from (111), there may exist an additional quadratic integral. 

In this case it is evident 

1 
g = ~ ( ? x  2 - f l y2) .  (112) 

It is interesting to notice that as was showed in [Koz88], if fl~/< 0, the 
system under consideration has an integral invariant (the algebra g is 
unimodular). If, vice versa, fi7 > 0, there are no integral invariants but there 
exists an invariant measure, the density of which has arbitrarily large (but 
finite!) order of smoothness. 

Let us further suppose that 

p 

In this case 

6 
) ~ 2 = i - ~  or 1 - - ,  

and the condition to non-integrability is 

7r 

(113) 

(114) 

(115) 
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As follows from [Koz88], if ~c5 < 0 the Euler-Poincar6 system (99) does 
not have an invariant measure even with a summable density. 

5. Concluding remarks 

Finally, let us briefly discuss the obtained conditions of non-integrability 
and compare them with the Yoshida criterion. According to Yoshida, if at 
least one Kowalevsky exponent was not rational, the quasi-homogeneous 
system under consideration was not algebraically integrable. The above 
statement allows complex analytical interpretation connected with Ziglin's 
ideas [Zig83] that the branching of solutions in the complex plane is an 
obstacle to integrability. Let us consider the Fuchsian system of equations 
obtained by means of the linearization of system (26) 

t i t  = K u .  (116) 
The monodromy operator acting on the functional space of solutions of 

(116) has the following matrix: 

M = exp(2rciK), (117) 

which can not be a rational root of the unit matrix E if the Yoshida 
conditions hold. This means that there exist solutions of (116) with an 
infinitely sheeted Riemann surface. 

As follows from lemma 2, any n - 1 quasi-homogeneous integrals of the 
quasi-homogeneous system (22) must be functionally dependent at the point 
x = c if the Yoshida conditions hold. But it is not clear enough whether this 
"domain" of dependence can be significantly extended. The conditions of 
Theorems 1 and 2 require much more from the Kowalevsky exponents, 
which allows us to obtain those precise assertions on non-integrability. 
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Abstract 

The article is aimed at finding an algebraic criterion of non-integrability of non-Hamiltonian 
systems of differential equations. The main idea is to use the so-called Kowalevsky exponents to reveal 
whether the system under consideration is integrable or not. The method used in this article is based on 
previous works by H. Yoshida. The article suggests improving the above technique in such a way that 
it can be applied to a wider class of differential equations. 
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