Monatshefte für Chemie 102, 1197-1208 (1971) © by Springer-Verlag 1971

Zinkblende- und Wurtzitüberstrukturen bei ternären Chalkogeniden der Zusammensetzung 1₂46₃

Von

Erwin Parthé* und Jorge Garin

Laboratoire de Cristallographie aux Rayons X, Université de Genève, Genf, Schweiz, und School of Metallurgy and Materials Science, University of Pennsylvania, Philadelphia, USA

Mit 4 Abbildungen

(Eingegangen am 22. Januar 1971)

Zincblende and Wurtzite Superstructures with Ternary Chalcogenides of Composition 1₂46₃

Earlier literature data on the structure of Cu_2GeSe_3 and the low temperature modification of Cu_2GeS_3 could not be corroborated. Both compounds crystallize in an orthorhombic superstructure of zincblende with 2 formula units per cell (space group Imm2). The point positions for Cu_2GeSe_3 were obtained from single crystal intensity data collected on an automatic diffractometer. An orthorhombic superstructure of wurtzite was found with the high temperature modification of Cu_2SiS_3 (space group $Cmc2_1$ with 4 formula units per cell). The two new structures belong to the normal tetrahedral structures. According to the tetrahedral structure rules these structures might occur not only with 1_246_3 but with 14_25_3 compounds as well.

Frühere Literaturangaben über die Struktur von Cu_2GeSe_3 und der Tieftemperaturmodifikation von Cu_2GeS_3 wurden als unrichtig befunden. Beide Verbindungen kristallisieren in einer orthorhombischen Zinkblendeüberstruktur mit 2 Formeleinheiten pro Zelle (Raumgruppe Imm2). Die Punktpositionen für Cu_2GeSe_3 wurden erhalten unter Verwendung von Einkristallintensitäten, die auf einem automatischen Diffraktometer gemessen wurden. Eine orthorhombische Wurtzitüberstruktur wurde bei der Hochtemperaturmodifikation von Cu_2SiS_3 aufgefunden (Raumgruppe $Cmc2_1$ mit 4 Formeleinheiten pro Zelle). Die beiden neuen Strukturen gehören zu den normal tetraedrischen Strukturen und könnten entsprechend den Tetraederstrukturregeln nicht nur bei 1_246_3 -, sondern auch bei 14_25_3 -Verbindungen auftreten.

^{*} Herrn Prof. Dr. Hans Nowotny gewidmet.

Einleitung

Die Zusammensetzung und die strukturellen Merkmale von tetraedrischen Strukturen können richtig erfaßt und interpretiert werden an Hand von zwei mathematischen Formeln, wovon eine einem kovalenten, die andere einem ionischen Bindungsmechanismus entspricht¹.

Die erste Gleichung ist die Tetraederstrukturregel, die, unter der Annahme, daß alle Atome sp³-hybridisierte Orbitale bilden, zu einer einfachen Beziehung zwischen der durchschnittlichen Zahl der nicht-

Abb. 1. Graphische Darstellung der Tetraederstrukturregel

bindenden Orbitale pro Atom $N_{\it NBO}$ und der Valenzelektronenkonzentration führt:

$$N_{NBO} = VEK - 4, \tag{1}$$

wobei VEK, die gesamte Valenzelektronenkonzentration, das Verhältnis der Zahl der Valenzelektronen zur Gesamtanzahl der Atome bedeutet.

Gl. (1) ist in Abb. 1 graphisch dargestellt. Tetraedrische Strukturen können sich nicht bilden, wenn VEK < 4. Mit VEK = 4 gibt es keine nichtbindenden Orbitale und die auftretenden Strukturen sind sogenannte normal tetraedrische Strukturen. Defekte tetraedrische Strukturen treten mit VEK > 4 auf. Sie haben eine festgelegte Zahl von nichtbindenden Orbitalen, die von der Valenzelektronenkonzentration abhängt. Die Gerade in Abb. 1 ist stetig zwischen $4 \leq VEK \leq 6$. Sobald VEK > 6, können sich nur nicht-zyklische Molekularstrukturen ausbilden, und auch nur bei ganz bestimmten VEK-Werten. Im einzelnen dürfen nur VEK-Werte gemäß $VEK = 6 + \frac{2}{N}$ vorkommen, wobei Ndie Anzahl der Atome im Molekül bedeutet.

¹ E. Parthé, "Cristallochimie des Structures Tétraédriques", Paris: Gordon et Breach. 1971.

Der ionische Bindungszustand wird durch die allgemeine Gleichung für Valenzverbindungen erfaßt, bei der die durchschnittliche Zahl der Anion—Anion- oder Kation—Kation-Bindungen mit der partiellen Valenzelektronenkonzentration in Verbindung gesetzt wird:

$$\frac{m}{n} \cdot KK - AA = (VEK)_A - 8, \qquad (2)$$

wobei $(VEK)_A$, die partielle Valenzelektronenkonzentration in bezug auf das Anion, das Verhältnis der Zahl der Valenzelektronen zur Zahl

Abb. 2. Die allgemeine Gleichung für Valenzverbindungen und einige einfache Lösungen

der Anionen; AA, die durchschnittliche Zahl der Anion—Anion-Bindungen pro Anion; KK, die durchschnittliche Zahl der Kation—Kation-Bindungen pro Kation und/oder die Zahl der Elektronen, die unbeteiligt am Kation verbleiben und m und n chemische Kompositionsparameter entsprechend einer Verbindung K_mA_n bedeuten.

Einfache Lösungen von Gl. (2) sind in Abb. 2 graphisch dargestellt. Polyanionische Valenzverbindungen treten mit $(VEK)_A < 8$ auf, wobei im einfachsten Fall KK = 0 ist, jedoch immer Anion-Anion-Bindungen anzutreffen sind (AA > 0). Mit $(VEK)_A = 8$ gibt es Normalvalenzverbindungen, wobei fast immer sowohl KK als auch AA verschwinden. Im Fall der polykationischen Valenzverbindungen mit $(VEK)_A > 8$ mögen wir der Einfachheit halber AA = 0 ansetzten. KK nimmt dann positive Werte an, die jedoch von der Zusammensetzung $\left(\frac{m}{m}\right)$ abhängen.

Im Rahmen eines größeren Programms zur Aufklärung von tetraedrischen Strukturen haben wir uns für ternäre normal tetraedrische Strukturen interessiert, die bei Normalvalenzverbindungen auftreten. Gemäß den oben gemachten Angaben müssen die Zusammensetzungen solcher Verbindungen gleichzeitig zwei Bedingungen erfüllen:

$$VEK = 4$$
 und $(VEK)_A = 8$.

Haben die Verbindungen zwei verschiedene Kationen, dann gibt es nur fünf verschiedene Lösungen, die den folgenden Zusammensetzungen entsprechen:

1362, 2452; 12463, 14253 und 13564*.

Verbindungen mit diesen Zusammensetzungen sollten Zinkblendeoder Wurtzit-überstrukturen aufweisen. Solche Strukturen sind für 136₂- und 245₂-Verbindungen (Chalkopyrit und BeSiN₂-Typ) sowie 1₃56₄-Verbindungen (Famatinit und Enargit), jedoch nicht für 1₂46₃und 14₂5₃-Verbindungen bekannt.

1₂46₃-Verbindungen wurden bereits früher von *Palatnik, Komnik, Koshkin* und *Belova², Rivet, Flahaut* und *Laruelle³* und *Hahn, Klingen, Ness* und *Schulze⁴* hergestellt. Es wurden auch Zinkblende- oder Wurtzitähnliche Beugungsdiagramme angegeben. Die berichteten tetragonalen und monoklinen Einheitszellen für die vermutlichen Überstrukturen erschienen uns jedoch nicht akzeptabel, zumal in diesen Zellen keine ganzzahligen Vielfache der Formeleinheit untergebracht werden können. Aus diesem Grunde begannen wir mit dem experimentellen Studium der Kristallstrukturen dieser Verbindungen.

Probenherstellung

Alle ternären Proben wurden aus stöchiometrischen Elementmischungen durch Erhitzen (35 Tage) in dicken evakuierten Quarzröhren hergestellt. Um Explosionen zu vermeiden, wurde anfänglich die Temp. sehr langsam erhöht (100° pro Tag). Die chemische Reaktion war nach zweiwöchigem Glühen bei 900° C beendet. Um jedoch eine Ordnung der Cu- und Ge-Atome zu gewährleisten, wurden die Proben anschließend bei 500° C eine Woche nachgeglüht. Mittels dieses Verfahrens war es möglich, nicht nur Cu₂GeS₃- und Cu₂GeS₃-Pulver, sondern auch Einkristallplättchen von 0.02 mm Dicke zu erhalten. Die Cu₂SiS₃-Proben wurden bei 900° C abgeschreckt.

Strukturstudien an Zinkblende-Überstrukturen

In Übereinstimmung mit Angaben von *Rivet, Flahaut* und *Laruelle*³ fanden wir, daß die starken Linien im Pulverdiagramm von Cu₂GeS₃ (Tieftemperaturmodifikation) und Cu₂GeSe₃ mit einer tetragonal deformierten Zinkblendezelle indiziert werden können.

^{*} Die großen Ziffern zeigen den Valenzelektronenbeitrag der einzelnen Elemente, während die Tiefzahlen gewöhnliche stöchiometrische Kompositionsparameter sind.

² L. S. Palatnik, Yu. F. Komnik, V. M. Koshkin und E. K. Belova, Sov. Phys. Dokl. 6, 241 (1961).

³ J. Rivet, J. Flahaut und P. Laruelle, C. r. hebdomad. Sé. Acad. Sci. [Paris] 257, 161 (1963).

⁴ H. Hahn, W. Klingen, P. Ness und H. Schulze, Naturwissensch. 53, 18 (1966).

Cu₂GeS₃ : $a_z = 5.32_6$ Å; $c_z = 5.21_9$ Å; c/a = 0.98Cu₂GeSe₃: $a_z = 5.59_5$ Å; $c_z = 5.48_2$ Å; c/a = 0.98

In Berücksichtigung der schwachen Überstrukturlinien gaben Hahn, Klingen, Ness und Schulze⁴ tetragonale Zellen von doppeltem Volumen an

Cu₂GeS₃:
$$a_t = 5.32$$
 Å; $c_t = 10.41$ Å; $c/a = 1.95_7$
Cu₂GeSe₃: $a_t = 5.59_0$ Å; $c_t = 10.97$ Å; $c/a = 1.96_{22}$

Da diese Zellen 2.66 Formeleinheiten enthalten, können sie nicht richtig sein.

Weissenberg- (100 Stdn. Belichtungszeit!) und Präzessionsaufnahmen (50 Stdn. Belichtungszeit!) von einem Cu₂GeSe₃-Einkristall führten uns

zu einer orthorhombischen Zinkblendeüberzelle mit $a_0 = \frac{3}{2} \cdot \sqrt{2} a_z$,

 $b_0 = \frac{\sqrt{2}}{2} a_z$ und $c_0 = c_z$ und 2 Formeleinheiten pro Zelle. Die entsprechenden numerischen Werte für Cu₂GeSe₃ und das isotype Cu₂GeS₃ sind:

Cu₂GeS₃ : a = 11.321, b = 3.766, c = 5.21Cu₂GeSe₃ : $a = 11.860 \pm 0.003$, $b = 3.960 \pm 0.001$, $c = 5.485 \pm 0.002$ Å.

Die für Cu₂GeSe₃ angegebenen Gitterkonstanten sind mit dem Leastsquares-Programm von *Mueller*, *Heaton* und *Miller*⁵ und *Gvildys*⁶ verfeinert worden.

Die Auslöschungen für $hkl \min h + k + l = 2n + 1$ führen zu folgenden möglichen Raumgruppen: Immm (D_{2h}^{25}) , Imm $2(C_{2v}^{20})$, I222 (D_2^8) und I2₁2₁2₁ (D_2^9) . Da die Struktur von Cu₂GeSe₃ eine Überstruktur der nicht zentrosymmetrischen Zinkblende sein muß, kommen lediglich die drei letzten nicht zentrosymmetrischen Raumgruppen in Betracht. Eine

Tabelle 1. Die verfeinerten Punktpositionen für Cu₂GeSe₃ mit ihren Standardabweichungen

Raumgruppe $Imm2(C_{2v}^{20})$

	x	y	z
4 Cu in 4 (c) 2 Ge in 2 (b) 4 Se in 4 (c) 2 Se in 2 (a)	$\begin{array}{c} 0.170 \ (0.0008) \\ 0 \\ 0.334 \ (0.0006) \\ 0 \end{array}$	0 0.5 0 0	$\begin{array}{c} 0.251 \ (0.002) \\ 0.755 \ (0.003) \\ 0.001 \ (0.002) \\ 0 \end{array}$

⁵ M. H. Mueller, L. Heaton und K. T. Miller, Acta Cryst. 13, 828 (1960).
⁶ J. Gvildys, Argonne National Laboratory Program Library B 106 (1965).

			Tabel Von lin	le 2.] ıks nac	Beobact h rechts (atete enthalte	und l en die	berechr Kolonne	nete f n jewei	Strukt Is die V	urfakt Verte h,	oren F _{beob}	für Cu . und	$ _{F^{\mathrm{ber.}}} $			
	<i>00</i> 4			101			h02			h03			h14			p00	
	~~	9	1	7	10	0	30	30	T	6	æ	1	6	8	0	26	37
	П	11	ŝ	208	214	61	9	4	ŝ	179	156	ŝ	33	35	61	2	ũ
	246	245	ŋ	7	9	4	15	15	5 C	2	ಣ	70	7	4	4	12	œ
	o	4	7	17	16	9	30	33	5-	16	13	1	12	13			
	17	14	6	- 148	134	×	ø	9	6	125	113	6	27	37			
	142	146	11	2	6	10	19	17	11	œ	7						
			13	16	15	12	28	37									
	ory			h11			h12			h13			h24			h16	
	ŝ	10	0	189	212	1	٢	6	0	177	162	0	175	167	Ţ	9	11
	35	30	0		4		228	244	01	12	6	63	8	10	ಣ	123	129
	2	4	4	11	13	S	ç	7	4	10	13	4	9	11			
	16	18	9	170	159	2	13	13	9	138	135	9	141	146			
_	33	35	x	4	9	6	170	168	8	4	6	80	9	10			
	10	8	10	16	15	11	4	10	10	14	14						
	16	16	12	104	102												
	h20			h21			h22			h23			h34				
-	244	246	-	6	6	0	37	33	1	8	8	1	7	9			
	က	×	ŝ	184	162	61	ũ	er	ಣ	138	130	e	38	37			
	10	11	5	6	7	4	6	12	ŝ	9	4	õ	9	ಞ			
	205	198	2	12	14	9	38	35	1-	8	12						
~	7	æ	6	126	116	œ		ũ	6	66	101						
_	13	13	11	x	6	10	13	14									
~1	130	131															

1202

E. Parthé und J. Garin:

[Mh. Chem., Bd. 102

9

1203

	11	118	10	13				111	ũ	6	66				11	105	10
h05	13	123	x	14			h15	121	8	13	100			h25	x	106	9
	1	ŝ	10	2				0	01	4	9				-	e	õ
	118	6	11	104				196	6	11	167	10	13				
h33	132	7	7	102			h04	207	10	10	175	4	13				
	0	çı	4	9				0	2	4	9	\$	10				
	11	169	10	12	131			37	67	2							
h32	12	158	2	6	120		h42	43	6	9							
	Ŧ	ი	ñ	7	6			0	2	4							
	133	9	11	115	-	12		6	104	8							
h31	128	ಣ	6	114	1	10	h41	12	104	10							
	0	67	4	9	x	10		Ţ	က	õ							
	4	35	1	13	37			148	10	12	132						
h30	6	44	6	6	38		0 † 40	138	6	12	117						
	Ţ	ന	õ	5	6			0	¢1	4	9						

weitgehende Übereinstimmung zwischen beobachteten und berechneten Intensitäten konnte erreicht werden unter Annahme der Raumgruppe Imm2(C_{2v}^{20}) mit 4 Cu in 4 (c): $x \sim 1/6$, $z \sim 1/4$; 2 Ge in 2 (b): $z \sim 3/4$; 4 Se in 4 (c): $x \sim 1/3$, $z \sim 0$ und 2 Se in 2 (a): z = 0.

Um die Struktur zu verfeinern, wurde der Cu₂GeSe₃-Einkristall mit der 301-Richtung parallel zur φ -Achse eines computerkontrollierten automatischen Picker-Vierkreisdiffraktometers montiert. Insgesamt wurden 141 Reflexe vermessen (CuKa-Strahlung), 81 davon waren Überstrukturreflexe. Da die Intensität der Überstrukturreflexe ungewöhnlich klein ist, wurde während der Intensitätsmessung die kleinste auf der Maschine mögliche Abfahrgeschwindigkeit gewählt, d. h. 1/8° pro Minute. Im Durchschnitt benötigte eine Messung 13 Minuten. Die Daten wurden für Untergrund, Lorentz-Polarisation und Absorption korrigiert. Die Absorptionskorrektur war hier entscheidend für eine erfolgreiche Verfeinerung, da $\mu = 436.54$ cm⁻¹ und der Kristall plattenförmig war (0.085 \cdot 0.04 \cdot 0.02 mm). Zur Berechnung der Absorptionsfaktoren benützten wir das Programm von *Meulenaer* und *Tompa*⁷.

Zuerst wurden nur die Überstrukturreflexe für die Verfeinerung benützt, wobei wir einen Gewichtsfaktor zwischen 0 und 1 proportional zum Wert des Strukturfaktors annahmen. Der beste R-Wert für diese 81 schwachen Überstrukturlinien war 0.12. Die erhaltenen numerischen Werte für die Punktpositionen wurden sodann als Ausgangsdaten für eine zweite Verfeinerung benützt, bei der auch die Unterstrukturreflexe mit Einheitsgewicht verwendet wurden. Der R-Wert sank darauf auf 0.068 ab. Eine weitere Verbesserung konnte erzielt werden nach Berücksichtigung des realen Teiles der anormalen Dispersion. Die für die Intensität der Überstrukturreflexe wichtige Differenz f_{Ge} — f_{Cu} ändert sich hiebei unter Verwendung von CuKa-Strahlung um 25%. Die verwendeten Streufaktoren wurden aus den Internationalen Tabellen für Röntgenkristallographie, Vol. III, 1962, entnommen. Der endgültige R-Wert ist 0.066. Die verfeinerten Punktpositionen und ihre Standardabweichungen sind in Tab. 1 angegeben. Die Strukturfaktoren, die für die Verfeinerung verwendet wurden, sind in Tab. 2 zusammengestellt. In Tab. 3 ist eine Intensitätsrechnung für ein Pulverdiagramm von Cu2GeSe3 angeführt, die mit dem Rechenprogramm von Yvon, Jeitschko und Parthé⁸ erhalten wurde. Der Intensitätsvergleich erfolgt mit einer Pulveraufnahme, die 50 Stdn. belichtet wurde, um die Überstrukturlinien sichtbar zu machen.

⁷ J. de Meulenaer und H. Tompa, Acta Cryst. 19, 1014 (1965).

⁸ K. Yvon, W. Jeitschko und É. Parthé, "A Fortran IV Program for the Intensity Calculation of Powder Patterns. 1969 Version". Report of the Laboratory for Research on the Structure of Matter, Univ. of Pennsylvania, Philadelphia, Pennsylvania, U.S.A. (1969).

hkl	hkl tetragonale Zinkblende Unterzelle	$10^3 \cdot \sin^2 \theta_{ber}$.	$10^3 \cdot \sin^2 \theta_{beob}.$	I _{ber.}	Ibeob.
200		16.9		< 1	_
101	→	24.0	23.7	5	vvvw
110		42.1		3	
011)		57.6)		986)	
301}	111	57.8	57.7	1000	vvvst
400		67.6'	67.9	2^{\prime}	vvvw
211		74.5		< 1	
310	200	75.9	75.6	16	vw
002	002	79.0	78.8	7	vvw
202		95.9		< 1	
112		121.1	120.6	1	vvw
411		125.2	123.8	2	vvw
501	And a second	125.4	125.6	< 1	vvw
510		143.5		0	_
402		146.6	145.8	1	vvw
ן020	990	151.6	151 17	224)	
_600∫	220	152.1	101.7	221	vvst
312	202	154.9^{-1}	154.7	861	\mathbf{vvst}
220		168.5	167.0	< 1	vvvw
121		175.6	174.9	1	vw
103		182.0		< 1	
321	311	209.4	209.2	261	vvst
611		209.7	20012	257	**50
013	113	215.7	215.4	127)	vvst
303		215.8		119	•••50
420		219.2		< 1	
01Z	Tarihana a	222.5		< 1	
101		220.8		1	
609	222	230.0	230.2	}	vw
912		201.1j 020 G		e e e e e e e e e e e e e e e e e e e	
710		232.0		1 >	
299		244.9	947 1	1	
800		247.5	421.1		V V W
521		277.0		- 1	
413		283 3)		1)	
503		283.4	283.3	< 1	vvvw
422		298.2		1	
620	40 0	303.7	303.7	126	\mathbf{st}
004	004	316.0	314.8	59	st
712		323.9		1	
811		328.0		ō	
204		332.9		< 1	
123		333.6		< 1	

Tabelle 3. Pulverintensitätsvergleich für Cu₂GeSe₃ (überbelichteter Film, CuK α -Strahlung mit $\lambda = 1.5417_8$ Å)

Die orthorhombische Cu_2GeSe_3 -Struktur ist eine neue Überstruktur des Zinkblendetypes. Cu- und Ge-Atome nehmen genau festgelegte Plätze ein, was eine Verringerung der Symmetrie sowie die größere Überstrukturzelle bedingt. Die geometrische Beziehung zur Zinkblende kann

Abb. 3. Der geometrische Zusammenhang zwischen der Cu₂GeSe₃- und der Zinkblendstruktur

in Abb. 3 ersehen werden. Die Ordnung der Cu- und Ge-Atome stimmt nicht überein mit *Paulings* elektrostatischer Valenzregel⁹, aber eine einfache Überlegung zeigt, daß eine normal tetraedrische Struktur mit dieser Zusammensetzung *Paulings* Regel (in der üblichen Formulierung) grundsätzlich nicht erfüllen kann. Die interatomaren Abstände und Winkel in Cu₂GeSe₃ sind in Tab. 4 angegeben. Die Abweichungen von den idealen Werten sind sehr klein.

Tabelle 4. Interatomare Abstände und Winkel im Cu₂GeSe₃

Se	(a) — Cu		2.441 Å	Se (a) — Cu — Se (c)	108.0°
\mathbf{Cu}	Se	(c)	2.409	$Cu \longrightarrow Se(c) \longrightarrow Ge$	109.8°
\mathbf{Se}	(c) — Ge		2.418	Se (c) — Ge — Se (a)	108.9°
Ge	— Se	(a)	2.396		

Tabelle 5. Die verfeinerten Punktpositionen für Cu₂SiS₃ mit ihren Standardabweichungen

	Raumgruppe	$\mathrm{Cmc2_1(C_{2v}^{12})}$	
	x	y	z
8 Cu in 8 (b)	0.162 (0.0006)	0.839 (0.001)	0.009 (0.0007)
4 Si in 4 (a)	0	0.332(0.003)	0
8 S in 8 (b)	0.158 (0.0008)	0.814(0.001)	0.391(0.0009)
4 S in 4 (a)	0	$0.345\ (0.002)$	0.379 (0.001)

⁹ L. Pauling, "The Nature of the Chemical Bond", 3. Aufl., S. 547. Ithaca: Cornell University Press. 1960.

H. 5/1971] Zinkblende- und Wurtzitüberstrukturen

Strukturstudie an einer Wurtzitüberstruktur

Gemäß den Angaben von *Rivet, Flahaut* und *Laruelle*³ soll die Hochtemperaturmodifikation von Cu_2SiS_3 mit einer nicht näher bestimmten hexagonalen Wurtzitüberstruktur kristallisieren. Die für die Überstrukturzelle angeführten hexagonalen Gitterkonstanten stehen hierbei in Beziehung mit den Wurtzit-Unterzellkonstanten gemäß

Cu₂SiS₃: $a_h = a_w |\bar{3} = |\bar{3} \cdot 3.684 \text{ Å}; c_h = c_w = 6.044 \text{ Å}.$

Abb. 4. Der geometrische Zusammenhang zwischen der Struktur der Hochtemperaturmodifikation von Cu₂SiS₃ und der Wurtzitstruktur

Eigene Untersuchungen führen zu einer Bestätigung der Wurtzitunterzelle, jedoch zeigen Einkristalluntersuchungen eindeutig, daß die Überzelle orthorhombisch ist mit $a_0 = 3 a_w$, $b_0 = \sqrt[3]{3} a_w$, $c_0 = c_w$ und den numerischen Werten:

 $Cu_2SiS_3: a = 10.981 \pm 0.003, b = 6.416 \pm 0.002, c = 6.046 \pm 0.002 \text{ Å}.$

Die Auslöschungen für hkl mit h + k = 2n und für h0l mit l = 2nführen zu folgenden Raumgruppen: Cmcm (D_{2h}^{17}) , Cmc2₁ (C_{2v}^{12}) und C2cm (C_{2v}^{16}) , von denen die erste, weil zentrosymmetrisch, sofort ausscheidet. Gute Übereinstimmung zwischen beobachteten und berechneten Intensitäten konnte erzielt werden unter Annahme der Raumgruppe Cmc2₁ (C_{2v}^{12}) und folgender Atombelegung: 8 Cu in 8 (b): $x \sim 1/6$, $y \sim 5/6$, $z \sim 0$; 4 Si in 4 (a): $y \sim 1/3$, z = 0; 8 S in 8 (b): $x \sim 1/6$, $y \sim 5/6$, $z \sim 3/8$ und 4 S in 4 (a): $y \sim 1/3$, $z \sim 3/8$. Eine Verfeinerung der Punktpositionen unter Verwendung der auf dem automatischen Diffraktometer gemessenen Einkristallintensitäten führte zu den in Tab. 5 angegebenen Werten. Der endgültige *R*-Wert ist 0.068.

In Abb. 4 ist der geometrische Zusammenhang zwischen der Cu₂SiS₃-Struktur und der Wurtzitstruktur dargestellt.

1208 E. Parthé u. a.: Zinkblende- und Wurtzitüberstrukturen

Entsprechend den Tetraederstrukturregeln könnten die neuen Strukturtypen auch bei 14₂5₃-Verbindungen auftreten, für die bisher nur ungeordnete Zinkblendestrukturen angenommen wurden¹⁰. Die Tetraederstrukturregeln machen es wohl plausibel, weshalb bei 1₂46₃- und 14₂5₃-Verbindungen normal tetraedrische Strukturen auftreten, jedoch der genaue Grund, warum z. B. einmal eine Wurtzit-, ein anderes Mal eine Zinkblende-verwandte Struktur auftritt, entzieht sich noch unserer Kenntnis.

¹⁰ O. G. Folberth und H. Pfister, Acta Cryst. 14, 325 (1961).