A MODEL OF AN ELASTIC-PLASTIC MEDIUM WITH DELAYED YIELD
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Stress-strain relationships for metals at high strain rates have long been
studied, butno really reliable and generally accepted theory hasemerged.
It is sometimes assumed that the dynamic stress-strain diagram islargely
insensitive to the rate over a certain range. Another approach is to in-
sert derivatives of the stress and strain with respect to time. One diffi-
culty in establishing the actual relationships is that experiment pro-
vides only indirect evidence (direct tests are usuaily impossible). Any
real dynarnic experiment tends to produce complicated effects, which
can be interpreted only if the basic equations are taken as known. The
best that experiment can then do is to confirm or reject some prior
assumptions.

Many experimental studies deal with mechanical characteristics such
as breaking strength and yield point as functions of strain rate; how-
ever, strain rate characterizes a range of conditions rather than de-
fines a parameter. We therefore have to use simple models that allow
formulation and solution of definite mechanical problems in relation to
the dynamics of elastic-plastic media.

1. Delayed yield is a characteristic feature of mild
steel under shock loading. If the stress ¢ exceeds the
static yield point g4, the strain is elastic for some
time 7(0), the delay. Cottrell's theory explains this as
due to a cloud of solufe atoms around a dislocation in
carbon steel, and a certain time is needed for a given
o before the dislocation can break out [1—-3]. Then the
condition for onset of yield can be-written as
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While (1.1} is not met, Hooke's law applies; yield
starts when (1.1) is met. We put 0 = const and t = 7 in
(1.1) to get the delay 7:
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Tests on 7 as a function of ¢ allow us to find ¢(c, T).
Another approach is to stretch or compress the
specimen at a constant strain rate &; in the elastic
range, the stress also varies at a constant rate, ¢ =
= E&, and Hooke's law applies until o reaches a value
oy, the upper yield point, which is dependent on ¢.
From (1.1) we get

Gy= DI, To), D) = S 9 (&) dt. (1.3)

The basis of (1,1) is summation of delay times, and the equation
has been tested repeatedly, e€.g., by comparing {4] the 7 from the
above two testing methods and by a varying o sinusoidally,

Figure 1 shows the ofe) relation for carbon steel at a constant high
&; the dashed line represents the static behavior. The dynamic diagram

can be constructed quite reliably in the elastic range, and existing
methods [5, 8] permit the determination of the dynamic o,, as a function
of ¢, which can be kept constant. It is not possible to record the fall-
ing part below A, and £ in the plastic range is variable in existing test
methods, so the initial part of the plastic-strain curve cannot be con-
sidered reliable.

Moreover, the plastic deformation of mild steel in the yield range
is very uneven, large plastic deformations being localized in small
volumes. Thus it is purely arbitrary to assign the plastic resistance to
the mean strain rate. All the same, some conclusions can be drawn on
the lower yield point g as a function of £, which is much weaker than
that for oy, Figure 2 shows Belyaev's results for ou/om, and o ljolo as
functions of & for steel 3 at room temperature. While o; can actually
be considered a function of & (if we make certain assumptions about
the structure of the equations), o, is dependent on the history of the
loading in the elastic region and can be considered as a function of the
rate only for constant-rate testing. Any comparison of o, and o7 as
functions of rate can be only qualitative. Warnock and Taylor {7] have
given analogous results on the weaker rate dependence of o;. Thisgives
us a basis for the following model that describes approximately the dy-
namic behavior of materials such as mild steel. It is assumed that there
is a deformation diagram o = fle) independent of the rate (Fig. 3), for
which in first approximation we can use the static diagram (without the
yield step). This diagram has an elastic range o < gg. Dynamic loading
raises the yield point in accordance with {1.1) to o, (point A). If the
strain at A is kept constant, after A is reached the stress falls abruptly
to the value corresponding to this & on the static curve o = f(g A)- I the
load is removed at a point on the elastic part indefinitely close to A
on the left, there will be no delay on repeating the loading, and the
o-& curve follows the static diagram.

The term "static diagram® as used here for o = f(e) has only a nom-
inal meaning, because the relationship should contain the rate; how-
ever, the dependence is relatively weak, so we can use the appropriate
mean rate. For instance, if the rate is rather high, as in wave pro-
cesses, we use the dynamic diagram, as in the theory of the propaga-~
tion of elastic-plastic waves. If the problem is not one of waves, we
can take the next step and use for ¢ = f(g) an ideal-plasticity diagram,
as in Fig. 3b; then o7 = const. If evidence is available on the rate de-
pendence of o, the calculation should be performed as follows. First
we calculate for oy equal to the static yield point to find the rate dis-
tribution, and then a revised gg is found from the mean rates. There
is no reliable evidence on the rate dependence of oy, so as 0, we
have 1o use the static yield point.
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2. The above scheme needs refinements; however,
the necessary experimental evidence for these refine-
ments is not available; nevertheless, they must be
specified. ’

1) When a dislocation has broken away from its sol-
ute atoms, the latter begin to migrate to the new posi-
tion of the dislocation and eventually produce the block-
ing atmosphere again. This effect must be taken into
account for low ¢ and large delays [2], and it will be
particularly important for delayed yield under oscilla-
tory loads.

2) Until recently there has been no evidence onyield
delay under conditions of compound stress; the ex-
perimental studies relate to compression (the major-
ity) or tension. The published evidence does not allow
us to conclude that the delay characteristics in ten-
sion and compression are the same, since no system-
atic evidence has been published on these two types of
test for the same material. The dislocation theory of
delay indicates that the delay for a single crystal and
the plastic deformation are determined by the tangen-
tial stress in the corresponding slip system, so we
naturally assume that (1.1) still applies for a state of
compound stress, with o replaced by the maximum tan-
gential stress T, 55 Oor by the stress intensity oj. This
would imply identical delay characteristics in tension
and compression.

3) It remains unclear how (1.1) is to be applied to
sign-varying loads. Cottrell's scheme indicates that
partial release of dislocations from their atmospheres
in one direction does not facilitate motion in the other
direction, so we assume that (1.1) applies only for
stresses of one sign, and the delay for an alternating
load is reckoned from the instant when the stress re-
verses, with ¢ dependent on|o]|, i.e., @ = @{|o|T).

Various forms for ¢{(c,T) in (1.1) have been pro-
posed from theoretical considerations, e.g.,

¢ = (o] /o), (2.1)

a(|sl/oe—1)" (>00)
-6 (<o)’ (2.2)
¢ = Kexp (|0]/ 04). (2.3)

Yokobori {8] and Campbell [9] derived {2.1) from
Cottrell's theory. The 7y in (1.1) allows us to choose
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0, arbitrarily, e.g., o, = gp. It is clear that (2.1) is
not suitable for o near gy, since it gives a finite delay
at that point; however, this does not prevent practical
use of the equation. Also, (2.3) [9] is not applicable
for o small, and only (2.2} is free from these difficul-
ties. The coefficients in (2.1)~(2.3) are functions of T.
A theoretical relationship has been derived for n in
(2.1), n = const/T, but this is correct only in a certain
temperature range [10]. We will consider various for-
mulas for ¢(o,T) as well as empirical relationships
that approximate the experimental results over certain
ranges. Here it is not possible to prefer (2.1) to (2.3);
the considerable spread in the observed points makes
the two equivalent. The position is entirely analogous
with thaf in the theory of creep, where different ap-
proximations to the creep law give roughly the same
results, and convenience is decisive in choosing be-
tween formulas., For this reason we will use {2.1) in
what follows.

Numerous careful measurements are needed in or-
der to determine 74 and n {(or o, for a given 7y); these
guantities are very much dependent on the grain size,
chemical composition, etc. See [10] on this subject.

3. Consider the propagation of elastic~plastic waves
in a medium with delay. We assume that the end of an
infinite rod is given a velocity v; then a forward elas-
tic wave propagates along the rod with a stress o =
= Ev/c, in which c is the speed of propagation of longi-
tudinal waves. This stress corresponds {o a delay 7
defined by (1.2). When the leading edge has moved a
distance c¢r, the stress at the end falls to oy and, if
there is no work-hardening, the critical velocity is
zero, and breakaway occurs at the end. If o = f(€) cor-
responds to a work-hardening material, the propaga-
tion pattern is as follows (Fig. 4). A forward elastic
wave propagates in region A, which carries the stress
0, over a length c7, behind which follows an elastic
wave of reduced stress, whose distance from the lead-
ing edge is constant at cr. In region B there arises a
centered bunch of elastic-plastic waves, and in region
C there propagates a wave with a constant velocity,




the speed of the particles being constant at v, while
the strain €' and stress ¢! are also constant and are
defined in the usual way via the o = f(¢) diagram as
functions of v (point C in the diagram). The stress and
strain on the characteristics for the centered bunch
correspond to part BC of the o = f(¢) diagram, and be-
hind the wave of reduced stress (the boundary between
regions A and B) the stress is equal to the static yield
point oy. It is readily seen that any assumption of in-
elastic strain behind this second front means that the
kinematic and dynamic conditions are not met. The
propagation of elastic-plastic waves in the presence of
delay is the same as in the absence of delay, except
for the time shift 7. In a rod of finite length, the head
wave is reflected, and this carries a stress g, so it
can have a marked effect on the propagation of elas-
tic-plastic waves.

It is not essential to assume that the ¢ = f(¢) dia-
gram is independent of the rate indiscussing wave prob-
lems. For instance, we can suppose that the behavior
of the material is described by some definite equation
after o, has been reached, this equation containing
¢ and & [11]. Then the unloading following the delay
wave will cause the plastic waves to propagate in ac-
cordance with the Sokolovskii~-Malvern scheme.

4. Consider the effects of a uniform pressure sud-
denly produced within a spherical cavity in an unbounded
body, whose material has an ideal elastic-plastic na-
ture with delay. If the material is assumed to be in-
compressible, elastic waves will not propagate in it,
and there is only a wave separating the plastic region
from the elastic one. We put £ = r/a, in which r is cur-
rent radius and a is the radius of the spherical cavity.
The equation of motion is
85 2(Gg — cr) ézu

r
_pa—ﬁ,

T (4.1)

The equation of incompressibility (8u/0& + 2u/¢) = 0
implies that

U= € =
= [ 0‘“2‘3“1
2w
& =", w=w (). {4.2)

Here the dimensionless time t is referred to the
characteristic time t, = a/c, where c isthe shear-wave
speed.

Hooke's law gives for the elastic region that

0y — 0, = 2L (g0 — &) = bpw / .

We substitute this expression and the expression for
u inko (4.1) and integrate with oy.(=) = 0 to get

a=—r(F+T) .9

The entire medium is in the elastic state for t <
< t; and the equation of motion is found from (4.3) with
£=1,0.=—qlt) as

w' 4w = q/ {4.4)

We denote by wy(t) the integral of (4.4) that satis-
fies zero initial conditions and get w = wy(t) (t =t,).

The plasticity condition ¢y — o, = 6; is obeyed in the
plastic region. We insert this into the equation of mo-~
tion and integrate subject to the boundary condition
op(1) = —qgft) to get

G, =20, Jn E—ww" (1 —E)/E—g. (4.5)

Let x be the radius of the interface between the elas-
tic and plastic regions. Since the material is incom~
pressible, the velocity is continuous at the boundary,
so the radial stress o, is also continuous, and (4.3)
and (4.5) give

. 2
w +4x—”;+%lnx:—;~. (4.8)

The unknown functions w(t) and x{t) appear in (4.6).
A second relation between them is derived from (1.1)
which becomes an equality at the interface. If £ = x,
0y — 0y = 6uw/x in the elastic region, so (1.1) becomes

(22)'at = = v (4.7)

Gyx®

Sy

We now introduce the symbols

B

3
Y= =L

Go

3 _-
X =z, =

The system of equations is finally written as

$
y"—i—i—y—}—élnz:Zp, 2t =1+ —:—Sy"dt. (4.8)

i

We must put z = 1 in the first equation in the elas~
tic state and for t < t;; then the solution subject to the
initial condition y(0) = y" (0) = 0 defines the function yy.
The condition for onset of yield is

iy
1
1}

Functions y(t) and z(t) for ¢ >t; are defined by solv-
ing (4.8); the second equation in this system is derived
from (4.7) with use of (4.9). The initial conditions are
as follows: fort=t, z=1, y=y{t), y =yi(t). Of
course, only numerical methods can actually yield a
solution.

5. Consider now the pure bending of a prismatic
rod (width b, thickness 2h) of ideally elastic-plastic
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material showing delay. The stress distribution over
the cross-section is linear in the elastic state; if the
stress at the edge exceeds 0y, this stress after a time
t; falls to oy, and the boundary for stress reduction
moves towards the neutral axis. Figure 5 shows the
stress distribution. We put € =ny/h to find the follow-
ing relation between the bending moment, the curva-
ture, and the parameter y that defines the position of
the elastic-plastic boundary:

2 E
M = bltey [ Z v+ 1—12). (5.1
Also, 0 = Eny at the boundary of the elastic region,

and substitution into (1.1) with the power law for de-
lay gives

CQA,*
TN
g|§§‘

=
g
3
R
T
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a
(=]

This condition refers to a specific point inthe cross-
section, so Y must be taken as constant there. We re-
write this as

7n§u"_dt -, = (T)n“ (5.2)
[

We introduce the symbols

bhto, = My, M/M, =m, 2E | 364 = p-

Then (5.1) is put as
m=pr’x + 41—y (5.3)
a) Constant-rate strain. We put » = at and get from
(5.2) that

P

7o =T (5.4)

We put ¥ = 1 in (5.4) and get the time t; correspond-
ing to onset of yield at the edge; the curvature is

% = [(n + Doty ]t/ oD,

We eliminate the time from (5.4) to get

" ) n+1) /n

r={(2 (5.5)

We substitute this v into (5.3) to relate the bending
moment to the curvature:

mem (2 (2 )

2
Here m, = p®y is the maximum bending moment at
t = t;. Since n is large, we can replace this formula
by the approximation

m==(m;—1) (%)2 + 1.

Here n appears only in the expression for m;, which
is proportional to ¢! n+t)
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b) Bending by a constant moment. We put m = const
to get from (5.3) that

et e i 6
%= P],a (5.7)

Here v decreases from 1 to y;, and the interface
can move only towards the neutral axis (otherwise
stress reduction would occur), and hence the motion
stops when dw/dy = 0. We get from (5.7) that

dx

ar = (3—3m—1%).

2
m

This derivative is negative for v =1 if m > 2/3, and
motion begins only if this condition is met; in fact, the
largest stress is oy if m = 2/3. We specify that dw/dy =
= 0 wheny = v, to get

1=V 3(1—m). (5.8)

We differentiate (5.2) and substitute for n from (5.7)
to get the following differential equation for y(t):

(m=ttr

n
e ) = —nry .

Then we have the time of motion for the plasticity
boundary as

t=n(g)w | (5.9)

Y1

Relation (5.8) sets the lower limit toy; if 2/3<m =<
= 1: if m >1, the applied moment is greater than the
static moment, and we must put y; = 0 in (5.9). Then
the time for which the rod retains its carrying capac-
ity is derived as follows. The time ¢t; to the onset of
yield is found from (5.2), in which we put n = const =
= m/p; we get t; = (3/2)"rym™0, The loss of carrying
capacity occurs at t; + ty, with t, defined by (5.9). It
is readily seen that

T<w<7(EZ), (5.10)
and that t,/t, approaches 0.5 as m increases.

6. This last example shows that the time for reten-
tion of carrying capacity is not dependent on the elas-
tic modulus. We pass fo the limit E —~ to get the
scheme for a rigid plastic body with delayed yield,
whose strain to zero up to the instant of loss of carry-
ing capacity. However, if a rigid body is considered
as an elastic one with E very large, we naturally as~
sume that the stress distribution in the rigid state will
be as for an elastic body, since this is independent of
the modulus for a given load. The equations of motion
retain only the inertial terms that correspond to mo-
tion of the body as a whole. There is no interest in the
stress distribution in the parts of the body assumed
to be rigid in the usual rigid-plastic formulation, since
the disposition of the plastic zones is determined by
the scope for subsequent motion. The history of the
stress from the start of loading can play a major part
when there is delay.



Fig. 6

These arguments may be illustrated via a rigid
plastic beam with yield delay. The condition for onset
of yield in bending is put as

t
Sm“dt = T,. {6.1)
3

From the above, this condition is the one for yield
at the edge, andthe carrying capacity will be exhausted
only when the section is an ideal double T. All the
same, we retain (6.1) as an approximate condition for
any cross—section, with m = M/Mu as before, inwhich
My is the limiting moment, and Ty = 7o(ogW/M)",
where W is the resistance moment of the cross-section.

Consider a beam of length 27 on two supports and
ioaded at the middle by a force P that varies linearly
with time. We put PI/2M = p = p't and write (6.1) as

»
S\'m"dp—_—p’tz. (6.2)
[

The largest bending moment m = p occurs at the
middle while the beam remains rigid. A plastic hinge
is formed at this point for p = p;, and (6.2) gives

piml=(n 4+ 1p't;y. (6.3)

Each half of the beam will rotate around its support
after the plastic hinge has formed. Figure 6 shows
the forces acting, including the linearly distributed in~-
ertial force. We put £ = x/{ to get the bending moment
as

m= —12[(p — 3) & — (p — )& (6.4)

By pyl{£) we denote the loading parameter for which
the bending moment in the section with coordinate £
becomes zero. If p >py, the moment in this cross-sec-
tion is negative, and in examining the scope for yield
delay we need take account of only that part of the his-
tory beginning with the instant when p = pg. Condition
(6.2) gives as follows after substitution of (6.4) and
use of (6.3):

» 1
g—g g, B
V=2 -

Po

Then

3¢ g(—gy)] /o),
+ Py [ 3 ]

P Zi_gz (6.5)

We can put n/(n + 1) = 1 for n large, so (6.5) is re~
placed by the simpler equation

_i—g . o
rEr—etia-g (6.6)

Now we can find the point at which yield first oc-
cur. We put dp/dé = 0 to get

285 — p, (1 — 383 = 0. (6.7)

If there is no delay, p; = 1, £ = 1/2, and (6.6) gives
p=9. If p; >1, the real root of (6.7) lies in the range

12 <<E<1/V3.

This example shows that allowance for delay can
alter the scheme for the disposition of plastic hinges
when a rigid-plastic model is used.
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