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Stress-strain relationships for metals at high strain rates have long been 
studied, but no really reliable and generally accepted theory has emerged. 
It is sometimes assumed that the dynamic stress-strain diagram is largely 
insensitive to the rate over a certain range. Another approach is to in- 
sert derivatives of the stress and strata with respect to time. One diffi- 
culty in establishing the actual reIationships is that experiment pro- 
vides only indirect evidence (direct tests are usually impossible). Any 
real dynamic experiment tends to produce complicated effects, which 
can be interpreted only if the basic equations are taken as known. The 
best that experiment can then do is to confirm or reject some prior 

assumptions. 

Many experimental studies deal with mechanical characteristics such 

as breaking strength and yield point as functions of strain rate; how- 
ever, strain rate characterizes a range of conditions rather than de- 

fines a parameter. We therefore have to use simple models that allow 

formulation and solution of definite mechanical problems in relation to 

the dynamics of elastic-plastic media. 

1. D e l a y e d  y i e l d  i s  a c h a r a c t e r i s t i c  f e a t u r e  of  m i l d  

s t e e l  u n d e r  s h o c k  l o a d i n g .  If  t h e  s t r e s s  cr e x c e e d s  t h e  

s t a t i c  y i e l d  p o i n t  Cry s ,  t h e  s t r a i n  i s  e l a s t i c  f o r  s o m e  

t i m e  r ( e ) ,  t h e  d e l a y .  C o t t r e l U s  t h e o r y  e x p l a i n s  t h i s  a s  

d u e  to  a c l o u d  o f  s o l u t e  a t o m s  a r o u n d  a d i s l o c a t i o n  in  

c a r b o n  s t e e l ,  a n d  a c e r t a i n  t i m e  i s  n e e d e d  f o r  a g i v e n  

a b e f o r e  t h e  d i s l o c a t i o n  c a n  b r e a k  o u t  [ 1 - 3 ] .  T h e n  the  

c o n d i t i o n  f o r  o n s e t  of  y i e l d  c a n  b e - w r i t t e n  a s  

t 'S -~o (p(~' r)d'~= 1.: (1.1)  
o 

While (i.i) is not met, Hooke's law applies; yield 

starts when (i.i) is met. We put o- = const and t = r in 

(I.i) to get the delay r: 

---- ~ ( - ~ ,  ~ i  (1 .2)  

T e s t s  o n  r a s  a f u n c t i o n  o f  cr a l l o w  u s  to f i nd  ~o(cr, T) .  

A n o t h e r  a p p r o a c h  i s  to  s t r e t c h  o r  c o m p r e s s  t h e  

s p e c i m e n  a t  a c o n s t a n t  s t r a i n  r a t e  g; i n  t he  e l a s t i c  

r a n g e ,  t h e  s t r e s s  a l s o  v a r i e s  a t  a c o n s t a n t  r a t e ,  8 = 

= E ~ ,  a n d  H o o k e ' s  l a w  a p p l i e s  u n t i l  a r e a c h e s  a v a l u e  

o- u ,  t h e  u p p e r  y i e l d  p o i n t ,  w h i c h  i s  d e p e n d e n t  o n  d .  

F r o m  (1.1)  w e  g e t  

% =  oo-,(~', ~0), q~(~) = ~p(~)d~.  (1.3) 
o 

The basis of (1.1) is summation of delay times, and the equation 
has been tested repeatedly, e . g . ,  by comparing [4] the r from the 
above two testing methods and by a varying o sinusoidally. 

Figure 1 shows the o(e) relation for carbon steel at a constant high 
~; the dashed line represents the static behavior. The dynamic diagram 

can be constructed quite reliably in the elastic range, and existing 
methods i t ,  6] permit the determination of the dynamic oy as a function 
of d,  which can be kept constant. It is not possible to record the fall- 
ing part below A, and ~ in the plastic range is variable in existing test 
methods, so the initial part of the plastic-strain curve cannot be con- 
sidered reliable. 

Moreover, the plastic deformation of mild steel in the yield range 
is very uneven, large plastic deformations being localized in small 
volumes. Thus it is purely arbitrary to assign the plastic resistance to 
the mean strain rate. All the same, some conclusions can be drawn on 
the lower yield point o/ as a function of ~, which is much weaker than 
that for Ou. Figure 2 shows Belyaev's results for Ou/OU0 and ot/Oto as 
functions of ~ for steel 8 at room temperature. While o l can actualiy 
be considered a function of ~ (if we make certain assumptions about 
the structure of the equations), % is dependent on the history of the 
loading in the elastic region and can be considered as a function of the 

rate only for constant-rate testing. Any comparison of o u and o l as 
functions of rate can be only qualitative. Warnock and Taylor [7] have 
given analogous results on the weaker rate dependence of o l. This gives 
us a basis for the following model that describes approximately the dy- 

namic behavior of materials such as mild steel. It is assumed that there 
is a deformation diagram o = f(e) independent of the rate (Fig. 3), for 

which in first approximation we can use the static diagram (without the 
yield step), This diagram has an elastic range o < o0. Dynamic loading 

raises tb_e yield point in accordance with (1.1) to % (point k).  If the 
strain at A is kept constant, after k is reached the stress falls abruptly 

to the value corresponding to this e on the static curve o = f(gA). If the 

load is removed at a point on the elastic part indefinitely close to k 

on the left, there will be no delay on repeating the loading, and the 
o-g curve follows the static diagram. 

The term "static diagram" as used here for o = f(e) has only a nom- 
inal meaning, because the relationship should contain the rate; how- 

ever, the dependence is relatively weak, so we can use the appropriate 
mean rate. For instance, if the rate is rather high, as in wave pro- 
cesses, we use the dynamic diagram, as in the theory of the propaga- 
tion of elastic-plastic waves. If the problem is not one of waves, we 
can take the next step and use for o = f(g) an ideal-plasticity diagram, 
as in Fig. 3b; then c~ l = const. If evidence is available on the rate de- 
pendence of o l, the calculation should be performed as follows. First 
we calculate for o0 equal to the static yield point to find the rate dis- 
tribution, and then a revised a0 is found from the mean rates. There 
is no reliable evidence on the rate dependence of %, so as o 0 we 
have tO use the static yield point. 

Ou - --~-~[/] 
uo~" 

Fig. 1 
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2. The above s cheme  needs  r e f inemen t s ;  however ,  
the n e c e s s a r y  expe r imen ta l  evidence for these  r e f i n e -  
men t s  is not  avai lable;  neve r the l e s s ,  they mus t  be 
specif ied.  

1) When a d i s loca t ion  has broken away f rom its so l -  
ute a toms,  the l a t t e r  begin to mig ra t e  to the new pos i -  
t ion of the d i s loca t ion  and eventua l ly  produce the block-  
ing a tmosphe re  again. This  effect mus t  be taken into 
account  for low (~ and l a rge  de lays  [2], and it will  be 
p a r t i c u l a r l y  impor t an t  for  delayed yie ld  under  o s c i l l a -  

to ry  loads. 
2) Unti l  r e c e n t l y  there  has been no evidence ony ie ld  

delay under  condi t ions  of compound s t r e s s ;  the ex-  
p e r i m e n t a l  s tudies  r e l a t e  to c o m p r e s s i o n  (the m a j o r -  
ity) or  tension.  The publ ished evidence does not allow 
us to conclude that the de lay  c h a r a c t e r i s t i c s  in t e n -  
s ion and c o m p r e s s i o n  a re  the same ,  s ince  no s y s t e m -  
at ic  evidence has been publ ished on these two types of 
t es t  for  the s ame  m a t e r i a l .  The d is loca t ion  theory of 
delay indicates  that the de lay  for  a s ingle  c rys ta l  and 
the p las t i c  de format ion  a r e  d e t e r m i n e d  by the t angen-  
t ia l  s t r e s s  in the co r re spond ing  s l ip  sy s t em,  so we 
na tu ra l l y  a s s u m e  that (1.1) s t i l l  appl ies  for  a s ta te  of 
compound s t r e s s ,  with a rep laced  by the m a x i m u m  tan-  
gent ia l  s t r e s s  Tma x or  by the s t r e s s  in tens i ty  o- i. This  
would imply  ident ica l  de lay  c h a r a c t e r i s t i c s  in t ens ion  
and compres s ion .  

3) It r e m a i n s  unc l ea r  how (1.1) is to be applied to 
s i g n - v a r y i n g  loads. C o t t r e l l ' s  scheme indicates  that 
pa r t i a l  r e l e a s e  of d i s loca t ions  f rom the i r  a tmosphe re s  
in one d i r ec t i on  does not fac i l i ta te  mot ion  in the other  
d i rec t ion ,  so we a s s u m e  that (1.1) applies  only for  
s t r e s s e s  of one s ign,  and the delay for  an a l t e rna t ing  
load is reckoned  f rom the ins tan t  when the s t r e s s  r e -  
ve r s e s ,  with q~ dependent  on ]a l ,  i . e . ,  q~ = ~(](~]T). 

Var ious  f o r m s  for  (p(a,T) in (1.1) have been p r o -  
posed f rom theore t i ca l  cons ide ra t ions ,  e . g . ,  

= (I ,~ l / ~ . ) n ;  (2.1) 

{;(1<:,1/<~,>--i)~ (<~>~o) 
= (~ ~o) '  

(p = Kexp ([(~1 / ~**)' 

(2.2) 

(2.3) 

Yokobori  [8] and Campbe l l  [9] der ived  (2.t) f rom 
C o t t r e l l ' s  theory.  The To in (1.1) allows us to Choose 

Fig.  3 

a ,  a r b i t r a r i l y ,  e . g . ,  (r. = (r 0. It is c l ea r  that (2.1) is 
not su i tab le  for o- nea r  (T0, s ince  it gives a f ini te  delay 
at that point; however,  this  does not p reven t  p rac t i ca l  
use  of the equation. Also,  (2.3) [9] is not appl icable  
for  (~ s m a l l ,  and only (2.2) is f r ee  f r o m  these di f f icul-  
t ies .  The coeff ic ients  in (2.1)-(2.3) a re  functions of T. 
A theore t i ca l  r e la t ionsh ip  has been der ived  for  n in 
(2.1), n = c o n s t / T ,  but this is c o r r e c t  only in a ce r t a in  
t e m p e r a t u r e  r ange  [10]. We will  cons ider  va r ious  f o r -  
mu l a s  for  q~(a, T) as well  as e mp i r i c a l  r e la t ionsh ips  
that approximate  the expe r imen ta l  r e su l t s  over  ce r ta in  
ranges .  Here  it is not poss ib le  to p re fe r  (2.1) to (2.3); 
the cons ide rab le  sp read  in the observed  points  makes  
the two equivalent .  The posi t ion  is en t i r e ly  analogous 
with that in the theory  of creep,  where d i f fe rent  ap-  
p rox imat ions  to the creep law give roughly the same  
r e s u l t s ,  and convenience  is  dec is ive  in choosing be -  
tween fo rmulas .  F o r  this  r ea son  we will use  (2.1) in 
what follows. 

Numerous  careful  m e a s u r e m e n t s  a re  needed in o r -  
de r  to d e t e r m i n e  70 and n (or a .  for a given To); these 
quant i t ies  a re  ve ry  much dependent  on the g ra in  s ize ,  
chemica l  composi t ion,  etc. See [10] on this subject .  

3. Cons ide r  the propagat ion  of e l a s t i c - p l a s t i e w a v e s  
in a med ium with delay. We a s s u m e  that the end of an 
inf ini te  rod is given a veloci ty  v; then a forward  e l a s -  
t ic  wave propaga tes  along the rod with a s t r e s s  a = 
= Ev/c,  in which c is the speed of propagat ion of longi-  
tudinal  waves.  This  s t r e s s  co r r e sponds  to a delay ~- 
defined by (1.2). When the leading  edge has moved a 
d i s tance  eT, the s t r e s s  at the end fal ls  to a0 and, if 
there  is no work-ha rden ing ,  the c r i t i c a l  veloci ty is 
zero,  and breakaway occurs  at the end. If o-=f(e) c o r -  
r esponds  to a work -ha rden ing  m a t e r i a l ,  the p ropaga-  
tion pa t t e rn  is as follows (Fig. 4). A forward  e las t ic  
wave propagates  in reg ion  A, which c a r r i e s  the s t r e s s  
au over  a length cT, behind which follows an e las t ic  
wave of reduced s t r e s s ,  whose d is tance  f rom the lead-  
ing edge is constant  at c~-. In r eg ion  B there  a r i s e s  a 
cen te red  bunch of e l a s t i c - p l a s t i c  waves,  and in reg ion  
C there  propaga tes  a wave with a constant  veloci ty,  

Fig.  4 
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the speed of the pa r t i c l e s  being cons tant  at v, while 
the s t r a i n  e v and s t r e s s  o-~ a re  also cons tant  and a re  

defined in the usual  way via the e =f (e )  d i ag ram as 
funct ions  of v (point C in the d iagram) .  The s t r e s s  and 
s t r a i n  on the c h a r a c t e r i s t i c s  for  the cen te red  bunch 
co r re spond  to par t  BC of the o- =f (e )  d iag ram,  and be-  
hind the wave of reduced  s t r e s s  (the boundary  between 
reg ions  A and B) the s t r e s s  is equal to the s ta t ic  yield 
point  o- 0. It is r ead i ly  seen  that any a s sumpt ion  of in -  
e las t i c  s t r a i n  behind this second f ront  means  that the 
k inemat ic  and dynamic  condit ions a re  not met.  The 
propagat ion  of e l a s t i c - p l a s t i c  waves  in the p r e s e n c e  of 
delay is the s ame  as in the absence  of delay,  except 
for  the t ime  shift  T. In a rod of f ini te  length,  the head 
wave is re f lec ted ,  and this c a r r i e s  a s t r e s s  O-u, so it 
can have a m a r k e d  effect on the propagat ion  of e l a s -  
t i c -p l a s t i c  waves.  

It is not e s sen t i a l  to a s s u m e  that the o- = f ( e )  dia-  
g r a m  is independent  of the r a t e  in d i s cus s ing  wave p rob-  
l ems .  F o r  ins tance ,  we can  suppose that the behavior  
of the m a t e r i a l  is de sc r ibed  by some  defini te  equation 
af ter  o-u has been reached ,  this  equat ion containing 

and k [11]. Then the unloading following the delay 
wave will cause the p las t ic  waves to propagate  in ac -  
cordance  with the Soko lovsk i i -Malve rn  scheme.  

4. Cons ider  the effects of a un i fo rm p r e s s u r e  sud-  
denly produced within a sphe r i ca l  cavity in an unbounded 
body, whose m a t e r i a l  has an ideal  e l a s t i c - p l a s t i c  na -  
tu re  with delay. If the m a t e r i a l  is a s sumed  to be in-  
c o m p r e s s i b l e ,  e las t ic  waves will  not propagate  in it, 
and there  is only a wave sepa ra t ing  the p las t ic  reg ion  
f rom the e l a s t i c  one. We put g = r /a ,  in which r is c u r -  
r en t  r ad ius  and a is the r ad ius  of the spher ica l  cavity.  
The equat ion of mot ion  is 

0% 2(~ 0 -- %) O~u 
0~ ~ ~, -/~. (4.1) 

The equat ion of i n c o m p r e s s i b i l i t y  (0u/O~ + 2u/~) = 0 
implies that 

w lo 

2w 
~,. = ~ .  , ~ = w ( t ) "  (4.2) 

Here  the d i m e n s i o n l e s s  t ime t is r e f e r r e d  to the 
c h a r a c t e r i s t i c  t ime t .  = a/c ,  where  c is the s h e a r - w a v e  
speed. 

Hooke 's  law gives for  the e l a s t i c  reg ion  that 

We subs t i tu te  this e x p r e s s i o n  and the express ion  for 
u into (4.1) and in tegra te  with o-r(~) = 0 to get 

4 w + w ' "  . 
~ r - ~ - - ~ ( V  -~-) (4.3) 

The en t i re  med ium is in the e las t i c  s ta te  for  t < 
< t 1 and the equation of mot ion  is found f rom (4.3) with 

= 1, ~r = - q ( t )  as 

We denote  by wl(t) the in teg ra l  of (4.4) that s a t i s -  
f ies  zero  in i t ia l  condi t ions  and get w = wl(t) (t _ h). 

The p la s t i c i ty  condit ion o-0 - %r = % is obeyed in the 
p la s t i c  region .  We i n s e r t  this  into the equat ion of m o -  
t ion and in tegra te  subjec t  to the boundary  condit ion 

a t ( l )  = -q( t )  to get 

% = 2 %  In ~ - -  ~tw" (l --  ~ ) / ~ - - q .  (4.5) 

Let  x be the rad ius  of the in te r face  between the e l a s -  
tic and p las t ic  reg ions .  Since the m a t e r i a l  is i n c o m -  
p r e s s i b l e ,  the veloci ty  is cont inuous at the boundary ,  
so the r ad ia l  s t r e s s  o-r is a lso cont inuous ,  and (4.3) 
and (4.5) give 

w"+4~x~ +-~-2~~ q . ~  (4.6) 

The unknown funct ions w(t) and x(t) appear  in (4.6). 
A second r e l a t i o n  between them is de r ived  f rom (1.1) 
which becomes  an equal i ty  at the in ter face .  If ~ = x, 
% - o-r = 6~w/x in the e l a s t i c  region ,  so (1.1) becomes  

t ( 61 sw ~ dt = ~:oc 
knox3/ "U = % '  (4.7) 

o 

We now in t roduce  the symbols  

3q 6~tw x ~ ~ z, p = --, 
Y - -  ~0 ' GO 

The system of equations is f ina l ly  written as 

i 

y + + 4 1 n z = 2 p ,  z ' ~ = 1 +  ~ y~dt. (4.8) 
ti 

We must put z = 1 in the first equation in the elas- 

tic state and for t < tl; then the solution subject to the 

initial condition y(0) = y" (0) = 0 defines the function Yl. 

The condition for onset of yield is 

h 

o 

Func t ions  y(t) and z(t) for  t > h a re  defined by so lv-  
ing (4.8); the second equat ion in this s y s t e m  is de r ived  
f rom (4.7) with use  of (4.9). The in i t ia l  condi t ions  a re  
as follows: for  t = h ,  z = 1, y =  Yl(h), Y" = Yi (t0.  Of 
course ,  only n u m e r i c a l  methods  can ac tua l ly  y ie ld  a 
solut ion.  

5. Cons ide r  now the pure  bending of a p r i s m a t i c  
rod (width b, th ickness  2h) of ideal ly  e l a s t i c - p l a s t i c  

05  

/ 
w'" + 4w ~ q / ~: (4.4) Fig.  5 
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m a t e r i a l  showing delay.  The  s t r e s s  d i s t r ibu t ion  over  

the c r o s s - s e c t i o n  is l i n e a r  in the e l a s t i c  s tate;  if the 

s t r e s s  at the edge exceeds  u0, this s t r e s s  a f t e r  a t ime  
tl f a l l s  to %, and the boundary  fo r  s t r e s s  reduc t ion  

m o v e s  towards  the neu t r a l  axis.  F i g u r e  5 shows the 

s t r e s s  d is t r ibut ion .  We put e = ~ y / h  to find the fo l low-  
ing r e l a t i o n  between the bending momen t ,  the c u r v a -  

ture ,  and the p a r a m e t e r  y that def ines  the pos i t ion  of 
the e l a s t i c - p l a s t i c  boundary:  

[ 2 E 
I - -T~] .  (5.1) M : bh~o :-r y~u ' W L 0  _1 

Also, u = Ex7 at the boundary of the elastic region, 

and substitution into (I.i) with the power law for de- 

lay gives 

t 

% = To. S\~o / 
o 

This  condit ion r e f e r s  to a spec i f i c  point  in the c r o s s -  
sec t ion ,  so 3/ mus t  be taken as constant  there .  We r e -  

w r i t e  this as 

t 

o 

We in t roduce  the symbols  

bh~Oo = M~, M / MT = m,  2E / 3% = p. 

Then (5.1) is put as 

m = p T a •  §  . (5.3) 

a) C o n s t a n t - r a t e  s t r a in .  We put ~4 = c~t and g e t f r o m  

(5.2) that 

~n~n tn+t 
= q (5 .4 )  

We put y = 1 in (5.4) and get  the t ime  tl c o r r e s p o n d -  

ing to onse t  of y ie ld  at the edge; the c u r v a t u r e  is 

• = [(n + t ) e x ~ l  x / ( ~ m .  

We e l i m i n a t e  the t i m e  f r o m  (5.4) to get  

(5.5) 

We subs t i tu te  this y into (5.3) to r e l a t e  the bending 

m o m e n t  to the c u r v a t u r e :  

m : m ~  ~7  -~-i--(~-~.)2+~/n.  ' (5.6) 

H e r e  m 1 = P~t is the m a x i m u m  bending m o m e n t  at 
t = t 1. S ince  n is l a r g e ,  we can r e p l a c e  this f o r m u l a  
by the app rox ima t ion  

m = ( m l - - l )  ~ -  + 1: 

H e r e  n appea r s  only in the e x p r e s s i o n  for  m 1, which 
is p ropo r t i ona l  to o~1/(n+l) 

b) Bending by a constant  moment .  

to get  f r o m  (5.3) that 
We put m = const  

ra-- t + y  2 
---- . (5.7) py8 

H e r e  7 d e c r e a s e s  f r o m  1 to T1, and the in t e r f ace  
can move  only towards  the neu t ra l  axis (o therwise  
s t r e s s  r educ t ion  would occur) ,  and hence the mot ion 
s tops when du/d7 = 0. We get f r o m  (5.7) that 

dx I (3 - -  3 m - -  r~). 

This  d e r i v a t i v e  is negat ive  fo r  y = 1 if m > 2/3, and 
mot ion  begins only if this condit ion is  met;  in fact ,  the 

l a r g e s t  s t r e s s  is % if m = 2/3. We spec i fy  that d~/d7 = 
= 0 when 7 = Yl to get  

r~ = V3(i_ m). (5.8) 

We differentiate (5.2) and substitute for x from (5.7) 
to get the following differential equation for 7(t): 

py3 j = - -  n~lT'T -(n+t)" 

Then we have the t ime  of mot ion  fo r  the p las t i c i ty  
boundary  as 

T 2n-1  dy 
(~3  ~n% " (5.9) 

t = n \  2 ] . J(m__i+T~)n 

Re la t ion  (5.8) se t s  the lower  l imi t  to Yl if 2/3 < m - 
_< 1: if m > 1, the applied m o m e n t  is g r e a t e r  than the 
s t a t i c  momen t ,  and we mus t  put 71 = 0 in (5.9). Then 
the t ime  fo r  which the rod  r e t a in s  its c a r r y i n g  capac -  

i ty is d e r i v e d  as fol lows.  The  t ime  tl to the onset  of 
y ie ld  is found f r o m  (5.2), in which we p u t x  = const  = 
= m/p; we get  t ! = (3/2)nT0m -n. The loss  of c a r r y i n g  

capaci ty  o c c u r s  at t I + t2, with t 2 defined by (5.9). It 
is r e a d i l y  seen  that 

m n 

and that t J t l  approaches  0.5 as m i n c r e a s e s .  
6. This  l a s t  example  shows that the t ime  for  r e t e n -  

tion of c a r r y i n g  capac i ty  is not dependent  on the e l a s -  
t ic  modulus .  We pass  to the l i m i t  E ~ to get  the 

s c h e m e  for  a r ig id  p la s t i c  body with de layed yie ld ,  
whose  s t r a i n  to z e r o  up to the instant  of loss  of c a r r y -  
ing capaci ty .  However ,  if a r ig id  body is cons ide red  
as an elastic one with E very large, we naturally as- 
sume that the stress distribution in the rigid state will 
be as for an elastic body, since this is independent of 
the modulus for a given load. The equations of motion 

retain only the inertial terms that correspond to mo- 

tion of the body as a whole. There is no interest in the 
stress distribution in the parts of the body assumed 
to be rigid in the usual rigid-plastic formulation, since 
the disposition of the plastic zones is determined by 
the scope for subsequent motion. The history of the 
stress from the start of loading can play a major part 
when there is delay. 
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Fig.  6 

These  a r g u m e n t s  may  be i l l u s t r a t ed  via  a r ig id  
p las t i c  beam with yield delay.  The condi t ion for onset  
of yie ld  in bending is put as 

t 

~ m ~ dt  = T~. 
o 

(6.1) 

F r o m  the above, this condi t ion is the one for yie ld  
at the edge, andthe  c a r r y i n g  capac i tywi l l  be exhausted 
only when the sec t ion  is an ideal  double T. All the 
s ame ,  we r e t a in  (6.1) as an approximate  condi t ion for 
any c r o s s - s e c t i o n ,  with m = M/M u as before ,  inwhich  
M u is the l imi t ing  momen t ,  and ~'2 = 70(cr0W/Mu )n, 
where  W is the r e s i s t a n c e  moment  of the c r o s s - s e c t i o n .  

Cons ider  a beam of length 2l on two suppor ts  and 
ioaded at the middle  by a force  P that va r i e s  l i n e a r l y  
with t ime. We put PI/2M u = p = p ' t  and wr i te  (6.1) as 

P 

m ~  dp = P ~. (6.2) 
o 

The l a rge s t  bending momen t  m = p occurs  at the 
middle  while the beam r e m a i n s  r igid.  A p las t i c  hinge 
is fo rmed  at this point for  p = Pl, and (6.2) gives  

p:~+: = (n + i)p't2. (6.3) 

Each half of the beam wil l  ro ta te  around its suppor t  
af ter  the p las t i c  hinge has formed.  F i g u r e  6 shows 
the forces  act ing,  inc luding the l i n e a r l y  d i s t r ibu ted  in -  
e r t i a l  force.  We put ~ = x / l  to get the bending moment  
as 

m = -- i /2[(p - - 3 )  ~ - -  ( p - -~ )~3 ]  (6.4) 

By Po(~) we denote the loading p a r a m e t e r  for which 
the bending momen t  in the sec t ion  with coordinate  
becomes  zero.  If p >P0, the m o m e n t  in this c r o s s - s e c -  
t ion is negat ive ,  and in examin ing  the scope for yie ld  
delay we need take account  of only that pa r t  of the h i s -  
to ry  beginning with the ins tant  when p = P0. Condit ion 
(6.2) gives as follows af ter  subs t i tu t ion  of (6.4) and 
use  of (6.3): 

P ~+i o 

2 d p =  ~---~r" 
Po 

T hen 

3_~_  [~]-n/(n+,). 
P = ~ - ~ t P t  (6.5) 

We can put n / ( n  + 1) ~ 1 for n la rge ,  so (6.5) is r e -  
p laced by the s i m p l e r  equat ion 

(6.6) 

Now we can find the point  at which yield f i r s t  oc-  
cur .  We put dp/d~ = 0 to get 

2~ 3 - -  P t  ( i  - -  3~ 2) = 0.  ( 6 . 7 )  

If the re  is no delay,  Pl = 1, ~ = 1/2, and (6.6) gives 
p = 9. If Pi > 1, the rea l  root  of (6.7) l ies  in the range  

T h i s  example  shows that a l lowance for  delay can 
a l t e r  the scheme  for the d i spos i t ion  of p las t ic  hinges 
when a r i g i d - p l a s t i c  model  is used.  
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