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1. Introduction 

D'Alembert's Paradox states that if a steady uniform potential flow goes 
around a non-permeable arbitrary rigid body, then there would be no total 
force acting on the surface of the body. Power et al. (1984) solved the 
problem of potential flow past a porous body of arbitrary shape with 
constant permeability K0, as well as the interior flow on the corresponding 
porous media. This interior flow was represented as a viscous potential flow 
with the corresponding pressure related to the seepage velocity by Darcy's 
Law. The solution of these flows was found by means of a pair of non-linear 
Fredholm integral equations of the second kind. A formal solution of the 
mentioned non-linear integral equations was given in terms of the solution 
of certain linear integral equation when the dimensionless parameter 
K ,  = OKo V/I~R~ is small; here # is the fluid viscosity, ~o the fluid density, V 
is the magnitude of the uniform velocity at infinity and R~ is a characteristic 
radius of the arbitrary body, a similar dimensionless parameter was intro- 
duced by Chwang and Dong (1984) to wave dissipation due to a porous 
plate. 

The exterior potential q~ was expressed as a linear combination of two 
auxiliary potential function~ qSo and ~b~ as 

= 4,0 + (1 .1)  

in which qSo is the usual potential function for the flow around a non-perme- 
able body of the same geometrical configuration as the given porous body, 
and ~b~ is the correction due to the fact that the body is porous. 

The total force acting upon the porous body due to the uniform exterior 
potential flow was found to be: 

F = ~K,  Vq5 o dS + O(K2,) (1.2) 
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in which S is the surface of the body, and n is the normal unit vector 
directed outwardly from the body. 

Power et al. (1984) solved the case of the two dimensional uniform flow 
around a porous circular cylinder of radius R = RI as an example for 
verification of the integral equation method, and found that in this case the 
flow exerts a drag force on the porous cylinder equal to: 

F = 2nQK0 V3ex + O(K2,) (1.3) 
v 

in which ex is the direction of the uniform flow at infinity. It can be noted 
that this force is independent of the cylinder size. Regarding the nice 
boundary geometry of the above mentioned case, its solution can be found 
in an elementary way using cylindrical Harmonic functions. Another case 
that can be solved without recourse to the integral equation formulation is 
the uniform potential flow past a porous sphere, Power and Garcia (1986) 
solved this case using spherical harmonic functions and found that the 
exterior flow exerts a drag force on the porous sphere which is linearly 
dependent on the radius of  the sphere 

9 rcR~ pKo V3ex q- O(K2,). (1.4) 
F - 1 6  v 

Recently Power et al. (1990) solved the problem of uniform flow past a 
porous cylinder with a core of different permeability, and in particular give 
the solution for the case of a hollow core, whose limiting case when the 
thickness of the porous ring is very small yields the following expression for 
the total force exerted by the uniform flow upon the circular cylinder: 

Fx - Oft V3K 
Vg 

where the thickness of the porous ring is d = eR with e ,~ 1 and K is the 
permeability of the porous ring. As in the previous work K ,  = 0 VK/IM was 
assumed to be very small. 

Here we will study the two dimensional potential flow due to a circular 
cylinder in motion relative to an unbounded fluid in terms of  the dimension- 
less parameter K ,  = 0 VK/#2d, with "d"  as the characteristic shell thickness. 
The full nonlinear hydrodynamic problem, for arbitrary K, ,  is solved by 
Fourier expansion of Green's theorem. For homogeneous porous shells, a 
maximal drag force occurs at the value 0.433 for the shell parameter, but the 
virtual mass is a monotonous  function of the shell parameter. For an 
inhomogeneous shell, we have found a maximal value for the virtual mass 
which is 5% above the value for a rigid cylinder. Some of the results may 
be relevant to offshore engineering, especially in connection with porous 
coating of platform legs to reduce the total force. 
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2. Mathematical formulation and solution procedure 

1057 

Let us consider a circular porous  cylindrical shell of  radius R, with 
physical permeabili ty K, submerged in a uni form potential  flow at infinity. 
We shall normalize all variables according to the following scales: 

x '  x , uk _ 2 P k  and qS~,= qSk 
=-~, u~=~ ,  P'k o~V 2 VR 

with k = i, e for the interior and exterior regions respectively, here ~ is the 
fluid density and V is the magni tude  of  the fluid velocity at infinity. 

The potential  funct ion ~be describing the flow in the unbounded  region 
~e, exterior to the shell, satisfies the Laplace equat ion in its dimensionless 
form, and the following asymptot ic  conditions: 

V2qSe = 0 for all r > 1 (2.l-a) 

lim V~be = ex (2.l-b) 
r ~-~ oo 

where r = (xl + x 2 )  1/2, and (x~, x2) are cartesian coordinates with fixed 
origin "0"  chosen inside the circular shell, here for convenience the primes 
have been d ropped  in the dimensionless variables. Since the problem under  
considerat ion deals with a fluid of  constant  density Q, in an enclosed system, 
wi thout  free surface, the dynamic  pressure Pe is given by Bernoulli 's Law as: 

p~ = 1 - (V~be) 2 = 1 - ~ for all r > 1. (2.1-c) 

Part  of  the flow in f~e seeps th rough  the shell into the bounded  region 
f~i interior to the cylinder. The potential  funct ion qSi describing the interior 
flow satisfies the following equations: 

V2~bi = 0 for all r < 1 (2.2-a) 

and 

pi c (v i) 2 c for all r < 1 (2 .2-b)  

where C is an u n k n o w n  dimensionless constant  to be found.  
At  the shell surface, we have to satisfy the normal  velocity matching  

condition: 

~ e  (~Di 
c?--r-- = O---i- at r = 1 (2.3) 

and Taylor 's  (1956) pressure j u m p  condit ion,  commonly  known as the 
linear discharge law, which states that  the normal  velocity of  the fluid at the 
porous  thin-shell is linearly propor t ional  to the pressure difference between 
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the inner and the outer regions, such pressure jump condition can be 
written in a dimensionless form as: 

~3r - -  K * ( p i  --Pe) at r = 1 (2.4) 

here K ,  is a dimensionless parameter equal to Q VK/2#d, where # is the 
fluid viscosity and d is a characteristic shell thickness. 

Baicorov (1951, 1952) solved the problem of  uniform flow past porous 
circular ring of  small thickness, h, and constant permeability K, for the 
cases of linear and quadratic discharge laws. Contrasting with the present 
problem, he assumes that the limiting value of the angular velocity at the 
interior porous wall is zero and then the interior pressure at the porous 
wall is just Pi = C -  (~q~i/0r)2= l, equation (6) in Baicorov (1951) paper. 
Substituting this interior pressure and the exterior one into the discharge 
law will give a relationship between the exterior radial and angular veloc- 
ities at the porous wall, instead of a relation between the exterior radial 
velocity at the porous wall and the jump between the limiting value of the 
angular velocities at the wall coming from the exterior and the interior 
regions, as we will find below. It is important to point out that the 
Baicorov's formulation does not permit the interior flow as a solution of 
the Laplace' equation, since his method allows to find the exterior poten- 
tial, then the interior radial velocity at the porous wall is determined by 
the normal velocity matching condition at the wall. Therefore, in his case 
we will have an interior flow with prescribed radial and angular velocities 
at the boundary, which over-determines the boundary condition for a 
potential problem. 

Substituting equations (2.1-c) and (2.2-b) into equation (2.4) and using 
the normal velocity matching condition (2.3), we found that the pressure 
matching condition can be written as: 

ar * L \  ao ) - \ ) + c - i at r = 1. (2.5) 

From the non-flux condition 

fF ~)e fO~'nQ(~)e~ -~r da = r Or Jr =, dO = 0 (2.6) 

where F is the circular curve of radius r = 1, we obtain the following 
relation between the constant C and the two potential functions ~be and 

1 [="[(aCpel=-(aeP')=l do. (2.7) C=l- jo L\ ao ) \ ao ) j,=, 
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V2~b; = 0 for all r > 1 (2.9-b) 

and 

lim q5; = 0. (2.9-c) r~oo 
We now can use Green's integral representation formulae for 

the potential q~; and qSi for the regions exterior and interior to the 
cylindrical shell (see Jawson and Symm (1977) page 57) for a fixed point 
P SlOe: 

fr ~ log~~ -- Qr dao" -- ; ~--s (O 'e(Q)) l~176 - Q' d~r~ k + O's(Q) -~n 

= 2rc~be(p) (2.10-a) 

where k is a constant accounting for the non-flux condition of 4~;, and for 
a fixed point p s f~i 

0 
log~ -- QI d•Q - ~ ~ (Oi(Q))10g[o -- QI &rQ fv dp' (Q) ~n jr UYl 

In the above two formulae Q e F. The difference in sign between 
equations (2.10-a) and (2.10-b) comes from the orientation of the normal 
vector n with respect to the domains ~e and f~;, here the normal vector is 
outwardly directed from F. 

A similar approach was used by Baicorov to represent the exterior 
potential, instead of the complete Green's formulae, he used a single layer 
potential, whose unknown density is found to be proportional to the square 
of the exterior angular velocity at the porous wall. 

Using the well known continuity and discontinuity property across the 
curve F of the single-layer and double-layer potentials respectively, the 

= -2 4i(p). 

(2.10-b) 

In this way, equation (2.5) becomes: 

0~be {I(~0et  2 ((~bi~ 2 =K* - \  00 / 

- d O  a t  r = 1. ( 2 . 8 )  
2re 

Let us express the exterior potential ~be in terms of the perturbed 
potential qS;, thus: 

~e = r cos 0 + 4;  (2.9-a) 

where 
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above equations yield the following boundary formulae for a fixed point 
p ~ F :  

fr O l~176 -- Ql daQ fr k + qS;(Q) 3nn - ~nn (qSe(Q)) log~o - QI daQ 

= r~q5 ~(p) (2.1 l-a) 

and 

qS; (Q) ~nn - ~n (qSi (Q)) logLo - Q I dao- = - rcr (P)" 
(2.1 l-b) 

Equations (2.1 l-a, b) can be simplified considerably when the curve F is 
a circle of radius r = 1. Thus, if p = (cos 0, sin 0) and Q = (cos e, sin c 0 are 
points on the circle r = 1, we have that equations (2.11-a, b) become (see 
Jaswon and Symm (1977) page 261): 

k-~f:'~r d~-f:~(~dPe(a))~=ll~ 2 

and 

sin I -~--~} de = 7zq~(0) 

(2.12-a) 

- ~  4~i(e) de - ~ +;(e) r=~ log 2 sin de = -rcOi(O). 
(2.12-b) 

Differentiating (2.12-a, b) with respect to 0, bearing in mind that the 
first integrals in (2.12-a, b) are constant, we found 

and 

2--~ ~ qS;(e) cot ~- de = q~; (2.13-a) 
r = l  r = t  

1--~ f~ (r ~i(e))r=lcot (O --2-~-))de = -(~-~flPi)r= �9 (2.13-b) 

Equations (2.13-a, b) are Hilbert's integral formulae connecting the 
boundary value of a pair of conjugate harmonic functions at r = 1, internal 
and external to unit circle respectively (see Kanwal (1971) page 184). 

Substituting the decomposition given by equation (2.9-a) into equation 
(2.13-a), we obtain: 

2---~ r ~b~ (e) cot ~ d~ = 2 sin 0 + ~be (2.13-c) 
r ~ l  r = l  
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where we have used the following relation coming from Hilbert's integral 
_Jcos(nO)'  

formulae for any exterior harmonic function of the form ~b = r  ~sin(nO) ) '  

at the unit circle: 

--  ~ de = + {sin(nO) "] 
2re \sin(ne) ] cot - \cos(n0),]" (2.14) 

From equations (2.13-b) and (2.13-c) and the normal velocity matching 
condition (2.3), we found the following jump condition between the tangen- 
tial derivative of the exterior and interior potentials, qSe and qS;, at the 
cylindrical curve: 

~0 - -  2 s i n 0 +  ~30/ at r = l .  

Substituting (2.15) and (2.3) into (2.8), we found: 

0--7 = 4K, sin 2 0 + sin 0 c30 2 2re sin 0 dO 

(2.15) 

at r = l .  

(2.16) 

It is interesting to observe that the jump in the angular velocity given by 
(2.15) transforms the nonlinear relation (2.8) into a linear one. This 
simplification cannot be found in the case when the interior angular velocity 
is neglected, and therefore equation (2.8) yields a nonlinear relation between 
the exterior radial and angular velocities. 

Finally, substituting (2.13-b) into the above equation, we found the 
following Fredholm integral equation of the second kind for the unknown 
density (~?~/Or) at r = 1: 

(~ 2re 

4K,(sin20_~)=_~_rd2i(O)+4K,{lfo (~_r 4~;(e)) sin 0 ( 0 - e )  cot de 

2l,  fo2 Sino(l 
atr  

which can be written as follows, after using the relation given by equation 
(2.14) in the second integral: 

4K, sin 2 0 - = ~ r (0) + ~ ~ r (e) 

x Isin 0 c~ (0 - e) ] 2 - c o s e  de at r = l .  (2.t8) 



1062 Henry Power and Peder A. Tyvand ZAMP 

An integral equation similar to the above, but nonlinear, was found by 
Baicorov. In his (1952) paper, he found an iterative solution of the 
nonlinear integral equation for the case of small parameter 2 = QK/2R 2, and 
gives an explicit expression up to order ;t 6. 

Without lost of generality, we can write the internal potential as: 

f f ) i ( r ,  O)  = - -  ~ Bnr n cos(n0) for r < 1 (2.19) 
n=l  

where the coefficients in the above series can be found from integral 
equation (2.18), in this way, we obtain the following trigonometric series for 
the coefficients Bn, n = 1, 2, 3 , . . . ,  c~, valid for arbitrary values of K, .  

2K,  cos(20) = Bl(COS 0 + 4K,  sin 2 0 -- 2K,)  

+ ~ nBn(cos(nO) + 4K,  sin 0 sin(n0)) (2.20) 
n=2 

where we have used the integral relation (2.14). It can be observed, that the 
above formulation allows us to study the case of variable permeability i.e. 
K,  = K,(O), that has not been discussed previously in the literature. In the 
next section we will present some numerical results for the cases where the 
shell parameter K ,  has a cosine variation. 

In a similar way we can write the exterior potential as: 

~be(r,O) =r cos0  + ~ A-~n" cos(n0 ) for r > 1 (2.21) 
n ~ ]  F 

where the relation between the coefficients An and B, is found from the 
normal velocity matching condition at r = 1, and thus 1 - A 1  = -B~ and 
An = B,, n = 2, 3 , . . . ,  ~ .  Hence, the potential jump between the exterior 
and interior potentials across the cylindrical curve is 

(C~e-dPi)r=~ = 2I(l + B1) c~ + n=2 ~ B, cos(nO)]. (2.22) 

The total dimensionless force F exerted by a steady uniform flow 
surrounding the porous cylindrical shell is: 

: ~r (Pc -pi)n F da (2.23) 

which can be written as 

li(  ) l ) 
F : -~, -~r ff)e n dcr = --K-~, ~r d?i n da (2.24) 

after substitution of the thin shell pressure jump condition given by equa- 
tion (2.4) and the normal velocity matching condition given by (2.3). 
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Therefore, the total force is given in terms of the B, coefficients as: 

1 ~ f02~ B1 Fy = O, Fx = K-~ nB,, cos(n0) cos 0 dO - re. (2.25) 
n =  1 K ,  

The virtual mass coefficient due to an unsteady uniform flow at infinity 
is given in terms of the potential jump between the exterior and interior 
potentials across the cylindrical curve as (see Newman (1977), page 139): 

m~j = jr(q~e - ~bi)nj do" (2.26) 

which, after substitution of equation (2.22), yields: 

rnll = 2(1 + B1) cos a 0 dO 

if0 + nB~ cos(n0) cos 0 dO = 2(1 + Bi)n. (2.27) 
n = 2  

Therefore, the total force and virtual mass coefficient can be written 
only in terms of the exterior dipole moment, A~, as: 

1 
F x -  K~ (Al-- I)~ and mll =2A~rc. (2.28) 

It can be observed, that Fourier theory can not be applied to find the 
coefficients Bn, n = 1, 2, 3 , . . . ,  o% in equation (2.20) due to the term 
sin 0 sin(n0). However, since the equation must be satisfied at all points over 
the unit circle, we can solve numerically the following truncated approxima- 
tion 

2K,  cos(20) = Bl(cos 0 + 4K,  sin 2 0 - 2K, )  
N 

+ ~ nBn(cos(nO) + 4K,  sin 0 sin(n0)) (2.29) 
n = 2  

by applying the above equation at N different points Oj,j = 1, 2 , . . . ,  N, 
over the unit circle. Once the coefficients Bn are found, the total force and 
virtual mass are given in terms of B1 by equations (2.25) and (2.27) 
respectively. In the next section we will present numerical results for 
different values of the parameter K , .  

3. Numerical results 

In this chapter we will present numerical resu!ts for the dimensionless 
drag force and virtual mass. We solve the system of linear equations coming 
from equation (2.29) by a standard computer library routine based on the 
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Gauss-Jordan elimination method. We recall that this set of equations 
results from sampling this equation in a finite number N of sample points 
around the circular contour. By solving these equations, we find the Fourier 
coefficients of truncated versions of the solutions (2.19) and (2.21), for the 
internal and external flow potential, respectively. 

In the previous chapter, we introduced the dimensionless virtual mass 
tensor m U for the porous shell. However, in the tables we have chosen to 
replace it by the virtual mass coefficient m u/n, which is defined as the virtual 
mass of the cylinder divided by the fluid volume inside the cylinder. The unit 
of dimensionless force per length unit of the cylinder is given by the 
dynamic pressure ~ V2/2 multiplied by the radius R. 

In Table 1 we show results for the virtual mass coefficient and the 
dimensionless drag force, which are produced by the first term in the 
Fourier series. The virtual mass is a monotonous function of the shell 
parameter, while the drag force has a maximal value at K ,  = 0.433. The 
results for very small values of K , ,  BI =- -4K~,  coincide with the value 
found analytically in the appendix. In our numerical solution, the conver- 
gence depends on the location of the sample points around the circular 
contour. This is investigated in Table 2. We always restrict ourselves to a 
constant distance between two neighboring sample points. In Table 2(a) we 
have N = 36 and we investigate further the case of maximal drag force. We 
find that optimal convergence requires that the sample points are not placed 

Table 1 
Numerical results for a thin-shell porous cylinder with K,  constant along its 
perimeter. The first sampling angle is here chosen as 01 = 2 ~ The sampling 
angles are evenly distributed with N = 30. 

Shell First Virtual mass Dimensionless 
parameter Fourier coefficient drag force/n 

K ,  B 1 trtll/TZ = 2(1 + B1) B1/K , 

0.01 - 0.0004 1.9992 0.0040 
0.1 --0.0371 1.9250 0.3709 
0.2 - 0 . 1 2 3  1.754 0.615 
0.3 - 0 . 2 1 9  1.561 0.731 
0.4 --0.307 1.386 0.769 
0.433 -- 0.333 1.333 0.770 
0.5 -- 0.382 1.236 0.764 
0.6 - 0 . 4 4 4  1.111 0.741 
0.707 - 0.500 1.000 0.707 
0.8 --0.540 0.919 0.676 
1.0 -0 .609  0.781 0.609 
2.0 - 0 . 7 7 4  0.452 0.387 
5.0 - 0 . 8 9 1  0.217 0.178 

10.0 - 0.9503 0.0994 0.0950 
100.0 - 0 . 9 9 9 3  0.0014 0.00999 

1000.0 - 0 . 9 9 9 9 9 3  0.000014 0.00100 
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Table 2 
Effects of  varying the first sampling angle. Results for the dimen- 
sionless drag force divided by g are shown. The sampling angles 
are evenly distributed. 

First sampling Dimen, ionless drag force/7~ = - B ! / K ,  

angle (0) 
a) K ,  =0.433 b) K ,  = 1. c) K ,  = I. 

N =  36 N =  30 N =  31 

0 ~ -0 .6599  1.6963 0.8592 
1 ~ 0.7698 0.6092 0.6093 
2 ~ 0.7698 0.6094 0.6094 
3 ~ 0.7698 0.6097 0.6096 
4 ~ 0.7698 0.6098 0.6098 
5 ~ 0.7145 0.6100 0.6099 
6 ~ 0.7698 0.6515 0.6100 

symmetrically with respect to coordinate axes. The system of  equations may 
degenerate due to such symmetry,  as indicated by the cases of  sampling 
angles equal to 0 ~ or 5 ~ However, it does not  seem that symmetry with 
respect to the origin will influence the convergence. If so, we would have 
been forced to choose N as an odd number,  which is done in Table 2(c). 
Here N = 31, while in Table 2(b) we have the same case (K,  = 1) with 
N = 30. The divergence at a sampling angle of  6 ~ when N = 30 disappears 
for N = 31 due to the loss of  symmetry. But the divergence at a sampling 
angle equal to zero will persist al though it is less severe. All the results in 
Table 2 indicate that divergence is easy to identify, as the variations between 
the converged solutions are very small in comparison. In most of  the 
calculations we choose the first sampling angle equal to 2 ~ . An exception is 
Table 3, where we got some divergence with a choice of  2 ~ and the choice 
of  5 ~ gave good convergence. 

In Tables 3 and 4 we have investigated the case of  a non-homogeneous 
circular shell. We study only the cases of  a cosine variation of  the shell 
parameter  K,(O), with one wavelength in Table 4. We now calculate the 
principal values of  the tensor of  virtual mass coefficients mij/rc. As in the 
case of  constant shell parameter,  these virtual mass coefficients are given by 
2(1 + B1)~z. However, the drag force for a non-homogeneous shell involves 
the full ( truncated) Fourier  series, and is omitted here. One striking fact 
from Tables 3 and 4 is that we cannot  in general say whether maximum 
virtual mass occurs for a flow incident on the point with maximal perme- 
ability, or perpendicular to that direction. Both possibilities are practicable, 
and we have not found any physical argument  for selecting one or the other. 

Comparing Tables 3 and 4, we see the anisotropy in the virtual mass is 
strongest where there is just one wavelength o f  variation around the 
contour.  This makes sense, because the shell is closer to homogeneous the 
larger the number  of  wavelengths around the contour. The greatest an- 
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Table 3 
Principal values of the tensor of virtual mass coefficient rnii/n for the 
function K,(O)  = a + b cos 0. N = 31 and the first sampling angle is 5 ~ 

a 0.5 0.75 0.9 0.25 0.4 0.1 
b 0.5 0.25 0.1 0.25 0.1 0.1 
K,max 1.0 1.0 1.0 0.5 0.5 0.2 
g,min 0.0 0.5 0.8 0.0 0.3 0.0 
roll/g 1.767 1.041 0.850 2.000 1.450 2.103 
m22/~ 1.601 1.171 0.929 1.703 1.459 1.799 

Table 4 
Principal values of the tensor of virtual mass coefficient rnLj/Tr for the 
function K,(O)  = a + b cos 20. N = 36 and the first sampling angle is 2 ~ 

a 0.5 0.75 0.9 0.25 0.4 0.1 
b 0.5 0.25 0.1 0.25 0.1 0.1 
g ,max 1.0 1.0 1.0 0.5 0.5 0.2 
K,min 0.0 0.5 0.0 0.0 0.3 0.0 
mll/Tt 1.359 0.920 0.822 1.729 1.402 1.944 
mz2/rc 1.355 1.041 0.072 1.576 1.387 1.845 

isotropy obviously occurs when the minimum permeability is zero. In this 
case we have shown that: 

r o l l  > 2  for K , m a x < 0 . 5 .  (3.1) 
7~ 

This means that if the shell parameter is small enough, and has zero 
minimum, the maximal virtual mass will exceed that of a rigid cylinder. The 
corresponding values of m22/7c a r e  always below 2. The case with the 
maximal virtual mass is given by: 

m11, m2~ _ (2.1029, 1.7963) (3.2) 
7Z 72 

and occurs at: 

(K,max, K,min) = (0.206, 0). (3.3) 

Both the maximum and the minimum values of the shell parameter are 
then located at y = 0. 

4. Summary and conclusions 

We have studied the two dimensional potential flow due to a circular 
porous shell in an infinite fluid. The motion of this porous cylinder is an 
arbitrary function of time. We have introduced a dimensionless shell 
parameter K,  and solved the hydrodynamic problem numerically. The 
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hydrodynamic problem is non-linear, as we retain the full convective term in 
Bernoulli's equation for the dynamic boundary condition across the shell. 
Still our numerical problem is simply to solve a linear system of algebraic 
equations. This truncated set of equations arises from the sampling of a 
Fourier series expansion of Green's theorem. 

We have calculated the drag force and the virtual mass for various 
values of K , ,  constant along the perimeter of the shell. Both of these 
quantities are determined by the first term B~ of the Fourier series. The 
virtual mass tensor is calculated for some cases where K ,  varies along the 
shell perimeter. 

There is a maximal drag force at K ,  = 0.433. This is remarkably close 
to the corresponding value K ,  = 0.5 which gives maximal damping of 
gravity waves on a porous plate in a canal (Chwang and Dong (1984)). 
However, in this comparison we must reinterpret V as the phase velocity of 
the shallow-water gravity waves. 

Within potential flow theory, we have an exact Morison-type equation, 
where the virtual mass force and drag force are added together for a 
flow varying arbitrarily in time. The coefficients of this equation are 
constant, as a contrast to the ,usual Morison equation for viscous flow 
(Sarpkaya and Isaachson, page 9, (1981)). Our Morison-type equation 
may be written (with dimension) as follows (valid for a homogeneous shell 
K ,  constant): 

Total force per unit length of the cylinder 

rc#Rd 2 dV 
= - B 1 - - - ~  V + 2 ( 1  +B1)or~R -j~. (4.1) 

Let us recall that the Fourier coefficient B~ is a function of K, ,  see Table 
1. In equation (4.1) we note that the relative importance of the inertia force 
increases with the radius of the shell. If we take into account viscosity in the 
surrounding fluid, a more realistic version of equation (4.1) would result 
from replacing the first term by a squared-velocity term, but keep the 
second (inertial) term. The drag force due to viscous flow around a porous 
cylinder must be determined experimentally. 

Recently Molin (1989, 1990) studied the virtual mass and drag force due 
to a homogeneous porous shell in potential flow with a quadratic discharge 
law, he solved the problems of a circular cylinder undergoing harmonic and 
biharmonic motion, and found a maximal drag force when the virtual mass 
was about 1/2 times its value for a solid cylinder i.e. a virtual mass ratio 
equal to 1/2. The corresponding virtual mass ratio for the case of uniform 
flow past a homogeneous circular cylindrical porous shell with a linear 
discharge law is 2/3, see Table 1. 
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In offshore applications it is important that the virtual mass is as small 
as possible. On the other hand, we have found that the virtual mass 
coefficient may exceed its classical value (2.0) for a rigid cylinder. By 
introducing an angle-dependent permeability of a shell, we are able to 
increase the inertia force by 5%. This increment is probably too small to 
have any practical importance. 
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Appendix 

Let us use Power et al. (1984) decomposition, when K ,  --(oVK/2vd) is 
very small, for the potential functions ~be and 4~i: 

ffi) e -~- ffiI eO Jr K ,  d~el -t- K2, ~e2 + " "  (A-l,a) 

and 

~bi = K ,  q~.l + K2, q~;2 + " "  (A-l,b) 

where 

(aeo=rc~ f o r a l l r - > l  (A-2) 

is the usual potential due to a uniform flow around a solid circular cylinder. 
Therefore: 

~ o  r= 1 c~r = 0. (A-3) 

In this way the exterior and interior pressure are given by 

pe = 1 - ( V ~ e 0 )  2 - 2K,V~eoVq~el A- O(K2,) (A-4,a) 

and 

pi = C - O(K2,). (A-4,b) 
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Substituting the above expressions into the pressure jump condition and 
using the normal  velocity matching condition, we get 

0 e e l  0r  r 
K *  - ~ r  -{- K 2  - ~ r  "}- " " " =1 

r= 1 

(~ /2  
= x ,  +K ,-57-r + "  �9 �9 

= ( C  - -  1 -~ (VCeo)  2 2r- 2K,V~)eOgqSel + ' ' '  )r (A-5) 
=1 

Separating terms of  equal order of  K , ,  we obtain: 

0~)eI 0 r  
0r r=  l ar r= 1 = C - 1 + (VCeo) 2 (A-6,a) 

0 e2 =0r 
0r r=l a r r = ,  = 2 + (VCeoVCd). (A-6,b) 

Substitution of  equation (A-2) in equation (A-6,a), yields: 

04~e~ = ~ = 0 4 a  = C - l + 4 s i n  2 0 = 1 + C - 2 c o s ( 2 0 ) .  (A-7) 
q~r 0r r= 1 

As before, we found from the non-flux condition 

fs~r~dS=O, C=-I. 
Then, the exterior and interior potentials ~b~l and r satisfying the 

above Newman conditions are: 

1 
{]Sel = ~-~ Cos(R0)  ( A - 8 , a )  

and 

q5 a = - r 2 cos(20). (A-8,b) 

Substituting equations (A-2) and (A-8,a) into equation (A-6,b), we 
obtain: 

~r ~ = 1 = ~r ~= 1 = 8 sin 0 sin(20) = 4(cos 0 - cos(30)). (A-9) 

Therefore, we have 

4 4 cos(30) 
(~e2 = ----/, COS 0 -} 3 r 3 (A-10,a) 
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and 

4 r3 cos(30).  (~i l  = 4r cos 0 + 

In this way, we have from equations (A-l,a,b) that 

_ _  cos(20) 4 cos(30) 
d p e = r c ~  c~ r-------5~+-3 K2 r - - - T - -  

Henry Power and Peder A. Tyvand ZAMP 

(A-10,b) 

+ 

(A- 11,a) 

and 

4 K2,r 3 cos(30) + O(K3,). (A-11,b) (Pi = 4K2, r cos 0 - K , r  2 cos(20) - 

Finally from equation (2.19), we conclude that in this case 

B 1 = - 4 K 2 , ,  then F ~ = 4 K  2 g -  rc0VK ~d (A-12) 

or in terms of the original variables 

V 2 7zQ V 3 K  

F x = O ~ - R F ' ~ -  ve ( A - 1 3 )  

w h i c h  is i n  a g r e e m e n t  w i t h  P o w e r ' s  et  al. (1990)  s o l u t i o n ,  i n  the  case o f  a 

p o r o u s  c i r c u l a r  c y l i n d e r  w i t h  a h o l l o w  core  o f  ve ry  sma l l  t h i c k n e s s ,  d = eR. 
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Abstract 

We study the two-dimensional potential flow due to a circular cylinder in motion relative to an 
unbounded fluid. The cylinder consists of a thin, circular porous shell with fluid inside. The full 
nonlinear hydrodynamic problem is solved by Fourier expansion of Green's theorem. The truncated 
series is determined numerically by sampling points around the circle. A dimensionless shell parameter 
is introduced. For homogeneous porous shells, a maximal drag force occurs at the value 0.433 for the 
shell parameter, but the virtual mass is a monotonous function of the shell parameter. For an 
inhomogeneous shell, we have found a maximal value for the virtual mass which is 5% abovethe value 
for a rigid cylinder. Some of the results may be relevant to offshore engineering, especially in connection 
with porous coating of platform legs to reduce the total force. 
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