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Determin i s t i c  and stochast ic  Duff ing-van der Pol  
oscil lators are non-explos ive  

K l a u s  R e i n e r  S e h e n k - H o p p ~  

A b s t r a c t .  This paper is concerned with the (non-)explosion behavior of solutions of non-linear 
random and stochastic differential equations. 

We primarily investigate the Duffing-van der Pol oscillator 

(1) 

where a,/~ are bifurcation parameters, 41, ~2 are either real or white noise processes, and ol ,  o2 
are intensity parameters. 

The notion of (strict) completeness (the rigorous mathematical formulation of "non-ex- 
plosiveness") is introduced, and its scope is explained in detail. On the basis of the Duffing-van 
der Pol equation techniques for proving or disproving (strict) completeness are presented. It will 
turn out that the forward solution of (I) is strictly complete, but the backward solution is not 
complete in both the real and white noise case. This is in particular true for the deterministic 
Duffing-van der Pol oscillator. 

In addition, some general results on the completeness of stochastic differential equations 
are given. 

M a t h e m a t i c s  S u b j e c t  C l a s s i f i c a t i o n  (1991). Primary 34F05, secondary 60H10~ 93E03. 

K e y w o r d s .  (Strict) completeness, explosion, random and stochastic differential equations, de- 
terministic and stochastic flows. 

I. Introduction 

Any non-linear autonomous random or stochastic differential equation with locally 
Lipschitz continuous coefficients possesses a unique local solution. It is well-known 
that the only general condition ensuring globality (or non-explosiveness) of the 
solution is the linear growth condition of the coei~cients. Hence if this condition 
does not hold, the solution may explode with positive probability for particular 
initial values. 

A rigorous mathematical description of "non-explosiveness" is given by the 
notions of completeness, and strict completeness. 
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In the present paper we will introduce techniques to prove or disprove (strict) 
completeness of random and stochastic differential equations. We are primarily 
concerned with the investigation of the long-term behavior of the Duffing-van der 
Pol oscillator 

= (OZ -4- 0 - 1 ~ 1 ) X  ~- /~X - -  X 3 - -  2;2~; -t- 0"2~2,  (1) 

where c~,/3 are bifurcation parameters, ~i, ~2 are either real or white noise processes, 
and ~i,~r2 are intensity parameters. 

Our main question is: does the forward and backward solution of Eq. (I) 
explode (i.e., leave the state space in finite time) when time passes? 

This is undoubtedly a classical textbook problem. However, we have not been 
able to detect any treatment of the problem in the literature, even for the deter- 
ministic case (~i = or2 = 0). 

We will prove that the forward solution of (I) is strictly complete, but the 
backward solution is not complete, in both the real and white noise case. This 
implies in particular the non-explosion property of the forward solution and the 
explosion property of the backward solution of the deterministic Duffing-van der 
Pol equation. 

Although this is a study of a particular example we believe that the presented 
techniques are applicable to a much broader class of equations. In particular, we 
study the Duffing and the van der Pol equation. Both are "contained" in Eq. (I) 

in the following sense: the Duffing equation 

= (Ct + Crl~i)Z -4-/3:b -- X 3 -4- Cr2~2, (2) 

is obtained from (I) by omitting the term -x2&, while the van der Pol equation 

ii = (a + a l ~ l ) z  + Zic - z22  + ~2~2, (3) 

is obtained by omitting the term -x 3. 
Since in the stochastic case strict completeness is much harder to prove than 

completeness, more sufficient conditions are known for the latter. We present two 
general sufficient conditions for completeness in terms of the existence of moments 
and by using the generator. For stochastic Li6nard equations we give a result 
ensuring strict completeness. 

The Duffing-van der Pol oscillator is an interesting (and well-known) exam- 
ple, both from the mathematical and physical points of view. The bifurcation 
behavior of the deterministic equation, which exhibits pitchfork, Hopf, and glob- 
al bifurcations, was investigated by Holmes and Rand [6], cf. also Guckenheimer 
and Holmes [4]. The stochastic system has been investigated recently by the au- 
thor [13], where the main interest focused on the stochastic bifurcations of the 
generated random dynamical system. 

A wide variety of applications ranging from flow induced vibrations and aero- 
elasticity to electronic circuits causes its importance in physics. There is a vast 
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amount of publications by engineers investigating (1) from the diffusion process 
perspective, see e.g. the references in Lin and Cai [10] and Sri Namachchivaya [14, 15]. 

The paper is organized as follows. In Section 2 (strict) completeness is defined. 
Section 3 is devoted to the study of the forward solution of Eq. (1). Some general 
sufficient conditions for completeness are given in Section 4. Explosion of the 
backward solution is proved in Section 5. In Subsection 5.3 and 5.4 we consider 
the Duffing Eq. (2) and the van der Pol Eq. (3), respectively. At the end of each 
section we explain the meaning of the result for the corresponding flow. 

2. S t r i c t  c o m p l e t e n e s s  a n d  c o m p l e t e n e s s  

The general definitions are given for the white noise case. Below we explain their 
meaning for the real noise and the deterministic case. 

Let an autonomous stochastic It6 differential equation 

m 

dx = fo(x) dt + E fi(x) dW~, (4) 
i = 1  

on N a be given, where f0, ..., fr~ are vector fields on N a and W = (W1,..., Wm) is 
an m-dimensional Wiener processes defined on the probability space (ft, ~c p). If 
fo, ..., fm are locally Lipschitz continuous then a unique maximal solution exists 
up to an explosion time ~-(co,x), see e.g. Kunita [7, Theorem 3.4.5]. 

The following definition is due to Kunita  [7, p. 180]. 

D e f i n i t i o n  2.1. The solution of (4) is called complete if I?{v(w, x) = co} = 1 for 
all x E R d, and strictly complete if I?{~-(co, x) = cc V x E R d } = 1. 

The difference between these two notions of non-explosiveness is the dependence 
on null-sets. The solution of (4) is complete if every set Nx := {co I T(co, x) < oo} 
has measure zero. Note that  this exceptional set is allowed to depend on the 
initial value x. To have strict completeness it is necessary that  the exceptional 
null-set N is independent of the initial value x. Strict completeness is a stronger 
property than completeness because Ux~RdNx is, in general, not a null-set or even 

measurable anymore. 
In the li terature completeness is also called regularity, conservativeness or non- 

explosiveness. Some authors call the generating differential equation complete and 
its maximal solution conservative. 

T h e o r e m  2.2. Strict completeness implies completeness, and is equivalent to it 
f o r d =  1. 

For a proof see Kuni ta  [7, p. 180f]. 
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Counterexamples for the converse of this statement were given by L4andre [8, 
p. 159f]. These examples are in terms of differential equations on R a (d >_ 2), 
whereas the "classical" counterexample, given by Elworthy, Kunita [7, Ex. 4.7.5], 
is only valid on the manifold iR a \ {0} with d _> 2. 

In general strict completeness is harder to prove than completeness, due mainly 
to the fact that completeness is related to one-point motion and strict completeness 
to n-point motion, for arbitrary n > I. For the class of Dol~ans-Dade equations 
strict completeness was proved by Thieullen [17] under a certain condition on the 
Lipschitz coefficient. 

R e m a r k  2.3. This phenomenon of different "strengths" of completeness is purely 
stochastic and does not occur for deterministic differential equations. 

For stochastic differential equations these two different levels of completeness 
are of significant importance to the generation of stochastic flows. We denote the 
local stochastic flow generated through Eq. (4) by qo~,t(x) : D~,t(c~) -+ R~,t(cd), 
where Ds,t(w) and Rs,t(w)(:= p~,t(w)D~,t(w)) are open non-empty subsets of ~d. 
Following Kunita  [7, Chap. 4.7] we have: 

T h e o r e m  2.4. (i) Assume the solution of (4) is complete. Then P~,t(w) is defined 

on an open dense subset of the state space, i.e. Ds,t(w) = ira for all t > s > O. 
(ii) Assume the solution of (4) is strictly complete. Then ~8,t(~) is defined on 

the whole state space, i.e. Ds,t(w) = ~d for all t > s > O. 

It is worthwhile to note that  a finer hierarchy of completeness can be defined. 
Elworthy and Li [9] introduced the notion of p-completeness with 0 < p <_ d where 
d is the dimension of the state space. A stochastic differential equation is called 
p-complete if P{~-(~, x) = cc Vz C M} = 1 for each p-dimensional submanifold 
M of ira. Completeness in our sense thus corresponds to 0-completeness and strict 
completeness to &completeness. An important  result is that  d -  1-completeness 
implies &completeness, for d = 1 this corresponds to Theorem 2.2. Nevertheless 
for the globality of stochastic flows only &completeness is of importance. 

Up to now we were only concerned with the forward motion of the solution, 
i.e. the time was iR+. In fact, Kunita [7, Chap. 4.7], the maximal solution of (4) 
is defined on the random open interval ]T(w,x)-,~-(w,x)+[C • containing zero. 
We say the solution of (4) is forward complete if P{T(w,x) + = c~} = 1 for all 
x E iRd, and backward complete if P{T(~, x ) -  = - c o }  = 1 for all x E iRd. Strict 
forward/backward completeness is defined analogously. 

In the real noise case the maximal solution of (1) is sample-wise defined, as 
explained in the next section. It is a deterministic equation defined for any trajec- 
tory of the noise process, so there is no need to use stochastic analysis to give a 
meaning to this equation. Nevertheless, all definitions given above make sense for 
this type of equation. We will see that  due to this "deterministic" interpretation 
strict completeness is not harder to prove than completeness. 
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3. T h e  f o r w a r d  s o l u t i o n  

ZAMP 

3.1. T h e  rea l  noise  case 

We call Eq. (1) with real noise excitations the "random During-van der Pol equa- 
tion". The word "random" refers to the sample-wise meaning opposed to the 
stochastic case for which equations do not, in general, have a path-wise meaning. 
More on random differential equations can be found in Arnold [2]. 

Throughout this work the phrase real noise means a locally integrable real- 
valued stochastic process ~t : ft --+ I~, t E I~, i.e. (t,w) ~ ~t(w) is measurable and 
ft_ t I~s(w)[ ds < oc for any fixed t > 0 and any w. In particular, any cSdl~g process 
~t (i.e. any trajectory is right-continuous and has limits from the left) is locally 
integrable. If ~t is a stationary process then it is locally integrable if ~t E L 1 , i.e. 
it is integrable. 

The further t reatment of (1) is simpler if we rewrite it as a random Li6nard 
system, which is different from the canonical system. Eq. (1) is equivalent to 

1 3 

dx2 = ((O~ + O'l~l(t))Xl -- Xl 3 + O'2~2(t)) dt, 

(5) 

where x( t )  = x l ( t ) .  This differential equation has to be considered as formal 
representation of the corresponding integral equation, i.e. its solution is meant in 
the sense of Carath~odory. If ~1 (t), ~2(t) are continuous then the above equation 
is a classical differential equation. 

T h e o r e m  3 .1 .  Assum~ that ~1,~2 are real noises and that i~l(t)l  4, 1~2(t)l 2 arc 

locally integrable. Then the maximal  solution of Eq. (5) 

(1) exists and is unique; 
(2) is continuous in ( t , x ) ,  C ~176 with respect to x = (xl,x2),  a , /~ ,a] ,a2 ;  and 
(3) is strictly complete for  any fixed (a, ~, a l ,  a2). 

Proof. Existence and uniqueness is a direct consequence of the deterministic theory 
and similarly for the continuity and C ~ property, Amann [1, Chap. II]. It thus 
remains to verify assertion (3). We prove that  on any set [0, T ] C  I~ + for arbitrarily 
fixed sample path of the noise and initial value the solution is bounded. Since this 
estimate is independent of null-sets it follows that  the solution is strictly complete. 

Fix T > 0 and apply the chain rule to xt 4 + 2yt 2, where ( xt , Yt ) := ( x l ( t ) , x2 ( t ) ). 

f0 1 6 + Zxs4 + +  l l(s))xsys + ds. xt 4 + 2yt 2 = x04 + 2y02 -t-4 - ~ x ~  
Y 

: ~ C  0 
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2 2 2 Using < ( 2x2 _ x +y2)/2 < (x 4 
and a2y~2 _< (a22~22 + y2)/2 this is 

t 1 1 4 a2 3 2 . a14~ , ,4 cr22~2(s)2 
+ 2 ds, 

- J 0 , 3  

with positive constants cl, c2 depending on a and/3. For any fixed t ime interval 
[0,T] we find, by the local integrability assumption, a positive constant c3(T) 
depending on ~rl, a2, and T such tha t  

xt4 + 2yt 2 <_ Co + c2 T + c3(T) + 4 cl Xs4 + 2ys2 ds 

for all 0 < t < T. The Gronwall l emma implies that  

xt 4 + 2yt 2 <_ (Co + c2T + c3(T)) e 4~T 

for all 0 < t < T. This holds true on any subset [0, T] of I~ + , so the maximal  
solution satisfies ~-(aJ, x) = oe for any initial value x and any fixed aJ. [] 

R e m a r k  3.2. If ~1,~2 a r e  stat ionary processes then the conclusions of Theo- 
rem 3.1 are true provided ~1 C L 4 , ~2 E L 2 �9 

C o r o l l a r y  3.3. The random Duffing-van der Pol equation generates a flow (w- 
wise defined) of local C ~ diffeomorphisms 7)s,t(w) which is global in the forward 
direction, i.e. qos,t(w) : R 2 ~ Rs,t(aJ) if s < t. 

Proof. For fixed ~ := (~1 (t, co), ~2(t, w))t~R define ps, t (~)x to be the solution of (5) 
at  t ime t s tart ing at  x at t ime s. By Theorem 3.1 this mapping has the claimed 
properties. [] 

Taking crl = cr2 = 0 this result carries over to the deterministic case. 

C o r o l l a r y  3.4. The deterministic Duffing-van der Pol equation is forward com- 
plete, and generates a C ~ flow which is global in the forward direction. 

3.2. T h e  w h i t e  no i se  case  

In this subsection we prove tha t  the stochastic Duffing-van der Pol Eq. (1) is 
strictly forward complete. In the previous subsection Eq. (1) had a sample-wise 
meaning, which does not hold for the equation excited by white noise and so one 
has to use stochastic analysis to make the equation meaningful. 
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Rewrite Eq. (1) as the equivalent Lifinard system of Stratonovich equations 

1 3) dt dxl = x2 q-•Xl -- 5Xl  

dx2 = (axl  - Xl 3) dt + alXl o dW1 + 0"2 o dW2, 
(6) 

where x(t) = xi(t).  In fact, Eq. (6) possesses solutions which are independent 
of its interpretation as an It6 or Stratonovich equation. One can check that  the 
correction term 

0 0 
2 og2j gkj, with g ( x l , x 2 ) =  

.= ~= ~ 0"1Xl 0"2 

is zero. For the following it is convenient to consider Eq. (1) as a Stratonovich 
equation. 

T h e o r e m  3.5. The maximal solution of Eq. (6) 
(1) exists and is unique; 
(2) depends continuously (hence measurably) on (t, W, x) and is C ~ with respect 

to x = (x l , x2 ) ,oL , /~ ,0"1 ,  and 0"2; 
(3) has R + as its maximal interval of existence for fixed (W, x); and 
(4) is strictly complete for any fixed (a, fl, 0"1,0"2). 

Proof. Consider (6) as a Stratonovich differential equation over the canonical dy- 
namical system of Brownian motion defined e.g. in Arnold [2]. Take without loss 
of generality O'1 = 0"2 ---- 1, of. Remark 3.6. 

We may transform (6) in such a way that  the derivatives of W(t)  = (WI(t),W2 (t)) 
will be eliminated. Applying the transformation 

y ( t )  : =  x 2 ( t )  - x , ( t ) w l ( t )  - w 2 ( t ) ,  

gives the system 

1 3) dt dxl = y + xl  W1 (t) -[- W2 (t) -}-/~Xl - -~xl 

1 3 (t)~ dt. dy -= (ctxl - x13 - (y  + XlWl( t )  + W2(t) + /~Xl - -~xl ) W1 / 

(7) 

This is a non-autonomous deterministic differential equation defined for any sample 
path W C C ~ The key idea is to consider the right-hand side as a function of 
(t, W)  ~ ~ • C ~ 

Define the right-hand side as f ( t ,  W, Xl, y) (where the dependence on the pa- 
rameters a and fl is surpressed) and x := (xl, y). Hence we have 
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R x O ~  2, ( t ,W ,x )~ f ( t ,W ,x ) .  

We prove that the maximal solution of (7), say ~(t,W,x), has the proper- 
ties (1)-(4). Obviously, the re-transformation x2(t) = y(t) + xl(t)Wl(t) + W2(t) 
preserves all properties. 

For any W 6 C I ( R  + , ]t~ 2) it is easily seen that the solution of (7) is equiv- 
alent to the solution of (6), which is of Stratonovich type. Generally, when 
W E C ~  2) this is a consequence of results of Sussmann [16, Thin. 8 and 
Sec. 7] (see also [3, Thm. 19]), because the coefficients of the noise commute. The 
general definition is: Eq. (4) is said to have commutative noise (or its coefficients 
of the noise commute), if If.i, fj] = Df i  fj  - D f j  fi = 0 for all i, j > 1. 

To prove (I) and (2) we use 
(i) (t, W, x) ~-> f ( t ,  W, x) is continuous 

(ii) f is locally Lipsehitz continuous in x, i.e. for any (to,W, xo) there ex- 
ist a neighborhood U x V of (to,xo) and a positive constant c such that 
I f ( t ,W,  x) - f ( t , W ,  2~)l < clx -~1  for all x,~ C V, t e U 

(iii) W ~ f( t ,  W, x) is uniformly continuous in W, where (t,x) are taken from 
an arbitrary compact subset of R + x R 2 and 

(iv) f is C ~ with respect to x, a,/3, a l ,  and 0.2 for fixed (t, W). 
Properties (i) and (iii) are easily seen, because the time dependence of f enters 

only through W(t) and C o is equipped with the topology of uniform convergence 
on compacta. (ii) can explicitly be calculated and (iv) is obvious (if one does not 
fiX 0"1,0"2). 

(i) and (ii) imply (1) by Theorem 7.6 of Amann [1]. (i), (ii), and (iii) imply (2) 
part one by Theorem 8.3 together with Remark 8.5.b of Amann [1]. Measurability 
follows from the joint continuity because R +, C ~ and IR e are second countable 
metric spaces, hence B(R + x C O x 11{ 2) = B(R +) | j c |  B(R2). (i), (iii) and (iv) 
imply (2) part  two by virtue of Theorem 9.4 and Remark 9.6.b of Amann [1] 
(simply augment the system by the equations & = 0, ..., d2 = 0). In particular, 
any derivative of the maximal solution with respect to x satisfies the corresponding 
variational equation and is continuous in (t, W, x). 

To prove (3) we show: on any set [0, T] C 11{ + for fixed W and z there exists a 
finite constant c(T) such that Iqo(t, W, x)l < c(T), i.e. the solution qz(t, W, x) exists 
for all t E 1I{ + . 

Fix T > 0, W and x. First we apply the chain rule to xt 4 + 2yt 2, where 
(xt,yt) := ~( t ,W,x ) .  Define Wi(s) := W/. 

Xt 4 -Jr- 2yt 2 XO 4 + 2yo 2 +4 f e  = x~ax~ + Y~I~ ds 
" ~ 3o 

:=~o(~) 

o e 1 6 1 

+ - ZWl( ) + x y, - - 



748 

Define ci :=  sup 
se[0,T] 

K. R. Schenk-Hopp~ ZAMP 

1,2 and c3 : :  sup (log-~Wl(s) -~- W1(8)2[). IWi(~)l, i =  
se[0,T] \ / 

Hence 

fo e 1 6 _< Co(X) + 4 - -3xs  + (I/~] + cl)x~ 4 + c~ (x~ 4 + 1) 

1 ( ( ~ ) 2 x s  6 ) 1 (Xs2+ys2) + ~ + w~(s)2y~ ~ + ~c3 

+ ClC2 (y2  + 1) + ClYs 2ds 

fo t 5 6 1 2 
= co(x) + 4 - ~ x ~  + (t~1 + ~1 + ~)  x2  + ~ x ~  

+ ( ~ W l ( S ) 2  + cl + elc2 + ~c3) Ys2 + ClC2 + c2ds. 

6 and 2 Calculation of the maxima of Let us consider the terms containing x s x~. 

- 5 x 6  + ylc3x 2 gives the upper b o u n d - 5 x 6  + �89 2 _< (1~C33) 1/2 (: :  C4). Thus 
we have 

Xt 4 -]- 2yt 2 ~ CO(X) -]- 4 (CLC2 + C2 + C4) t 

1 1 )  
+ 4 IZl + Cl + c2 + ~Cl ~ + 2clc~ + 4~3 (xs 4 + 2ys 2) d,  

% 
Y 

: : c  5 

for all 0 < t < T. Now apply the Gronwall lemma to obtain 

xt 4 + 2yt 2 <_ exp(cst) co + 4 (CLC2 + c2 + c4) exp(-css)  ds . 

Therefore, xt 4 + 2yt 2 <_ e(T) < oo for all 0 < t < T. Hence the solution of (7) 
exists on any interval [0, T] and so its maximal interval of existence is II~ + . 

Now the crucial property (4) follows readily, because the maximal non-explosive 
solution is defined for any W E C ~ without any exceptional set. Therefore the 
solution is strictly complete. [] 

R e m a r k  3.6. We are able to take without loss of generality al = a2 = 1 in 
the proof of Theorem 3.5 because the whole proof holds true for a non-standard 
Wiener process W = (W1, W2) with an arbitrary covariance matrix. 

C o r o l l a r y  3.7. The stochastic Duffing-van der Pol equation generates a stoch- 
astic flow of local C ~ diffeomorphisms ~,.t(w) which is global in the forward di- 
rection, i.e. ~s,~(~) : ~2 _+ n~,~(~) if  s < t. 
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Proof. For fixed co := (Wt)tea define ~s,t(co)x to be the solution of (6) at time t 
starting at x at time s. By Theorem 3.5 this mapping has the claimed properties, 
see e.g. Kunita  [7, p. 177] for the definition of stochastic flow. [] 

Again, taking al  = a2 = 0 this result carries over to the deterministic case, cf. 
Corollary 3.4. 

4. C o m p l e t e n e s s  o f  s t o c h a s t i c  d i f f e r e n t i a l  e q u a t i o n s  

4.1. A sample -wi se  t e c h n i q u e  

The "Sussmann" method used in the proof of Theorem 3.5, where it was possible 
to "eliminate" the derivatives of the Wiener process by applying a transformation, 
can be generalized in the following way. In particular, this technique furnishes a 
general method to prove strict completeness. 

Consider the Stratonovich differential equation 

~=g(z)+f(x)e+~h~(x)Wj, (8) 
j = l  

where g and f are locally Lipschitz continuous and h i , . . . ,  hm are continuously 
differentiable. 

Eq. (8) is equivalent to the system 

m 

dx = (y + F(x) ) dt, dy = g(x) dt + E hy(x ) o dWj, (9) 
j = l  

where F(x) = fo f(s) dso Application of the transformation 

m 

z(t) = y (t) - Z hj (x (t))wj (t), 
j = l  

m m 

where ~ = 3- ~ Dh~(x)~Wj- ~ hj(x)w~, 
j=l j=l 

yields the system 

dx = (z + F(x) + ~ hj(x)Wj(t))dt 
j = l  

m m 

dz = (g(x) - E Dhj(x)(z + F(x) + E hi(x)Wi(t)) Wj(t)) dt, 
j = l  i=1 

(lO) 

which is a non-autonomous deterministic differential equation. 
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We have equivalence of the stochastic solution of the Stratonovich Eq. (9) and 
of the sample-wise defined solution of (10) because the coefficients of the noise of 
Eq. (9) commute, Sussmann [16, Thin. 8 and Sec. 7]. This condition (see proof of 
Theorem 3.5 is satisfied because 

for any (i,j). 
Consequently we have 

C o r o l l a r y  4.1. Assume  the solution of Eq. (10) is defined on [0, co[ for any sam- 
ple W and any initial value (x, z). Then Eq. (9) is strictly complete. 

The above method to prove strict completeness is only applicable in particular 
cases. But, as denoted before, completeness is a property of the one-point motion 
and thus this problem is more tractable. In the next two subsection we present 
two different sufficient conditions which ensure completeness. 

4.2. F i n i t e  m o m e n t  impl ies  c o m p l e t e n e s s  

The condition we are going to present is given in terms of the expected value of a 
function of the maximal solution. Let us give a preparation. 

Let (xt)tcR+ be an a.s. continuous stochastic process with values in R d U {co}, 
the one-point-compactification of ]~.  Further, let ~o be an absorbing point, i.e. if 
Xs(W) = oo then xt (w)  = oo V t >_ s. Define T(w) := inf{t _> 0 I xt(a;) = oo}. 

L e m m a  4.2. Let f : R d U {oo} --+ IR + U {co} be a continuous funct ion with 
f ( ~ )  = ~ .  As sume  E f ( x t )  < c o l o r  any t E I~ +. Then xt E I~ d for all t a.s. 
(where the exceptional set does not  depend on t).  Or equivalently "r(w) = oo a.s. 

Proof. By the continuity of xt it is sufficient to prove: If for fixed t, E f ( x t )  < oo 
then T(W) > t a.s. Assume P{T(~) > t} < 1, i.e. A := {~-(~) < t} satisfies 
P(A) > 0. By the absorbtion property of oo we have x , ( a )  = co for all u >_ ~-(a) 
and w E A. Hence Ef(x t )  _> fI~:r(~)<t} f ( x t )  dP = oo. [] 

Denote by xt(w, x) the maximal continuous solution of a given stochastic differ- 
ential equation on I~ d with local Lipschitz continuous coefficients, cf. Eq. (4). Here 
x E ~d, t E [0, T(W,x)[ and T(W,X) E]0, c~] is the unique (measurable) explosion 
time. For arbitrarily fixed initial value x this fits into the above case if we extend 
xt  to a continuous process on ]~d U {oo} by letting xt(w,  x) = cxD for all t > 7(Lv, x). 

R e m a r k  4.3. Any of the functions f ( x )  = log+(Ixl),log(1 + Ix[), Ix[ n with n > 1 
satisfies the assumption of Lemma 4.2. Consequently, if the maximal solution 
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xt(w,x)  satisfies E[xt(~,x)[ ~ < oo for any t E ~+ then T(w,x) = oo a.s. (where 
in general the exceptional set depends on the initial value x). Hence existence of 
an arbitrary moment of the solution ensures completeness. 

4.3. I n f i n i t e s i m a l  g e n e r a t o r  c o n d i t i o n  

In this subsection we obtain a result for the completeness of dissipative second 
order stochastic differential equations. Similar conditions have been used by Khas- 
minskii [5, III.4]. 

Consider a d-dimensional second order stochastic It5 differential equation 

= f (x ,~)  + g(x,~)W, (11) 

where f : I~ d • IR d --+ I~ d and g : I~ d • I~ d --+ I~ d• are locally Lipschitz continuous 
functions and W is an m-dimensional Brownian motion. 

Rewrite Eq. (11) as a 2d-dimensional system of It5 differential equations. 

dx = y dt 
(12) 

dy = f (x ,  y) dt + g(x, y) dWt, 

where (x, y) = (x, 2). Its infinitesimal generator is 

d o ~  d O_ff_ l d 0 2 
L = E y i  + E f i ( x ' y )  ay i + ~ E (g(x'y)g(x'y)T)i 'JOyiay j" 

i=1 i=1 i , j = l  

The following theorem tells us that  a stochastic differential equation whose gen- 
erator fulfills a dissipativity condition has non-explosive solutions. This theorem 
goes back to Narita [12] and Khasminskii [5, Thin. III.4.1]. 

T h e o r e m  4.4. I f  the stochastic Eq. (12) satisfies the condition 
(D) Let V: I~ d X I~ d -"} I~, V(x ,y )  := E(x ,y )  + lyi 2 be a 6 2 function, where 

E(x,  y) > 0 V (x, y) C ~d • i~d. Assume there exist constants Cl, c2, c3 >>_ O, 
and an e C]0, 2[ such that 

LV(x,y) <_ +  2V(x,y)+ 31xl • 

then the maximal solution is complete. 

Proof. The assertion follows along the lines of the proof of Markus and Weeras- 
inghe [11, Thin. 2.1] (their U(x, y) replaced by V(x,  y) = E(x,  y )+  ]y]2). However, 
let us point out that  one has to use Dynkin's formula and not It6's formula here. 
In addition the joint measurability of (x(s A ~-m), y(s A ~=~)) is needed to be able 
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to interchange the integration with respect to the probability measure (taking 
expected value) and the integration with respect to time. [] 

R e m a r k  4.5. Theorem 4.4 implies that  the stochastic Duffing-van der Pol oscil- 
lator is complete for arbitrarily fixed (c~, f ,  a l ,  o-2). Eq. (1) is derived from (12) 
by taking d = 1, m = 2, f ( x , y )  = c~x + f ly - x 3 - x2y  and g ( x , y )  = (chx, o-2). 
Elementary calculations show that  for fixed (c~, f ,  o-1, a2) E IR 4 

E(x,y)--x4/2, e l  = Io l-t- o 2 + o "2, c2 = 2(1 1 + ffl  + and  c3 : O 

fulfill the assumptions of Theorem 4.4. 

5. T h e  b a c k w a r d  s o l u t i o n  

In this section we answer the question: Is it possible that for particular initial 
values the solution of the DuIfing-van der Pol equation explodes with a positive 
probability when time tends to -oo? The answer is: Eq. (i) is not backward 
complete in both the real and white noise cases. Remember that backward com- 
pleteness is defined as ]P{T(w, x ) -  = - e e }  = 1 for all x E I~ d. In fact we will prove 
in the white noise case that  l?{~-(aJ, x ) -  > - o e }  > 1 - ~ for arbitrary small c > 0 
for a set of initial values of infinite Lebesgue measure. 

To avoid the occurrence of too many minus signs in the following we apply the 
time transformation (time reversion) t ~ - t ,  i.e. y( t )  := x ( - t ) ,  where dx ( t )  = 

f ( x (  t ), ~ ( t ) )dt ,  satisfies 

dy( t )  _ dx(-t____~) _ d x ( - t )  d(-t____~) _ f ( x ( - t ) , ~ ( - t ) )  = - f ( y ( t ) , ~ ( - t ) ) .  
dt  dt  d ( - t )  dt 

Since ~(t) is either a stochastic process or white noise the dependence on - t  versus 
t is not essential, nor is the minus sign in front of the stochastic terms. We omit 
them in the following. 

Application of this transformation to the canonical system 

2 = y, y = (a  + a l ~ l ) x  + f ly - x 3 - x2y  + cr2~2 

corresponding to (1) yields the differential equation 

= - y ,  ~) : --OLX -~- O-1~1 x --  f ly + X 3 Jr- x 2 y  -t- O'2~2. 

To simplify the further treatment,  we again transform this equation by letting 
xl  = x, x2 = - y ,  giving the backward Dulling-van der Pol equation 

d x l  = x2 dt (13) 
d x 2  -~ ( ( a  ~- O ' l ~ l ( t ) ) x l  - f x 2  - x l  3 + x 1 2 x 2  -~- o-2~2(t))  dt. 
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Note that  the Duffing equation remains unchanged under time reversion, whereas 
in the van der Pol equation the term -x12x2 changes its sign. The equations are 
treated in Subsection 5.3 and 5.4, respectively. 

To prove explosion of the backward Duffing-van der Pol equation we need a 
proposition concerning non-autonomous deterministic differential equations. 

P r o p o s i t i o n  5.1. Let a non-autonomous deterministic differential equation dx = 
f ( x ,  t)dt on I~ d be given, possessing a unique local continuous solution (in the sense 
of Carathdodory), denoted by xt. 

Assume there exists an unbounded domain G C E d and a function V E C 1 (G, IR +) 
such that 

(i) G is invariant under the local flow, 
(ii) LV(x )  <_ - 1  for all x 6 G. 

Then T(x) < cc for all x E G. More precisely, one has ~-(x) <_ V(x) .  
It suffices if condition (i) is fulfilled for all t <_ sup{V(x) I x 6 G}. Thus, if V 

is uniformly bounded on G then T(X) is also uniformly bounded and condition (i) 
has only to be valid on a finite time interval. 

LV(x)  is the derivative of V along the vector field f ,  i.e. LV(x)  = (DV(x) ,  f(x)}, 
where (., .} denotes the scalar product in R d. 

(ii) can be replaced by LV(x)  <_ - c  for all x E G with an arbitrary e > O. 

Proof. Define Vn := inf{t _> 0 I Ilxtl] -> n}. rn ]" w when n 7" oo. (ii) implies 

f 
l a A r n  

- V ( x o )  = LV(x ) ds <_ - ( t  A 
J O  

Letting n --+ ~ ,  the continuity and positivity of V gives 

- V ( x o )  < V(x A.) - V(x0) ___ - ( t  A 

Hence T < V(Xo). [] 

Although the proof is written down in five lines, in applications it can be 
very difficult to find an invariant region G describing the "escape route" and a 
decreasing function V to provide an estimate from above on the explosion time. 

5.1. T h e  rea l  noise  case 

In this subsection we prove that  the random Duffing-van der Pol equation is not 
backward complete. As before assume that  {1, ~2 are locally integrable. 

T h e o r e m  5.2. Assume there exist constants cl, c2 > 0 such that the event A := 
{151(t)l + 1~2(t)l _< cl, v t c [0, c2]} has positive probability, i.e. F(A) > O. Then 
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the random DuJying-van der Pol equation is not backward complete for arbitrary 
OL, ~ ,  (T I , (7 2 . 

More precisely, for each initial value 

X E a ( c )  :-~ { ( X l , X 2 )  E I~ 2 I x 1  ~ c ,  x 2 ~_ x 1 3 - e } ,  

(where e E]0, 1[ is arbitrarily fixed, and c = c(cl, c2, c, a,/~)) one has 

I?{T(w, x ) -  >_ -c2}  _> I?(A) > 0. 

Proof. Fix e C]0, 1[ arbitrary.  We show for any w E A that  V(xl  x2) = ! and ' X 1 
G(c) satisfy the assumptions of Prop. 5.1 when c > 0 is chosen sufficiently large. 

S t e p  1. There exists a c > 0 such that  G(c) is invariant for any w C A. First, 
consider the boundary  Xl = c, x2 >_ c3-% Then 21 = x2 _> c 3-~ > 0, i.e. the vector 
field along this boundary  is directed inward G for xl = c, x2 > c 3-c. 

Second, consider the boundary  xl _> c, x2 = Xl 3-~. Since ~1 > 0 on this 
boundary  we have to show tha t  

X2 
- -  > (3 -  )xl V(x l ,  x2) e { ( x l ,  x ,  I Xl ~ C}. 
21 

One has for all times t _< ce and all w C A 

":'2 > Xl  5 - e  - -  Xl  3 - -  [/~[Xl 3 - e  - -  ( [O~[-}- IO ' l lCl )Xl  - -  [O'2[C 1 

21  - -  X l 3 - - c  

- x / -  xx IZ] ]-] + ] i]Cl 
- -  X 1 2 _  ~ Xl  3 - e  " 

This is larger than  (3 - e)xl 2-~ for sufficiently large Xl. Hence if c is chosen large 
enough then G(c) is invariant as long as t _< c2. 

S t e p  2 is to show tha t  LV(xl ,x2)  < - 1  on G(c). Observe that  

LV(Xl,X2)- Xl __ X2 < - - 1  r X2 > Xl 2. 
Xl 2 Xl  2 --  

Hence LV(x) <_ - 1  on G(c) if c _> 1. 
1 <~ C2 (which Choose a c > 0 such tha t  steps 1 and 2 hold, and in addition ~ _ 

implies V(xl ,x2)  < c2 for all (Xl,X2) E G(c)). Then by Prop. 5.1 the random 
Duffing-van der Pol equation explodes in finite t ime for all initial values x E G(c) 
and any w E A. The explosion t ime is uniformly bounded by T(w, x) _< c2. [] 

Put t ing  this result and Corollary 3.3 together gives 



Vol. 47 (1996) Duffing-van der Pol oscillators 755 

C o r o l l a r y  5.3. The random Duffing-van der Pol equation generates a flow (aJ- 
wise defined) of local C ~ diffeomorphisms ~s,t(w) which is global in the forward 
direction and local in the backward direction, i.e. Ds,t(w) = ]~2, but Rsr C ]~ 
for all s < t. 

Taking ax = a2 = 0 this result carries over to the deterministic case. 

C o r o l l a r y  5.4. The deterministic Duj~ng-van der Pol equation is forward com- 
plete, but not backward complete. 

R e m a r k  5.5. The assumption of Theorem 5.2 holds true e.g. if ~1, ~2 are cs 
processes. An example for which the assumption of Theorem 5.2 does not hold is 

1/t  t e Q \ {o} 
the locally integrable function ~(t) = 0 otherwise. 

5.2. T h e  w h i t e  noise  case 

In this subsection we prove that  the stochastic Eq. (1) is not backward complete. 
We apply the same transformations as before and obtain the stochastic back- 

ward Duffing-van der Pol equation 

dXl = x2 dt 
(14) 

dx2 = (axl  - fix2 - Xl 3 + x12x2) dt + ~1xl o d W l  + ~72 o dW2. 

T h e o r e m  5.6. The stochastic Duffing-van der Pol equation is not backward com- 
plete for arbitrary a,/~, al , ~2. 

More precisely, the event 

A(cl,c2) := {l~lWl(t)[ + [a2W2(t)] _ C1, V t e  [0, C2]} 

satisfies I?(A(Cl, c2)) > 0 for arbitrary el, e2 > 0, and for any initial value 

x e a ( c ) : =  {(xl,x2) e R 2 Ix1 > c, x~ > x13-~}, 

(where ~ of 0, 1[ is arbitrarily fixed, c = c(et, ~ ,  ~, ~, Z)) one has 

~{T(w,x)-  > -c2}  ~__ ]P(A(Cl, c2)) > 0. 

In particular~ for arbitrary small 5 > 0 and any fixed Cl (rasp. c2) there exists 
a (rasp. such that >__ > > 1 - 

Proof. The idea is to transform (14) into a deterministic sample-wise defined equa- 
tion as done in the proof of Theorem 3.5. The transformed equation contains the 
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Wiener processes as continuous t ime dependent functions. Therefore the same 
procedure as in the proof of Theorem 5.2 is applicable. 

The t ransformation x = xl ,  y = x2 - xl crl W1 (t) - as We (t) yields the equivalent 
system (cf. proof  of Theorem 3.5) 

dx = (y + ( r l xWl ( t )  + a2W2(t ) )  dt 

dy = (ax  - x 3 + ( - ~  + x 2 - at Wl  (t) )(y + crl x W l  (t) + a2W2(t)  ) ) dt. 

We want to apply Proposit ion 5.1 and therefore have to show the same steps 
as in the proof of Theorem 5.2. 

Fix e El0, 1[, Cl, c2 > 0 arbitrary. We prove for any event from A(c l ,  c2) that  the 
set G(c) and the function V(x ,  y) := L satisfy the assumptions of Proposition 5.1 x 
when c > 0 is chosen sufficiently large. 

S t e p  1. There  exists a c > 0 such tha t  G(c) is invariant for any co E A. First, 
consider the boundary  x = c, y > c 3-~. Then for any (Wi, W2) = w E A 

= y + a l X W l ( t )  + a2W2(t)  >_ c 3-~ - cl c -  cl > 0 

for c sufficiently large, i.e. the vector field along x = c, y > c a-~ is directed inward 
G(c) as long as the t ime t _ c2. 

Second, consider the boundary  x >_ c, y = x 3-~. Since 2 > 0 on this boundary  
we have to show tha t  

Y- > ( 3 -  e)x 

One has for all t imes t _< c2 

V(x,y) e {(x,z t x > c}. 

y' > xS--e--(Cl  -}- I):B 3-(I/~I -1- C 1 ) X 3 - - e - - C l X 2 - - ( I O L  I -t-I/~1C1 -~- Cl2)X--(I/31-}- CI)Cl 
- x 3-~ + c lx  + cl 

This is larger than  ( 3 -  e)x 2-~ for sufficiently large x, because the above expression 
is of order x 2. Hence, if c is chosen large enough then G(c) is invariant as long as 

t <_c2. 

S t e p  2 is to show tha t  L V ( x , y )  _< - 1  on G(c) for any co E A. Observe tha t  

L V ( x , y )  = - Y  + a l x W l ( t )  + a2W2(t)  < _ 1  r  y + ~rlxI/Vi(t) + ~2W2(t)  > x 2. 
X 2 --  

Since y > x 3-~ on G(c) it is sufficient to have x 3-~ - c lx  - cl > x 2. This holds 
true if c is large enough. Hence there exists a c such tha t  L V ( x )  < - 1  on G(c). 

1 < c2. Then Choose a c > 0 such tha t  steps 1 and 2 hold, and in addition ~ _ 
by Prop. 5.1 the stochastic Duffing-van der Pol equation explodes in finite t ime 
for all initial values (x, y) E G(c) and any w E A,  where the explosion time is 
uniformly bounded by ~-(w, x, y) _< c2. [] 
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Putting this result and Corollary 3.7 together gives 

C o r o l l a r y  5.7. The stochastic DuJfing-van der Pol equation generates a stoch- 
astic flow of local C ~ diffeomorphisms ps,t(w) which is global in the forward di- 
rection and local in the backward direction, i.e. Ds,t(w) = R 2, but Rs,,(w) ~ IR 2 
for all s < t. 

5.3. The Dufling equation 

In this section we prove that  the Duffing Eq. (2) (i.e. the Duffing-van der Pol 
equation without the term - x ; 2 )  is strictly forward and backward complete. This 
result is not covered by the general theory because this equation contains a term 
with cubic growth. 

T h e o r e m  5.8. Assume in the real noise case that the conditions from Theo- 
rem 3.1 hold. (There is no assumption in the white noise case.) 

Then the Duffing Eq. (2) is strictly forward and backward complete for arbitrary 
Ol~ ~ (71 ~ (72 �9 

Proof. We rewrite Eq. (2) in the canonical form as 

2 -~-- y, y = (0~ + (71~1)X + / 3 y  -- X 3 + (72~2- 

Following Section 5 the corresponding backward equation is 

= y, 9 = (a + (71~1)x - / 3 y  - z 3 + (7~2. 

Hence it is sufficient to prove strict forward completeness. 
In the real noise case this is completely analogous to the proof of Thin. 3.1. 

And in the white noise case it is almost analogous to the proof of Thin. 3.5. Since 
in the estimate of Xt 4 -~- 2yt 2 the term - x  6 is missing, one has to use the estimate 
cx n < ]cl(x ~+1 + 1) for the linear and cubic terms of x and y. [] 

5.4. T h e  van  de r  Po l  e q u a t i o n  

The following theorem shows that  the van der Pol Eq. (3) (i.e. the Duffing-van 
der Pol equation without the term - x  3) has essentially the same (non-) explosion 
behavior as the Duffing-van der Pol equation. 

T h e o r e m  5.9. Assume in the real noise ease that the conditions from Theo- 
rem 3.1 hold. (There is no assumption in the white noise case.) 

Then the van der Pol Eq. (3) is strictly forward complete, but not backward 
complete for arbitrary a,/3, (71, (72. 
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Proof .  The strict forward completeness of the van der Pol equation follows as in 
the proofs of Theorems 3.1 and 3.5. One simply has to carry out the estimates for 
the term x t  2 + y t  2 instead of x t  4 + 2yt  2 in the real noise case, and for x t  4 + y t  2 

instead of xt 4 + 2yt 2 in the white noise case. 
The proof of backward non-completeness is exactly the same as for the Theo- 

rems 5.2 and 5.6. [] 
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