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Interact ing  indentors  on a poroelast ic  half-space 

Q. Lan  and  A.P.S.  Se lvadura i  

Abstract. This paper examines the interaction between two rigid circular indentors on a poroe- 
lastic half-space. The resulting mixed boundary value problem, when formulated in the Laplace 
transform domain, yields an infinite set of Fredholm integral equations. These integral equations 
are then solved for some special cases. Numerical results for the case of a single indentor show a 
good agreement with those obtained by using Heinrich and Desoyer's assumption. For the case 
in which the radius of one indentor reduces to zero (interaction between a rigid indentor and 
an externally placed load), the resulting equations are solved by a semi-inverse method to give 
analytical solutions for the resultant force and moment required to maintain the indentor with 
no normal displacement. When the indentor is subjected to an axial load but allowed to undergo 
an additional settlement and tilt, numerical results are presented to demonstrate the manner in 
which Poisson's ratio and the drainage boundary conditions influence the consolidation of the 
half-space. Numerical results are also given to illustrate the interaction between two identical 
indentors when ratio of the radius to the spatial distance between them is small. 

Keywords .  Poroelasticity~ contact problems, interacting indentors, fluid saturated media, cir- 
cular punches, integral equations. 

1. I n t r o d u c t i o n  

The one-dimensional theory of the consolidation of a water saturated elastic porous 
geomaterial was first developed by Terzaghi [I] and later extended by Blot [2, 3] 
to  develop the  now classical  t heo ry  of poroelasticity for a f l u id - sa tu ra t ed  medi-  
um. T h e  genera l ized  th ree -d imens iona l  t heo ry  of po roe la s t i c i t y  deve loped  by  Blot  
[2, 3] has  been  successful ly  app l i ed  to  the  s t u d y  of soil conso l ida t ion  p rob l ems  in 
geomechanics .  By  i n t roduc ing  two d i sp lacement  funct ions,  M c N a m e e  and Gibson  
[4, 5] s tud i ed  the  a x i s y m m e t r i c  and  p lane  s t ra in  p rob lems  for the  cases where  
a deep clay s t r a t u m  is sub jec ted  to  uni form no rma l  loading.  By add ing  a new 
d i sp lacement  funct ion  to  include the  a s y m m e t r y  of de fo rmat ion ,  Schiffman and  
Fungaro l i  [6] e x t e n d e d  M c N a m e e  and  Gibson ' s  m e t h o d  and deve loped  so lu t ions  
for the  conso l ida t ion  of a ha l f -space  region wi th  un i form t angen t i a l  loads  app l i ed  
over a c i rcular  area.  The  analys is  of mixed  b o u n d a r y  value p rob lem re la t ed  to  
a fluid s a t u r a t e d  poroe tas t i c  ha l f -space  region was given by a number  of a u tho r s  
inc luding  Agbezuge  and  Deresiewicz [7], Ch ia re l l a  and  Booker  [8] and  Gaszynsk i  
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and Szefer [9]. In these papers the problems treated were restricted to the axisym- 
metric states of deformation involving smooth contact between the plane indentor 
and the surface of a poroelastic halfspace region. More recently, Selvadurai and 
Yue [10], Yue and Selvadurai [11, 12] have examined poroelastic contact prob- 
lems involving, respectively, the axisymmetric indentation of a poroelastic layer, 
the asymmetric indentation of halfspace region and a disc inclusion problem. In 
these studies the pore fluid is assumed to be compressible and the poroelastic 
constitutive formulation adopted is that given by Rice and Cleary [13]. A special 
feature in all poroelastic contact problems involves not only the specification of 
the displacement and traction boundary conditions, but also the specification of 
the appropriate boundary conditions related to the fluid pressure at the contact- 
ing plane. In a majority of previous studies the surface of the halfspace region 
is assumed to be either completely permeable or completely impermeable. Cer- 
tain limited solutions have also been developed for the contact problems in which 
mixed pore pressure boundary conditions are prescribed within either the contact 
region or regions exterior to it. Account of recent developments and applications 
of theories of poroetasticity are given by Selvadurai [14]. 

To the authors' knowledge, solutions for contact problems associated with the 
consolidation of a porous medium have largely been restricted to single indentor 
problems and the majority of these solutions are given for axisymmetric cases. 
In this paper, we shall consider the problem of consolidation of a linear isotrop- 
ic semi-infinite clay stratum indented by two circular indentors. The analysis 
is restricted to the case of a poroelastic medium which is saturated with an in- 
compressible fluid. In section 2 a general formulation for the three-dimensional 
problem in poroelasticity is presented. This formulation can be considered as a 
generalization of Muki's [15] formulation in elasticity. It is shown that solution to 
a poroelasticity problem in the Laplace transform domain can be reduced to the 
determination of eight arbitrary functions. Therefore the formulation presented is 
capable of solving poroelastic problems with arbitrary boundary conditions pro- 
vided the region of interest is either an infinite solid or a semi-infinite solid or a 
layer. Section 3 deals with two-indentor problems. Following the procedure given 
by Lan et al. [16] for solving the corresponding problems in classical elasticity, 
we show that, in the Laplace transform domain, solutions to the mixed boundary 
value problems associated with a poroelastic medium can be reduced to an infinite 
set of Fredholm integral equations of the second kind. Governing equations in the 
temporal domain can then be obtained by applying a Laplace inverse transform. 
This leads to a system of double Fredholm-Volterra integral equations. The result- 
ing equations are solved for certain special cases in section 4. First in section 4 we 
consider a case of a single indentor. An accurate and efficient numerical scheme 
is developed to evaluate the time-dependent solutions of the resulting integral 
equations. Numerical results obtained are compared with those obtained by using 
Heinrich and Desoyer's assumption [17]. Results show that this assumption yields 
accurate solutions after the very early stage of the consolidation. We then show 
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that, for a limiting case where the radius of one indentor approaches zero (this 

indentor reduces to a point force of limited magnitude), analytical solutions can 
be obtained by a semi-inverse method for the resultant force and moment required 

to maintain the indentor with zero normal displacement. A more practical case 
in which the indentor instead of being restrained with no normal displacement 
is subjected to a constant axial loading is also presented. Numerical results are 
presented to demonstrate the manner in which Poisson's ratio and the drainage 
boundary conditions influence the consolidation of the half-space. Also considered 
is the case where two identical indentors are subjected to the same loadings but 
rigidly connected to displace uniformly without rotation. Numerical results are 
provided to illustrate the interaction between these two indentors when the ratio 

of the radius to the spatial distance between them is small. 

2. F o r m u l a t i o n  

Referring to a cylindrical coordinate system (r, 0, z), the displacement components 
(ur, uo, Uz) in the isotropic elastic soil skeleton and the excess pore pressure p of 
incompressible fluid are governed by the following partial differential equations 
[2, a] 

1)0e 1 (~ Ouo ) l o p  
V~ur + (2~ Or r 2 G (Or - z - -~-+ur  + - 0 ,  

1 0 e  l ( ~ f  ) 1 0 P _ 0  ' 
V2uo+(27 / -1 ) r~-  ~+~-~ 2 - u 0  + Gr90 

1 Op Be+ - 0 ,  
V~uz + (27] - I) Oz G Oz (1) 

lml]  where ~ = 1-2~, u is Poisson's ratio and G is the shear modulus of the elastic soil 
skeleton, e refers to the dilatation 

Our ur 10ue Ouz + - - ,  
r Oz  

and V 2, the Laplacian operator, takes the form 

0 2 I 0 1 0 2 0 2 
V ~ -  + -  + + -  - O r  2 r a z  2" 

The fluid flow through the porous soil skeleton is assumed to be governed by 
Darcy's Law. If the fluid is considered to be incompressible, the volume change in 
an element of the poroelastic medium is identical to the excess volume of water 
leaving the element. Consequently, the conservation equation and Darcy's law 
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yield the following differential equation governing the pore water pressure and the 
dilatation: 

V2 p _ "y~ 0e 
k Or' (2) 

where k is the permeability coefficient of the soil and 7~ is the unit weight of 
the fluid. It can be verified by direct substitution that  solutions to the partial 
differential equations (1) and (2) can be expressed in terms of three displacement 
functions r 0, z, t), r  0, z, t) and x(r, O, z, t) as follows [6] 

Ur (r, O, z,  t) = -~r + Z-~r OX rl OCaO 

1 0r z OX 0r 
no (r, O, z,  t) - + 

r aO r 00 Or ' 
0r Ox 

~(~ ,O , z , t )  = ~ + Z~z - ~, 

p(r, 0, z, t) = - 2 G - ~  - 2Gr]V2r 

provided that  these functions satisfy 

where 

1 0 2 V2r O, VeX O, V4r ~ - / V  r  : --  

2Gvk 

(3) 

(4) 

{ 0 2 r 1 6 2  0) i}  
~ =  2G ~ Oz 2 ~ . (6) 

Now we seek solutions for the partial differential equations in which the dependence 
of r ~b(r,O,z,t) and x(r,O,z) on 0 has the form 

r 0, z, t) = ~ r z, t) cos n0, 
n=-O 

o(3 

~(~, o, z, t) = ~ ~ ( r ,  z, t) cosnO, 
n : O  

o o  

r  0 ,  z, t) = ~ r z, t) sin n0. (7) 
rt~0 

[[20rOz 02r 02X 1 02~ } 
rr ~ = G + 2 Z O--r-~z + -r --000z ' 

TOz = [ r OOOz + r 000z OrOz 

e - (5) 
7~ 

Stresses in the soil skeleton can also be expressed in terms of these three displace- 
ment functions. The stress components of interest to the problem formulation are 
given by 
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Consequently, the displacements, stresses and the excess water pressure can also 
be expanded as either Fourier cosine or Fourier sine series in 0 and let u~(r, z, t), 
u~(r,z,t), u~(r,z,t) and 7;~(r,z,t), 7-g~(r,z,t), a2(r,z,t) and p,~(r,z,t) be the 
corresponding Fourier coefficients. Substituting (7) into (3) and (6), we obtain 

~ + ~  = ( ~ - ) ( r  + zx~-  r 

~ - ~ = ( ~  + ~ ) ( r  + z ~  + r 
Or 

OCn Ox~ u~ = + Xn, Oz z-~z 

~ z + ~ z = a (  - ~ )  2 + 2 ~  az ' (s) 

~ 2 ~ - ~ g ~ = a ( N + , .  2 +2z + az j '  

{ a%~ axn} n 2 02r 1 8r + z - -  , 
cr~ = 2G ~-Sr (Or 2 r Or Oz  2 O z  

p,~ = -2a~ ~-~n 2o~v~r 
o z  

where 
0 2 1 0 n 2 8 2 

V 2 =  + + _ _  
0 r  2 r 0 r  r 2 0 z  2" 

Therefore the analysis of poroelasticity problems is reduced to the determina- 
tion of the Fourier coefficients of three displacement functions. Let f ( r ,  z, s) be 
the Laplace transform of a function f (r ,  z, t) with s being the transform parame- 
ter. Substituting (7) into equations (4) and taking Laplace transforms gives the 
following partial differential equations for the Fourier coefficients of the three dis- 
placement functions in the Laplace transform domain 

4 -  "3 V 2n ~ n 2 - V n - - = v ~ r  0, o. Vnr 0, = = (9) 
c 

Applying Hankel transforms to the above equations reduces them to three ordinary 
differential equations, the general solutions of which take the form 

j~o ~176 
r z, s) = [A~(a, s)e -~z + A~(c~, s)e ~ + Bn(a, s)e -zz  

+ B_,~(~, ~)egZ]~&(~')d~, 

2~(r, z, s) : [c~(~, s)e - ~  + c~(~, ~)e~]~&(~,')d~, 

~n(r,z, ~) = [D~(~, ~)e - ~  + D_~(~, ~)e~]~J~(~)d~, (10) 
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where 
a2 = a2 + s_, (11) 

e 

An(or, s), An(oZ , s), etc. are arbitrary functions to be determined from the bound- 
ary conditions of a problem. Invoking certain properties of Hankel transforms [18, 
19], the displacements, stresses and the excess pore pressure can be expressed in 
terms of these arbitrary functions as follows: 

/7 ~ + ~ = - {[An + Cnz - Dn]e - ~  + Bne -~z  

+ [An + _C~z - D_~]e ~ + Bne  e~ } ~ & + l ( ~ r ) a ~ ,  

/7 ~n _ ~ = {[As + C n z  + D~]~ - ~  + B~e - ~  

+ [An + _Cnz + D__n]e ~z + B_n~ ~z} ~ & _ ~ ( ~ ) a ~ ,  

~ = - {[~A~ + (1 + ~Z)Cn]e - =  + ~B~e  - ~ }  

- [~An + (~z  - 1)_Cn]~ ~ - ~B~e  ~ }  ~J~(~r )e~ ,  

/o ~ + ~2~ = a [(2~A~ + 2~zC~ - ~D~)e  - ~  + 2~B~e - ~  

- (2,~A,, + 2~zOn - ,~Dn)e ~ - 23BneZz]~2&+~(,~r)d~, 

~n z - ~ = - G  [(2aAn + 2aZCn + aDn)e  -~z + 2/3Bne -pz 

- (2aAn + 2azCn + a D n ) &  ~ - 2 /3Bne~]a2Jn_l(ar)da,  

a2 = 2G {[~An + Cn(1 + ~z)]~ - ~  + ~Bn~ - ~  

+ [~An + _ C A - 1  + ~z)]~ ~ + ~ B _ n e ~ } ~ & ( ~ r ) d ~ ,  

/o Pn = [2GaCne - ~  - 2Gr/(P 2 - a2)Bn e - ~  

- 2 a ~ c ~ e  ~ - 2 G ~ ( 9  2 - ~ 2 ) B ~ e ~ ] ~ & ( ~ r ) d ~ .  (12) 

The set of equations (12) with eight arbitrary functions An(a,  s), An(a,  s), etc. 
to be determined is quite general for the purpose of solving any three-dimensional 
problems in poroelasticity referred to an infinite space, a semi-infinite space or a 
layer. 

We now examine a problem of a poroelastic half-space (z > 0) the surface of 
which is subjected to arbi trary normal stress and zero shear stresses. Solutions 
to this problem will be used to formulate the indentation problem in the next 
section. We will consider the following two types of drainage boundary conditions 
(i) a completely permeable surface, for which we have 

p( r ,  0, 0, t) = 0 (13) 
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and (ii) an impervious boundary, for which we have 

[o%0 =0  14) 
z~-0 

The regularity condition which requires that  all the displacement components, 
stresses, and pore pressure vanish as z -+ 0% and the zero shear stresses bound- 
ary conditions at z = 0 impose the following restrictions on the eight arbi trary 
functions 

A n  = B n  = C n  = D-D-n = Du = O, ceAn = -/3Bn, (15) 

while the completely permeable drainage boundary condition (13) gives us 

( 0  2 - ~ 2 ) B ~  : c ~ C ~ ,  (16)  

and the impervious boundary (14) yields the following 

fl(/3 2 - c~2)Bn = ceee2C,~, (17) 

where ce = k. In formulating the mixed boundary value problem for normal 
indentation of the surface, we require a relationship which relates the surface 
displacements to the stress, i.e. 

/7 ~ ( ~ , 0 , s )  - 1 - ~  Jn(~)Fn(~, s)[l+ k(~,*)]d~, (lS) 
G 

with 
~_~ . 

for free drainage boundary, 

r 1. (19) 
~- [ ~ + f l 2 _ c ~  ] , for impervious boundary, 

and Fn (c~, s) is the Hankel transform of the Fourier coefficient for the normal stress 
at z = 0 in the Laplace domain; i.e. 

/7 Fn(c~, s) = &n(r, O, s)rJ~(c~r)dr. (20) 

3. T w o  i n d e n t o r  p r o b l e m  

We now consider the problem of two rigid smooth circular indentors resting on a 
poroelastic halfspace saturated with an incompressible pore fluid. The indentors 
are subjected to individual central loads Pz and P~. The entire surface of the 
halfspace is assumed to be either completely permeable or completely impervious 
as previously indicated by equations (13) and (14). The radii of the two circular 
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Figure 1. Two rigid circular smooth indentors on a poroelastic half space 

contact regions Tr and ~ are a and ~ respectively and the distance between the 
two centers of these two indentors is denoted by f (Figure 1). 

We choose two similarly oriented local cylindrical co-ordinate systems (r, 0, z) 
and (f, 0, 2) such that  the two contact areas occupy 

~ :  r < a ,  0 < 0 < 2 T r ,  z = 0 ;  and ~. :  f < a ,  0 < 0 < 2 z r ,  2 = 0 ,  (21) 

respectively. In terms of these coordinate systems, the stress and displacement 
boundary conditions of the problem can be written as 

T~z(r,O,t ) = Tg~(r, 0, t) = 0, for r _> 0; 

~ 2 i z = o = 0 ,  for r > a  or r > a ;  
u~( r ,O , t )= fn ( r , t ) ,  for r_<a ;  

u~(f, O, t) = fn(r,  t), for ~ _< ~, (22) 

and 

fo fo  z(r,O,O, )eOer = Pz ,  (231 

The above displacement and traction boundary conditions and the surface drainage 
conditions along with the initial condition e(r, 0, z,0) = 0 (which implies that  
the volume change of the medium is zero at the instant of loading) constitute a 
complete mathematical  statement of the problem. 

In order to solve the two indentor problem, we first investigate the single in- 
dentor problem, for which the governing integral equations can be obtained from 
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the surface stress and displacement relationship (18). By using equation (20) and 
the definition of the inverse Hankel transform, we have 

~0 ~176 #zn(r, 0, s) = Fn(a, s)aJn(ra)da. 

By virtue of the identity [20] 

(24) 

Ji cc 21+"-~y" H (x _ y) 
Jt*(xa)J'(Ya)Cel+"-Udce = xuF(# - u)(x 2 - y2)1+,-,' for # > ,  > -1,  

(25) 
we can show that the normal stress boundary condition on z = 0 which requires 
that tractions outside the contact region T~ be zero, is satisfied by choosing F~(a, s) 
to be of the form 

~0 a Yn(O~ , 8) = - -2Gv/ '~  V'P2n(p, 8 ) J n _ l / 2  (~p)dp, (26) 

where )(n(P, s) is a function to be determined on the interval [0, a]. Substituting 
the equation (26) into (18), changing the order of integration and applying the 

d both sides of the the operator 7z-d7 fop xr'+ldx to resulting equation lead to 

following integral equation for X~(p, s) 

~0 a f(-n(p, 8) q- Xn(y~s)I(n(p,y, 8)dy = ~n(p,s), (27) 

where the kernel function is given by 

~0 ~176 Ks(p, y, s) = ~ oJ~-ll2(Pa)J~-ll~ (ya)k(a, s)da, 

and the right hand side takes the form 

(28) 

1 d x"+lL(x, s)dx 
O (p, = 6-7.o ,/p----7--7; 

(29) 

Here we have used the displacement boundary conditions in (22). It is evident that 
equivalent equations for the indentation problem involving single indentor 7~ can 
be obtained in a similar way with Xn, ]n and U~ replaced by their counterparts 

Xn, ]n and ~n in equations (27) and (29). 
Now consider the normal indentation problem involving two indentors. It is 

clear that a superposition of the solutions for the two separate (either T4 or ~)  
normal indentation problems satisfies all the boundary conditions except the dis- 
placement boundary conditions on the indentation surface z = 0. It will be shown 
that these displacement conditions result in a system of coupled Fredholm integral 
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equations for f(n(P, s) and .~ (p ,  s). In deriving these integral equations, expres- 
sions of relation (18) and its analogue for indentor 7~ in both local co-ordinate 
systems are required. As shown in the previous section, all the displacements, 
stresses and excess pore presure are generated from three displacements functions. 
For the indentation problem involving the half-space (z _> 0), these displacement 
functions take the following form in the Laplace transform domain 

fo ~ r = Z cos(n0) [An(a,s)e - ~  + Bn(a,s)e-~Z]aJn(ar)da, 
n : O  

fo ~(,., o, z, ~) = ~_, cos(nO) C~(o~, ~)e-~o~J,~(o~,')d,~, 
n~O 

fo r 0, z, s) = ~ sin(n0) D~ (c~, s)e-aZaJ~ (c~r)da. 
n = 0  

(30) 

Note that all displacement and stress components derived from the above functions 
approach zero as z --+ ec. With the aid of the addition formula for Bessel functions 
(e.g. Watson [20] 

sin(m0) ~ sin[n0r - 0)] (31) 
;m(r~) cos(me) = ~ ;m+n(f~)&(~) c o s [ n ( ~ "  - 0)], 

n : - - o o  

we can express these three functions in terms of the second local co-ordinates 
(~, 0, 2) as follows: 

~(r, 0, z, s) = ~;(~, 0, 2, s) 

fo = Z cos(n0) aJ~(~a)[A*(a, s)e - ~  + B*(a, s)e-Z~]da, 
n : O  

fo 
n~O 

fo (b(r,O,z,s) = ~(~,0,2, s) = Z sin(n0) aJ~(~a)D;(a,s)e-a~da, 
n = l  

(32) 

where 
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(2<) t 

* E A,~(c~, s) = ( -1)  n A.~(oe, s)[Jm+,~(fa) + (-1) '~Jm-,~(fa)],  
r n = 0  

oo 

B~* (o~, s) = ( -1)  n E'Bm(c~, s)[Jm+n(fce) + (-1)~Jm-n(fo~)],  
m = 0  

oo 

Cn(a , s) = ( -1)  n E'Cm(C~, s)[Jm+n(fa)+ (-1)nJm-n(fC~)], 
m = 0  

D:~(c~, s) = ( -1)  n+l E'D,~(a, s)[Jm+n(fc~) - (-1)nJ,~-n(fa)]. 
m = l  

(33) 

Here the prime on the summation sign implies that the (-1)~Jm_n(fa) terms do 
not appear when n = 0. This shows that all the three functions take the same form 
in the two systems of cylindrical co-ordinates (r, 0, z) and (~, 0, 2) and therefore 
the displacement and stress components also take the same form in these two 
co-ordinate systems. With this observation, the stress-displacement relationship 
equivalent to (18) expressed in terms of the second system of coordinates (~, 0, 2), 
takes the form 

with 

f 0  ~ 

- ( 1 - . )  + 
(34) 

oo 

F~*((~, s) = ( -1 ) "  E ' F m ( a ,  s)[Jm+n(fce) + (-1) '~Jm_n(f~)] .  
m = O  

(35) 

Similarly we can find the stress-displacement relationship for the second indentor 
/~ in terms of the first local coordinate system 

where 

~ ( r , O )  -- ( 1 - " ) / 0 ~ 1 7 6  /~* (a, s)[1 + k(a, s)]J~(rc~)dc~, (36) 

oo 

_P* (a, s) = E '  (--1)m/~m(a' s)[Jm+n(fa) + (-1)nJ~-n(fa)]. 
m : 0  

(37) 

Equations (34) and (36) are results of special importance. Superposing the above 
two normal displacement fields in the two local coordinate systems respectively 
and substituting them into the normal displacement boundary conditions (22), 
results in the following system of coupled Fredholm integral equations for )(~(p, s) 
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and ~'~(p, s), 

/o ~ ~ /0 ~ 2~(p,s) + 2~(y,s)K~(p,y ,s)dy + y~"(-1)  m 2m(y,s)K~m(p,y ,s)dy 
m=0 

= D~(p, s), on T~, 

/o 2 . ( r  2 . ( y , . ) K n ( o , y , . ) e y + ( - 1 )  ~ 2.~(y,s)K~(p,y,s)dy 

= ~. (p ,~) ,  on n ,  (aS) 

where kernels Kn(p, y, s) are given by (28), K~m(p , y, s) are defined as the following 

K ~ ( p ,  y, ~) = 

v r ~  Jm_u2(ya)Jn_lD(pa)a[Jm+~(fa) + (-1)~J.~_~(fa)][1 + k(ct, s)]dct 
(ag) 

and the right hand sides of the second integral equation are the same as that of 
(29) for the first equation withf~(x) replacing L(x) .  

Governing equations in the time domain can then be obtained by taking Laplace 
inverse transforms of the above integral equation set. They are 

fo~ ~ X~(p,t) + X~(y , t  - T)K~(p,y,T)dTdy 

+ E ' ( - 1 )  "~ ff .~(g,t)K~.~(p,y)+ 2.~(y,t-'r)K~m(p,y,~-)d~- dy 
m=0 

= g~(p,t), on n ,  

Xn(p, t) + f(n(Y, t - "c)K~(p, y, "c)d~-dy 

~{~o Io ~ } -t- ( -1)n E '  [ X~(y,t)K2nm(p,y)+ X.~(y,t-~-)K~m(p,y,r)d~- dy 
rrt~O 

= CTn(p,t), on ~,  (40) 

where the kernels are 

L 
o o  

/(nl (p, y, t) = V / ~  OZJn_l/2(poL)Jn_l/2(yoz)I~(o! , t)do[, 

K~(o ,~)  = vr~ Jm-1/2(y~)&-l/2(P~)~[J~+,~(f~) + ( -1 )nJm-~( f~) ]  a~, 

K ~ ( p ,  y, t) = 

/ 2  
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and function K(a ,  t) is the inverse Laplace transform of k(a, s). Now we have 
reduced the two-indentor problem for a poroelastic half-space to an infinite set 

of integral equations. Once Zn(p, t), Xn(p, t) or )~n(p, s), ~n(p,  s) are known, 
pressures in the contact regions can be obtained from equations (24) and (26) and 
their analogue for 7~. For example, pressure p(r, O, t) under indentor 7r takes the 
following form 

p(r,O,t) = 2G E r  ~-1 pn~_l~pT~r2 cos(n0). (42) 
rt----0 

The total force Pz in the z direction exerted by indentor 7~ can be obtained by 
integrating the pressure (42) over the contact area 7~; i.e. 

P (t) = - p(r ,  o, t)rd dO = 4Gv  Xo(p, t )do ,  (43) 

and the resultant moment My about y direction can also be found from (42) 

~ /o My(t) = p(r, O, t)r 2 cos(O)drdO = -4Gx/~-~ pX1 (p, t)dp. (44) 

Similar expressions for the force and moment resultants in the region ~ can be 
obtained by considering the equilibrium of the indentor 7~. 

4. Spec i f i c  s o l u t i o n s  

In this section we solve the general system of integral equations derived in the 
previous section for three special cases, namely the case of normal indentation by 
a single indentor, the case of interaction between an indentor and a point force 
and the case of symmetric indentation by two identical indentors. 
A single inden tor  p rob lem:  We consider first the special case in which the 
poroelastic half-space is indented by a single flat indentor subjected to the con- 
stant force Pz. Due to the axial symmetry of the problem, the only unknown is 
)~0(P, s) which satisfies 

/o f(o(p,s) + f2o(y,s)Ko(p,y,s)dy = f)0(s), (45) 

and 

/o a Pz (46) 4G v/-~ f2o(p, s)dp = - - .  
8 

Considering the structure of the kernel functions Ko(p, y, s) given by (28), it is 
unlikely that the system of complex integral equations has analytical solutions. 
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There are some numerical methods available in the literature for poroelastic con- 
tact problems. These methods can be divided into two categories. The first 
method, e.g. [8], solves the governing equations directly in the time domain while 
the second, e.g. [I0, ii], deals with the integral equations in the Laplace domain 
first and then applies Laplace transform inversion procedure. The advantage of 
the first method is that it avoids the procedure involved in the numerical inver- 
sion of Laplace transforms, which in some circumstances could be unstable. The 
main shortcoming of this method is that we have to deal with a system of double 
integral equations, the kernels of which themselves are infinite integrals. Also it 
is computing intensive to find solution for a large time, since it requires (due to 
the convolution nature) all the solutions at previous times. By using the second 
method we can find solutions at a specific time without knowing solutions at other 
time. 

In this paper we adopt a second type numerical scheme for the evaluation of 
the time-dependent solutions of the integral equations. After some minor changes, 
the technique described below also applies to the more complicated indentation 
problem such as the one considered later in this section. This numerical algorithm 
consists of two major steps. The first step involves solving the integral equations 
in the Laplace domain for each given Laplace transform parameter s. Rewriting 
equations (45) and (46) in a non-dimensional form, we have 

~0 
1 

g0(r ,_ , )  + X 0 ( ~ , _ ~ ) ~ ( r , y , ~ ) d y  = U__o(s_), 

fo X~)(s_)dr = 1/s, (47) 

where the new non-dimensional notations are 

X__o(r,s ) = 4 G v / ~ a X ~  U o(s ) - 4G~v'~aUo(s); r = P-; 
Pz ' G a 

/7 = - cos(ra) cos(yc~)k(a, s_)dc~. K__o(r,y,s ) = a 'Ko(p,  ay, s) 2 
71" 

a2s  
8 _ :  

c 

(48) 

Dividing the integral [0, 1] into N equal segments and letting the collocation points 
xi be the midpoints of each segments, the integral equations can be converted into 
two systems of linear algebraic equations of the form 

A X -  B Y  = R1; A Y  + B X  = R2, (49) 

where A and B are two (N + 1) • (N + 1) matrices, X is an (N + 1) dimensional 
vector with the first N components being the real part of X__0(xi, s_), i = 1, 2, ..., N, 
and the last component being the real part of Uo(s ), Y is also an (N + 1) dimen- 
sional vector with the first N components being the imaginary part of ~ ( x i ,  s_), 
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i = 1, 2, ...,N, and the last component being the imaginary part of U0(s__), and 
right hand sides R1 and R2 are two (N + 1) dimensional vectors with the first 
N components being zeros and the last components being the real and imaginary 
parts of 1/~, respectively. 

In solving the coupled linear systems (49), the most expensive computation 
occurs in forming the two (N + 1) x (N + 1) matrices A and B. Each entry 
of these two matrices involves numerical evaluation of an infinite integral (48). 
Due to the presence of the oscillatory factor cos(ps) cos(ys) in the integrand of 
this infinite integral, accurate integration requires adding more Gauss integration 
points. This can be very computing intensive considering that this numerical 
integration process has to be done for every element in matrices A and B. An 
effort is made to reduce the computation time by replacing function k(a, s) with 
a linear combination of a properly chosen function set, which best fits k(a, s) 
at some selected points. These fitting functions are chosen in such a way that 
analytical expressions for the kernels are available, and the coefficients of these 
fitting functions are determined by a least squares method. The accuracy with 
which the kernel (48) is evaluated depends on the selection of the fitting functions 
and the fitting points. Since the fitting data are virtually all the data required to 
evaluate the infinite integral, the best possible choice of the fitting points is the 
Gauss points. Numerical evaluations show that the following combination gives a 
good fit to function k(a, s) 

M 
1 , (5o) s) = c0(s) + Cl(S)  + + 2 + (n + 2)2 

n=4 

and that M = 6 is sumcient to give satisfactory results. The advantage of this 
method is that only one of these fitting processes is required for each given Laplace 
transform parameter s. 

The second step of this numerical scheme involves the inversion of Laplace 
transforms. In the present paper we adopt the modified version [10, 11] of the 
method proposed by Crump [21]. 

Some of the numerical results are shown in figures 2 and 3. Also shown in these 
two figures are solutions obtained by using Heinrich and Desoyer's assumption [17]. 
Guided by the observation that the initial and final contact stress distribution un- 
der the indentor are the same, they assume that the contact pressure remains 
unchanged throughout consolidation process and identify the consolidation of the 
clay stratum as the average of the normal displacement under the indentor. This 
assumption dramatically simplifies the numerical procedure for the problem. Fig- 
ure 2 shows the influence of Poisson's ratio on the non-dimensional time-dependent 
settlement behaviour of the single indentor and Figure 3 shows the effect of the 

(1-v)P~ From surface drainage boundary conditions. In both these figures, A~ - 4Ga " 

these two figures, we can see that Poisson's ratio has significant influences on the 
consolidation of the poroelastic half-space. Results also show that Heinrich and 
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1 0' I//V:0 1 
liar/  re Sn  t ,m t e  oye  method  

0 2 4 6 8 10 

4"Ji / a 

Figure 2. Single Indentor: Effect of the Poissson's ratio on the non-dimensional settlement 
A(t)/A~) when the surface of the poroelastie half-space is completely permeable. 

0,9 

0,8 

I I I I 

impermeable surface 

- -  present method 
, Heinrich & Desoyer method 

0,7 0 ' ' I , 
2 4 6 8 10 

4~/a 

Figure 3. Single Indentor: Effect of the surface drainage conditions on the settlement A(t)/A~) 
for p = 0.3. 

Desoyer's assumption gives satisfactory results after the very early stage of con- 
solidation. However, their method does not provide an indication of the variation 
of contact stress distribution with time and is not applicable to more complicated 

problems discussed later. 
Interaction between an indentor and an external concentrated force: 
We now consider the interaction between a rigid circular indentor and a con- 
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centrated normal fo rce /5  applied at point (f, O, O) in the coordinates (r, O, z). In 
this case the radius of the second indentor approaches zero in such a way that  

functions _~(p ,  s) satisfy 

~ f0 ~ 4Gv/~ 2o(p,s)dP=--s- ; and 2n(p,s)=O, n = 1 , 2 , 3 , . .  (51) 

in the Laplace domain. As the first example, we examine the resultant force and 
moment required to maintain the indentor with zero normal displacement. In the 
Laplace transform domain the governing equations for this problem are as follows 

__p~ ~ p ,  
2n(p, s) + ~ 2,~(y, s)K,~(p, y, s)dy - 4G--~--v/-~ ,~oiP, O, s) (52) 

Before solving this problem, it is instructive to first examine two limiting cases, 
the initial (t ~ 0 +) and the final (t -~ ec) stress distribution under the indentor. 
Results show that  the stress distributions in these two limiting cases are the same, 
and they are determined by 

_ / 5  1 
Xo(p, 0 +) = Xo(p, ~)  - 2 . a . / ~ .  f~/Tr:7-. ~; 

-Pz p~ 
X,~(p,O +) = Xn(p,c~) = ~TGv/~ fn ~ ,  for n _> 1. (53) 

This result suggests that 

X0(p,t)  = - P ~  1 _ - P z  p~ Xn(p,t) (54) 

could be a solution for equation (52). With the aid of two special cases of the 
identity (25), we can show that (54) does satisfy equation (52) and therefore is 
indeed the solution. Using the above solutions, the force and moment required to 
maintain zero normal displacement of the indentor follow from (43) and (44) 

p~ _ 2Pz arcs in ( f )  
7r 

My = ~PzI arcs in(a)  - 1 -  
7r f " 

(55) 

These results indicate that  the force and moment required to maintain the indentor 
with no normal displacement are time-independent and they are exactly the same 
as those for the associated elastic half-space problem given by Selvadurai [12]. 
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A(t)/z~ 

1.3 

1.2 

1.1 

[ I I I 

a/f= 0.5 

a/f = 0.2 

a/f= 0.1 

0,9 

0,8 I I I I 

0 2 4 6 8 10 
~"~la 

Figure 4. Interaction between a rigid indentor and an externally placed normal force: Variation 
of the non-dimensional consolidation A(t)/A~) with respect to time for P~/Pz = 1, u = 0.3 and 
various values of p when the surface of the poroelastic half-space is completely permeable. 

As the second example, we consider a more practically relevant problem in 
which the indentor, instead of being restrained with zero normal displacement, is 
subjected to a constant axial loading Pz. Hence we have 

Uz(r, 0, 0, t) = ~(t)  + a(t)r cos(0), (56) 

and 

fo v ~ f o  a 
4Gx/~ Xo(p,s)dp= Pz., and My = 4 G  pXl(p,s)dp = 0, (57) 

8 

with the settlement A(t) and the tilt angle f~(t) to be determined by 

8) -t- fL a X n ( y ,  8 )Kn(p ,  y,  8)dy -~ ~fn(P, 8) -- 
Pz 2~(p, 4asv~KPn~ 0, s), n = 0, 1. 

(SS) 
As for the single indentor problem, the unknowns decouple and therefore we can 
solve the resulting equations for )(o and X1 separately. For both n = 0 and n = 1 
the algebraic equations arising from the integral equations are in the form of (49). 
After some minor changes in the matrices A and B and the right hand sides R1 
and R2, these linear algebraic equations are solved similarly as those for the single 
indentor problem. Some of the numerical results are shown in figures 4-6. In 

3(1-~)Pz Unlike the settlement behaviour as shown in figures 5 and 6, f~  - -  4 7 r a a 2  �9 

Figures 2, 3 and 4, the tilt angle reduces to its elastic limit much faster than the 



Vol. 47 (1996) Interacting indentors on a poroelastic half-space 713 
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Figure 5. Interaction between a rigid indentor and an externally placed normal force: Variation 
of the non-dimensional tilt angle f~(t)/f~) with respecty to time for -f = 1 and various value a 

surface of the poroelastic half-space is completely permeable. 
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0.9 
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0.3 
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- -  impermeable surface 
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0 2 3 4 
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Figure 6. Interaction between a rigid indentor and an externally placed normaI force: Variation 
of the non-dimensional tilt angle gt(t)/gt~) with respect to the spatial ratio L for u = 0.3 

a 

se t t l ement  does. For a given time, we also note  from figure 6 tha t  the t i l t  angle 
decreases to zero very rapidly  as the spat ial  rat io f- increases. 

a 

T w o  i d e n t i c a l  i n d e n t o r  p r o b l e m s :  F ina l ly  we consider the problem of two 
identical  indentors  pene t r a t i ng  a poroelast ic  med ium to equal depths  A(t) .  This  
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problem can be interpreted, from a practical point of view, as a problem of the ro- 

tation free indentation of a poroelastic halfspace by two identical indentors, which 
are connected via a rigid structural element. The displacement boundary condi- 

tions of the problem are fo(x, t)  = fo(x, t)  = A(t) and fn(x , t )  = fn(x , t )  = 0 for 
n > 1. From the symmetry of this problem, we note that  Xn(p, t) = (--1)~-~n(p, t) 

in the time domain and consequently Xn(p, s) = ( - 1 ) ~ . ~ ( p ,  s) in the Laplace do- 
main. The governing integral equations for this problem become 

/o a X,(p ,  s ) +  2 n ( y , s ) K ~ ( p , y , s ) d y +  2m(y ,s )KP,~(p ,y , s )dy  = ~fn(p,s), 

(59) 
with 

4G Xo(p, s)dp = Pz/s; 4G o(p, s)dp = Pz/s,  (60) 

in the Laplace transform domain. Unlike the previous cases, the unknowns are 
coupled. It is unlikely that  an exact solution can be found for the above infinite 
system of coupled integral equations. Considering that  each integral equation in 
the infinite set of equations has an infinitely long interval, we have to truncate 
them even before resorting to any numerical methods. From the definitions of the 

(Knm and Knm in the kernels, we can see that  the non-dimensional kernels KP m 2 3 
__ a and are of the time domain) can be expanded as power series in terms of c] 7 

order O(e}~+~+l). Therefore, all the equations for n _> 3 and all these terms with 
m _> 3 in the first three equations(n = 0, 1, 2) can be ignored if we are seeking 
solutions accurate to the order of O(e}). The resulting truncated equations can 
then be solved iteratively by using the same numerical technique as described for 
the first case. Computat ional  experiments show that  solutions converge after three 
or four iterations. Some of the results are shown in Figure 7. It is worth noting 
that  an extra moment of the order O(e)) is required to maintain the indentor 
without any tilt. 

5. C o n c l u s i o n s  

In this paper a general formulation for the three-dimensional problem in poroe- 

lasticity is presented, which can be considered as a generalization of Muki's for- 
mulation [15] in elasticity. By using the methodology proposed in [16] for the 
two-indentor problem for an elastic layer, we reduce the problem of two interact- 
ing indentors on a poroelastic half space to an infinite set of integral equations. 
Analytical solution is obtained by a semi-inverse method for the resultant force 
and moment required to maintain the first indentor with no normal displacement 
when the radius of the second indentor approaches zero. For the other cases dis- 
cussed, a very efficient and accurate numerical scheme is developed to evaluate the 
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Figure 7. Symmetric settlement of two interacting indentors: Effect of the spatial ratio on the 
non-dimensional settlement A(t) /A~ when the surface of the poroelastie half-space is completely 
permeable (u = 0.3). 

time-dependent solutions of the resulting integral equations. Computational ap- 
proximation shows that the Poisson's ratio and the spatial ratio e/play significant 
roles in the settlement of the indentors. 
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