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The dynamics of the formation of vortices in the flow of a uniform fluid about a two- 
dimensional body has been studied in fairly great detail both theoretically (by analytical 
and numerical methods) and experimentally [1-3]. Less attention has been given to the vortex 
structure of flow behind a three-dimensional body. According to asymptotic solutions, a sta- 
tionary vortex is created in the aft region of a sphere at Reynolds numbers Re > 20 [i]. The 
structure of this vortex in a uniform fluid was studied experimentally in [4]. At 130 < Re < 
300, the vortex pulsates, and it begins to separate from the body at Re > 400. The separation 
of isolated vortices from a sphere was visualized in [5]. Vortex flow behind a sphere in a 
nonuniform fluid was studied by the tinting method in [6] (three tests were conducted alto- 
gether). A series of vortices similar to a Karman street behind a cylinder was observed in 
the horizontal plane. The dye was distributed in two separate layers in the vertical plane, 
which is indicative of splitting of the flow behind the body. With the assumption that the 
stratification had little effect, a model of vortex flow was constructed which consisted of 
two intersecting spiral vortex tubes. Isolated vortices with a vertical symmetry axis are 
formed at the points of contact of the tubes. The value of the Strouhal number Sh increases 
from 0.14 (Re = 4300) to 0.22 (Re = 17,400), with Sh = nd/U0, where d and U 0 are the diameter 
and velocity of the sphere and n is the frequency of vortex shedding. It has been established 
by numerical methods that stratification has a significant effect on the character of flow 
about a body and the structure of the boundary layer [7]. It has been shown experimentally 
that the thicknesses of the viscous and dense boundary layers in a fluid with salt stratifica- 
tion do not coincide [8]. Vorticity can be transferred in a nonuniform fluid not only by 
individual vortices, but also by internal waves. More types of wake structures can exist 
in a stratified medium than in a uniform medium due to the development of Taylor instability 
(when a heavier fluid turns out to be above a lighter fluid) and Kelvin-Helmholtz instability 
(when the velocity shift is greater than the buoyancy frequency). The degree to which these 
structures are manifest depends on the relationship of the acting forces. In particular, 
the formation of discrete vortices may be connected with the generation of vorticity both 
in the vicinity of the body and on the boundary of the wake, in the zone of maximum gradients 
of density and velocity shift. No systematic study has been made of a vortex flow structure 
behind a three-dimensional body in a stratified medium. The goal of the present study is to 
experimentally investigate the vortex structure of a wake behind a sphere moving horizontally 
with a constant velocity in a fluid with a linear density distribution. The method of shadow 
visualization is used to determine the types of vortex structures that might develop and the 
conditions of their formation. 

Experiments were conducted in a basin 1.5 m long, 0.4 m wide, and 0.46 m high. The basin 
was filled layer by layer with an aqueous solution of common salt with a variable concentra- 
tion. The buoyancy period was measured by the method of density marking [9]. The flow pat- 
tern was recorded with an IAB-451 shadowgraph. In most of the tests, the body being towed 
was secured to a Nichrome wire 0.15 mm in diameter. We studied flows behind spheres of the 
diameter d = 0.5, 1.0, and 2.0 cm in a fluid with a buoyancy period Tk = 4.1 sec. Here, A = 
420 cm. The velocity of the body was no greater than 7 cm/sec. All of the measurements were 
made in the middle part of the basin, where the velocity of the model was kept constant. The 
experimental method is explained in more detail in [8]~ The geometric characteristics of 
the flows were measured from shadowgrams with the aid of a Stecometer comparator (German Demo- 
cratic Republic). The coordinates of the boundaries of the flows were recorded in digital 
form with an instrument error of 0.002 mm. The error was 0.03 mm with allowance for the scale 
of the measurements. 

The characteristic dimensional parameters of the problem were as follows: body diameter 
d, body velocity U0, kinematic viscosity v, acceleration due to gravity g, buoyancy scale 
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A = [81np/Sz] -I. The natural time scale was the buoyancy period Tk (frequency N). Here, 
Tk = 2~/N = 2~#-~ The dimensionless characteristics were as follows: Reynolds number 
Re = U0d/v, scale ratio C = A/d, internal Froude number Fr = U02/N2d 2 [I0]. 

Seven clharacteristic types of wakes can be distinguished from the results of tests con- 
ducted behind a sphere moving horizontally in a stratified fluid: a laminar wake with recti- 
linear boundaries; a laminar wake with a conical internal structure; a pulsating wake (laminar 
with wavy boundaries); a wave-vortex wake (with small vortices on the periphery of the wake); 
a nonsteady-vortex wake (a vortex commensurate with the size of the body is periodically formed 
behind the body); a vortex wake (the wake is a vortex street); a turbulent wake. 

We will examine each of these regimes in more detail. As in a uniform fluid, flow in 
the wake is laminar in character at low velocities of the sphere. A layer of fluid with a 
density gradient greater than the initial value is formed in the stratified fluid at the pe- 
riphery of the wake. This is the density boundary of the wake, and the degree to which it 
is manifest (the maximum value of gradp) and its extent (the distance from the sphere over 

JgradpJ > Jgradp0J within the sensitive range of the shadowgraph) increases with an increase 
in the diameter of the sphere and stratification. The density boundary appears on the shadow- 
grams in the form of thin dark bands which approach the points of flow separation from the 
sphere (Fig. la, Tk = 4.2 sec, d = 2 cm, U e = 0.68 cm/sec). Its length is 0.66d for spheres 
of the diameter d = 0.5 and 1 cm and 1.2d for spheres with d = 2.0 cm, Tk = 4.2 sec. The den- 
sity boundaryis located at the center of the region of maximum shift of the velocity of the 
wake (SUx/~Z) at the wake's periphery, which is visualized in Fig. la with the aid of a density 
marking. It follows from analysis of shadowgrams with density markings thatthe thickness 
of the layer in which there is an abrupt change in density 6 = 36 mm (the relative error of 
the measurements is • This value is 17 times smaller than the width of the velocity-shift 
layer. The velocity profile of the wake is smooth, in this regime, and the maximum lies on 
the wake axis. Laminar flow about the sphere was seen at velocities below U e = 1.7 cm/sec 
for the sphere with d = 0.5 cm (Re ~ 85, Fr ~ 4.9), at U 0 ~ 0.95 cm/sec when d = 1 cm (Re 
95, Fr ~ 0.39), and at U 0 ~ 0.68 cm/sec when d = 2 cm (Re s 136, Fr % 0.048). 

All of the photographs in Fig. 1 show a visualization of the flow pattern near the ver- 
tical plane passing through the line of motion of the body. The photographs were obtained 
by the method of a vertical slit - a Foucault knife-edge. The changes in density of the dark- 
ening are proportional to variations in the horizontal component of the gradient of the refrac- 
tive index in the direction of motion of the body. The diffuse dark and light bands (semi- 
circles behind the body outside the wake and inclined diffuse bands inside the wake) are the 
attached and captured internal waves described in [8]. 

With an increase in velocity, the external boundary of the laminar wake ceases to be 
rectilinear and splits into filaments which diverge in the form of individual cones enclosed 
in each other. Such flow is seen behind the sphere with d = 0.5 cm in the velocity range 
1.7 < U0 ~ 3.4 cm/sec (85 < Re ~ 170, 0.048 ~ Fr ~ 20.1) (no tests were conducted at high 
velocities) and behind the sphere with d = 1.0 cm at 0.95 < U0 < 1.74 cm/sec (95 < Re < 174, 
0.39 < Fr < 1.29). The wake contracts to 0.15d immediately behind the sphere and then ex- 
pands to the diameter of the sphere at the distance 5-6d. 

With an increase in velocity, the wake behind the large-diameter sphere is transformed 
from a laminar to a pulsating wake, with wavelike gradients. This regime is seen behind the 
sphere with d = 2 cm in the velocity range 0.68 < U 0 < 1.62 cm/sec (136 < Re < 324, 0.048 < 
Fr < 0.28 (Fig. Ib, d = 2 cm, U 0 = 1.08 cm/sec). The wake expands to 0.75d at a distance 
0.8-0.9d from the sphere. Meanwhile, the distance of the region of maximum expansion of the 
wake increases with an increase in velocity. The wake then contracts to 0.4d at the distance 
2d. A small vortex with a horizontal rotation axis can be seen in the region of maxim~n wake 
expansion, the formation of this vortex being connected with the development of Kelvin-Helm- 
holtz instability on the wake boundary in the zone of the maximum velocity shift and density 
gradient. 

A stagnation zone bounded by layers with steep velocity gradients is seen in the velocity 
range 1.74 ~ U0 ~ 4.5 cm/sec (174 ~ Re ~ 450, 1.29 s Fr ~ 8.65) after the sphere with d = 
1.0 cm and in the range 1.62 < U 0 < 2.36 cm/sec (324 < Re < 472, 0.28 < Fr < 0.59) after the 
sphere with d = 2.0 cm. The boundary of the zone is not smooth, and small-scale vortical 
disturbances with dimensions on the order of the thickness of the density boundary layer are 
formed on it. These vortices periodically separate and form a typical stepped wake structure 
(Fig. ic - d = 1.0 cm, U 0 = 3.13 cm/sec; Fig. id - d = 2.0 em, U 0 = 2.36 cm/sec). The vorti- 
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cal motion produces abrupt variations in the refractive index, and these small vortices are 
quite visible on the shadowgraphs. The development of instability is actually observed in 
the density wake, which is much thinner than the velocity-shift layer and the width of the 
wake as a whole. After separation, the vortices rapidly flatten out in the vertical direc- 
tion under the action of buoyancy, spread out in the horizontal direction and, disintegrat 2 
ing, stretch out into thin streaks which gradually smooth the external boundary of the wake. 
The horizontal dimension of such vortices increases linearly with time at the rate 5-7 mm/sec, 
depending on the velocity of the sphere. The vertical dimension of the vortices ~z decreases 
with time at the rate 0.9 mm/sec at t > 0.4 sec when the velocity of the body U 0 = 1.78 cm/sec. 
For U 0 = 2.36 cm/sec, the vertical dimension increases somewhat with time at t < 0.8 sec and 
then decreases at a rate of i.i mm/sec in the range 0.8 ~ t ~ 1.6 sec and at the rate 3.5 
mm/sec at t > 1.6 sec. The lifetime of the vertices is short and amounts to 2-2.5 sec accord- 
ing to the shadow observations. The lifetime of the layered structure after disintegration 
of the individual vortices at the periphery of the wake is 4-5 sec. 

Using the laboratory coordinate system, we determined the dependence on time t of the 
horizontal distances between vortices normalized on the diameter of the sphere x/d. These 
results are shown in Fig. 2, where i is the distance between the first and second vortices 
with the motion of the sphere with d = 1.0 cm at the velocity U 0 = 2.23 cm/sec. The numbers 
2 and 3 denote the distances between the second and third and third and fourth vortices, re- 
spectively, for the same sphere. The numbers 4 and 5 denote the distances between the third 
and fourth vortices and the fourth and fifth vortices, respectively, for the sphere with d = 
2.0 cm, U0 = 2.36 cm/sec. The number 6 is for d = 1.0 cm, U 0 = 4.5 cm/sec. It is evident 
that these distances increase on the average in proportion to the time. Meanwhile, the rate 
of increase v = 0.48 mm/sec is independent of the diameter and velocity of the sphere. The 
nonmonotonic nature of the change in distances is connected with the internal dynamics of 
the vortices, leading to a change in their dimensions and form. 

Subsequent increase in velocity leads to an increase in the intensity of vortical motion 
in the bottom part of the sphere. Meanwhile, the thickness of the vortex shell (the bound- 
aries of the vortex with a high density gradient) is determined by the thickness of the rela- 
tively thin density boundary layer (the layer of fluid near the surface of the body in which 
the density gradient is greater than the initial gradient) at the point of its separation 
from the body. At the stage of vorticity accumulation, the density irregularities (curves) 
in the wake directly behind the sphere form the characteristic spiral structure, similar to 
the internal structure of the streamlines of a free laminar toroidal vortex ring. When the 
size of the vortical stagnation zone approaches its greatest value, the flow inside it becomes 
unstable and small-scale mixing occurs - possibly as a result of Taylor instability. The 
vortexlike structure ("cloud," "puff") periodically separates from the body and rapidly disin- 
tegrates into a system of curves stretched out in the direction of mean velocity. The lifetime 
of these structures is no greater than i sec. This regime is seen in the wake behind the 2-cm- 
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diameter sphere at the velocities 2.87 ~ U 0 ~ 3.43 cm/sec, 574 ~ Re & 686, 0.88 & Fr ~ 1.26, 
and is shown in Fig. le. 

Figure 3 shows the horizontal dimension of a transient stagnation zone normalized on 
the diameter of the sphere s/d from the moment of its formation to separation; here, points 
1 correspond to the velocity of the sphere U 0 = 3.34 cm/sec; 2 and 3 correspond to U0 = 3.43 
cm/sec (we followed the behavior of two successive zones); 4 to U 0 = 3.68 cm/sec, 5 to U0 = 
4.2 cm/sec, and 6 to U 0 = 4.6 cm/sec; this dimension increases in proportion to the time s/d = 
at + 0.4, a = i.i see -I and is independent of the velocity of the body. In the coordinate 
system connected with the fluid, the outermost point of the stagnation zone during its forma- 
tion moves at a constant velocity of 2.1 cm/sec in the direction of motion of the body. 

Vortical motion in the bottom part becomes more stable when the sphere is moving at high 
velocities. The vortical stagnation zone behind the sphere periodically separates and exists 
in the wake in the form of circular vortices connected with each other by thin layered loops. 
The vortex ring envelops the line of motion, and its bottom edge is inclined somewhat toward 
the motion. The vortex loops connecting the circular vortices are inclined at one angle ~ = 
20 ~ to the line of motion. This regime is seen with motion of the sphere d = 1 cm, U0 = 5.4 
cm/sec (Fig. if) (no tests were conducted at high velocities) and d = 2 cm, 3.68 < U 0 < 5.8 
cm/sec (Fig. ig, U 0 = 5.2 cm/sec). The lifetime of the individual vortices is 5-6 sec. They 
flatten under the action of buoyancy, stretch out in the direction of mean velocity, and merge 
into a single wake consisting of discrete high-gradient layers. During its motion, each cir- 
cular vortex emits its own system of attached internal waves. The vertical dimension of the 
vortices is Unstable over time. The period of oscillation of this dimension is about 4 sec 
and is comparable to the buoyancy frequency Tk = 4.1 sec. The horizontal distance between 
vortices increases somewhat during the first second and thereafter remains nearly constant, 
depending slightly on the velocity of the sphere. The velocity of the vortices is about 4.5 
mm/sec and changes little over time. It should be noted that the error of measurement of 
the parameters of the vortex structures in this regime is fairly large (20-25%). This is 
connected on the one hand with the development of small-scale instability in the internal 
flow, leading to blurring of the boundaries of the vortices. It is due on the other hand 
to the internal dynamics of the flow (flattening and spreading). 

A further increase in velocity (U0 ~ 7 cm/sec, d = 2 cm) produces a turbulent wake (see 
Fig. lh). Turbulence may occur in the wake as a result of the agitation and coalescence of 
individual vortices, intensive development of Kelvin-Helmholtz instability in the region of 
abrupt expansion of the wake, and agitation of the boundary layer on the body. One or several 
of these factors, acting simultaneously, may be decisive, depending on the amount of strati- 
fication and the dimensions of the body. In the present case, discrete vortex structures 
undergo agitation and disintegration. 

The set of flowregimes investigated is shown in an Fr-Re diagram (Fig. 4) constructed 
in double-log coordinates. In these variables the data corresponding to spheres of different 
diameter lies on straight lines with the slope k = 0.5; 1-3 correspond to d = 0.5, i, and 
2 cm; the letter i denotes conditions under which a laminar wake is seen, c denotes a laminar 
wake with a conical internal structure, p denotes a pulsating wake, s denotes the regime 
of small vortices at the periphery of the wake, n denotes a nonsteady-vortex wake, v denotes 
a vortex wake, and t denotes a turbulent wake. Stratification stabilizes the flow conside- 
ably, and a laminar wake is present at Re <90, d = 0.5 and 1.0 cm and Re < 240, d = 2.0 cm 
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compared to Re < 24 for a uniform fluid. It follows from the data shown that the 
boundary of instability of laminar flow is shifted slightly toward large Re with an in- 
crease in diameter. This tendency remains with a further increase in the diameter of the 
sphere. The flow conditions are appreciably more dependent on the internal Froude number. 
The ratio of values of the critical Fr at the end of the laminar regime is 115:7:1 for spheres 
with d = 0.5, 1.0, and 2.0 cm, respectively. This is greater than the value of the ratios 
:resulting from an increase in diameter (16:4:1). The boundaries between all of the flow re- 
gimes are shifted toward larger Re with an increase in sphere diameter. 

The stabilizing effect of stratification is also manifest in the dependence of the angle 
8 (the angle of flow separation on the sphere) on Re, shown in Fig. 5. The angle is reckoned 
:from the line of motion (8 = 90 ~ when the flow separates on a principal transverse diameter); 
1-3 correspond to d = 0.5, 1.0, and 2.0 cm, while 4 corresponds to tests in a uniform fluid 
[4]. In a uniform fluid behind spheres with d = 1.5 and 1.9 cm, the value of the angle mono- 
tonically increases from 45 to 70 ~ with an increase in Re from 60 to 300, regardless of the 
sphere diameter. In a stratified~fluid, the behavior of the separation angle for spheres of 
different diameter is qualitatively similar. Separation of laminar flow from the surface of 
the sphere occurs with e = 50 ~ when d = 1.0 cm and with 0 = 65 ~ when d = 2.0 cm. The point 
of separation is shifted toward the line of motion with an increase in velocity in the conical- 
wake regime. The minimum angle of separation 8 = 24 ~ for d = 0.5 cm, 8 = 25 ~ for d = 1.0 cm, 
and 8 = 15 ~ for d = 2.0 cm. With a further increase in velocity, vorticity accumulates in 
the bottom part of the sphere and the separation point begins to shift toward the external 
diameter. Tihe maximum value of the separation angle e = 80 ~ when d = 2 cm. The dependence 
of the angle of separation on the Reynolds number can be approximated as 8 m b log Re, where 
b = -0.9 at d = 1 cm (25 < Re < 65) and d = 2.0 cm (35 < Re < 180); b = 0.9 at d = 1.0 cm 
(65 < Re < 2100) and d = 2.0 cm (180 < Re < 800). When Re > 200 with d = 1 cm and Re > 600 
with d = 2.0 cm, the separation angle slowly changes with an increase in velocity and Re. 
The dependence of the separation angle on the Froude number is similar in character. The 
minimum separation angle is achieved at Fr = 0.19 and 0.ii for d = 1.0 and 2.0 cm, respectively. 

Figure 6 shows the dependence of the frequency of shedding n of all types of vortices 
:investigated on the velocity of the sphere U 0. Here, the numbers 1 and 2 correspond to d = 
i and 2 cm, respectively. All of the points lie on one straight line in double-log coordin- 
ates. The slhedding frequency is proportional to the velocity of the body. Accordingly, the 
Strouhal number Sh in the range 102 < Re < 103 takes a value of 0.2 for the sphere with d = 
1.0 cm and 0.4 for d = 2.0 cm. In a uniform fluid, according to the measurements in [5], 
Sh is independent of the sphere diameter and increases from 0.15 to 0.5 with a change in Re 
from 400 to 1000. 
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MODEL OF THE PENETRATION OF AN UPPER UNIFORM LAYER 

INTO A STRATIFIED FLUID 

V. Yu. Lyapidevskii UDC 532.526;551.465 

We study an integral model of the penetration of a uniform layer of fluid under the ac- 
tion of a tangential stress applied to the surface. The conservation equations for mass, 
momentum, and energy are closed by the penetration law of the nonmoving fluid into the upper 
uniform layer. An important feature of our model is that the nonuniformity of the velocity 
field due to the presence of "free" vortices in the flow is taken into account. 

Two penetration regimes are identified: a subcritical regime, where the penetration 
of the fluid into the layer occurs because of externally induced turbulence of the uniform 
layer, and a supercritical regime in which turbulence at the surface is transported by large- 
scale vortices generated by a flow instability with a velocity shear. It is shown that for 
an initial bilayered density distribution, and also in the case of a continuous density dis- 
tribution following a power law, there exist singular solutions of the system of equations 
corresponding to the supercritical penetration regime, and these solutions determine the asymp- 
totic behavior at large times. These solutions are characterized by the constancy of the 
global Richardson number Riu, calculated with respect to the mean values of the buoyancy and 
velocity of the upper layer. Hence the hypothesis Riu = const used in several models [i] to 
close the momentum equation is correct asymptotically in the framework of our model. Inclu- 
sion of the lateral friction for flow in a channel of finite width destroys the asymptotic 
form of the penetration and the solution is transformed into the subcritical regime. Com- 
parison with experimental results in circular troughs shows that our model gives a satisfac- 
tory description of the supercritical penetration for a bilayer [2] and for a continuous ini- 
tial density distribution [3]. 

The process of mixing in the flow of a stably stratified fluid is a complex and important 
problem. Transport of momentum and heat from the surface into the bulk of the ocean deter- 
mines the formation and time behavior of the upper thermocline. The transport mechanism is 
related to the development of instabilities in the shear flow and to turbulent exchange be- 
tween layers of different densities. An adequate mathematical description of the formation 
and structure of the upper layer of the ocean is possible only with the use of turbulent models 
[4]. However, for a certain class of flows a simple integral model can be used which gives 
the time behavior of the average quantities, which completely characterize this class of flow. 

In experiments and in observations it is noted that a stress applied to the surface of 
a stratified fluid at rest leads to a well-mixed layer with a nearly constant velocity and 
density and the layer is separated from the unperturbed nonmoving fluid by a thin transition 
layer where there are large gradients. In an idealized formulation of the problem, one as- 
sumes that the layer is uniform and has density ~(t), and a horizontal component of the veloc- 
ity u(t) (the only component which is nonzero), and the small-scale motion extends to a depth 
h(t) with intensity q(t) (Fig. i, region I). Below the line y = -h(t) there is the nonmoving 
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