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Dirichlet problem for an annular disk 

By V. I. Fabrikant, Dept of Mechanical Engineering, 
Concordia University, Montreal, H3G 1M8, Canada 

Introduction 

It is impossible even to mention all the publications related to the Dirichlet 
problem for a fiat circular annulus. Their number is awesome. Tranter (1960) 
and Gubenko (1960) were among the first to consider the problem. One can 
find many references related to the mathematically equivalent contact problem 
in (Borodachev, 1976), other references related to the equivalent electrostatic 
problem can be found in Love (1976). Why is there any need for yet another 
paper on the subject? The main reason is that the majority of publications 
is devoted to the simplest flat centrally loaded annular punch problem. Though 
some results related to consideration of specific harmonics have been published 
(Williams, 1963; Cooke, 1963), no general solution to the problem has been 
attempted as yet. This kind of solution is now possible due to the new results 
in potential theory obtained by the author (Fabrikant, 1989). The problem 
is reduced to a set of two two-dimensional Fredholm integral equations with 
an elementary non-singular kernel which can be solved by iteration. This set 
can be easily uncoupled. The case of conducting circular annulus kept at 
constant potential and the problem of magnetic polarizability of such a disk 
are considered as examples. The governing integral equations are solved 
exactly in series involving the iterated kernels. Approximate formulae are 
derived for the case of a wide annulus. 

Theory 

It is convenient to reformulate the Dirichlet problem for a circular annulus 
as a mixed boundary value problem of potential theory for a half space z -> 0. 
We need to find a harmonic function V vanishing at infinity and satisfying 
the following conditions at z --0: 

V(o, ck, O) = v(~, ~p), for b < o < a, O <- c~ < 2n; 
(1) 

Oz O, for q < b  or ~ > a , O <  q~ <2~.  
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Here v is a known function. The approach proposed here is inspired by the 
elegant solution for the capacity of an annulus (Love, 1976) which is based 
on the method described in (Clement and Love, 1974) for solving axisym- 
metric problems. It looked very challenging to generalize the approach for 
non-axisymmetric case. Such a generalization has been found after several 
trials and errors, and it is presented here. The general approach is based on 
the recent results of the writer (Fabrikant, 1989). Let us introduce two 
harmonic functions 

v ,  (~, ~, z) - ;2 30 Xff ~0) de0 dq~o 

2 fO b ~/Q2--12(eo) {I1(~0)~ r e 
- ~ t~-~0 ~--t~-~o ) ~e ~t-~o~)j,~Qo, ~) d~o; 

V2(e, q~, z) = ~2 R~ e~ ~bo) deo dq~o 

= ~ t~-t~ ~ Et~-~od j~t~~ ~) ~o. 

(2) 

(3) 

Here fl and f2 are the as yet unknown functions, and the following notations 
were introduced: 

t,(x) = ~{v/(e + x) 2 + z 2 - # ( e -  x) 2 + z~}, 

/2(x) = �89 + x) 2 + z2 + x/(o - x) 2 + z2}, 

Ro = x /Q 2 + Q2 _ 2 ~ 0  c o s ( r  - r  + z 2. 

(4) 

In (Fabrikant, 1989) the LP-operator was introduced as follows: 

l f02~ ~e(k)f(e, q~) = ~ ~(k, ~ - Oo)f(e, ~o) d~o 

Io _- __1 klnt einC~ e - - i n r  dpo) dd?o 
2~z n= - ~  

= ~ kl"lf,,(e) einq~. 
7 l ~  - - o o  

(5) 

Here fn is the nth Fourier coefficient of the function f, and 

1 - k  2 
2(k, ~) = 1 - 2k cos ~k + k z" (6) 

One can easily verify that the potential in (2) vanishes on the plane z = 0 for 
> b, while the potential in (3) vanishes on the boundary for Q < a. These 

properties allow us to reformulate the problem as the Dirichlet problem for 
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& 
V2 (~, qS, 0) = 4 J~ 

with (8), we obtain 

a half space, with the potential prescribed all over the plane z = 0, namely, 

V(O, ~b, 0) = VI (Q, qS, 0), for 0 <- Q < b, 0 -< 4~ < 2~; 

V(Q, qS, 0) = v(Q, ~b), for b < Q < a, 0 -< q5 < 2re; (7) 

V(Q, ~b, 0 )=  V2(0, ~b, 0), for a < 0  < oo,0 < q5 <2re. 

Thus, the first boundary condition in (1) is satisfied. The unknown func- 
tions fl  and f2 are to be chosen in such a way that the second boundary 
condition in (1) is satisfied too. 

Formulae (2) and (3) on the plane z = 0 take the form 

_2 ['~ ze ( o_~f,(~o, 4) d~o 
Vt(~o, 4, 0) 

Jo \~o/ v~o ~-~ ' (8) 
2 f f  (eo~A(eo, 4)@o 

vdo, 4,, O) 
7"C aJ ~ 7 /  7 2 Z ~ 0  " 

On the other hand, the following expression has been obtained in (Fab- 
rikant, 1989) for the potential which is nonzero in the interval [0, b] and 
zero outside this interval: 

f: V,(O, q~, O) = 4 ~ x / ~ _  02 \-~-.] a, (0o, ~b). (9) 

Here a~ denotes the charge density distribution which is defined in the 
traditional way as (-1/2n)8V1/Sz.  Comparison of (7) and (9) yields the 
following relationship between o-~ and f l :  

fo-  A(O, ~b) = -2re v / - ~ _  0~ 

The inverse relationship is readily available, and is 

1 ~(, ( 1 ) d  Imin(0'b)OodOo 
a ' ( 0 ' ~ b ) -  rc2~ 0 ~00 oo ~s  dP). (11) 

By comparing in the same manner the expression (Fabrikant, 1989) 

I) dx Oo dOo s a2(Oo, ~b), (12) 

~ ~ e  g ~2(~o,~). 
The inverse to (13) takes the form 

a2(0, 4) = ;m _ Q2 f2(Oo, 4)). 

(13) 

(14) 
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We have presented the resultant field as a superposition of three fields, 
namely, the field due to potential equal to 111(0, r 0) on the interval 
0 -< Q -< b, and zero outside the interval; the field due to potential equal to 
v(Q, r in the interval b -< q -< a, and zero outside this interval; and the field 
due to potential equal to II2(0, r 0) on the interval a -< q < ~ ,  and zero 
outside the interval. The corresponding charge density distributions will be 
denoted as al,  a0, and a2 respectively. Now we can use the fact that the 
total charge a = a~ + a0 + a2 = 0 in the intervals Q-< b and Q > a. These 
conditions will give us two equations from which the as yet unknown 
functions fl and f :  can be found. By using the result established in 
(Fabrikant, 1989), we can write 

~o(Q, r - ~Q do v q  ~ -  x 2 ~ ( x 2 ) ~  

x ~ _ x  2 v(0o, r for 0 < b. (15) 

By using (11), (14), and (15) the following equation may be written for 
0 < b :  

l~e(~)afo' ~odQo ~e(Qo)f,(Qo,r Y(~)a ~ ~ ~ - ~ o  ~ -~Q 

xfj ~~~176 ~ (~o)S~(~o ' ~) 

-~2-S ~ , / ~ - x ~  

;: • ~ - ~ 2  ~e V(Qo, r = o. 

Application of an operator 

fo~/r 2 _ ~2 
to both sides of (16) yields 

1 r + 1  r 

~f0 Qd~ f~ ~ f l ( ,  r 

l fa ooaOo 
+ ~ r I t,,~---W~3/2 ~ 

db k~O - ~  I 

Qo dqo ~e 
(O o 2 - ~ 2) 3/~ 

o 

(16) 

(17) 
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We can interchange the order of integration in the second term of (17) and 
perform the integration with respect to 0- Then equation (17) for 
0 -< q --< b, 0 -< q~ < 2re will take the form 

f,(o, q~) + ~-5 Q,(O, eo, dp -dpo)f2(Oo, C~o)dOoddpo=g,(o, dp), (18) 

where 

f j  00 @o 
g,(o, ~,) = - ~  ( o ~ -  02--) 3/2 

Q~ (0, 00, cp - ~bo) 

~ V(Qo, q~), (19) 

= 29t ((Ooei(C-,o)_o--)R tan -I 

with 

R = x / ~  + 0~ -- 200o cos(q5 -- q~o)- 

Here the following integral was used 

fo r 0d0 
x / ~ -  02(y 2 - 02)3/2(1 - mo 2) 

(0o/0)-ei(4'-4'~ j R 2 '  
(20) 

(21) 

m r 

(my2 _ 1)3/2/1 _ mr 2 Lyx/ - f - -_mf i j  y(y2 _ r2)(my2 _ 1)" 

(22) 

Everywhere in this paper the branch with positive real part is taken when 
computing a square root of a complex number. The tan-1 of a complex 
number is computed according to the formulae given in Dwight (1961). 

The second equation is obtained from the condition that a = 0 for 
0 > a. We write from (Fabrikant, 1989) 

~o(O, q,) - ,~o ~e(e) ~ L , , / ~ -  0 ~ ~ 7 

f f  0o dQo • ~ ~(0o)V(0o, ~b), for 0 > a. (23) 

By using (11), (I4), and (23) the following equation can be obtained for 
0->a:  

1 d fo~ OodOo (1) 1 
rt20 ~(0)  ~ x/Og - 02 ~r f2(0o, q~) + ~-~ 

x (0 2 _ 0 02)3/2 
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1 ~ ( Q )  d "~ 

f f  qo ,:leo • ~ ~(Qo)V(Qo, 49) = o. 

Let us apply the operator 

~/~;~ r 2 

(24) 

to both sides of  (24). The result is 

1 r O do Qo dpo ~ f i  (0o, 49) ~ A ( ,  49) + ~ ~~_r ~, (Q:_ ~o~)~/~ 

+ ~-~= 6r ~ r x / T y ~ _  Qo2 ~(~0)V(0o, 49) = 0. (25) 

Again we can interchange the order of  integration in (25) and perform the 
integration with respect to Q, with the result 

f2(~, 49) +-~ Q2(Q, Oo, 49 -49o)f~(~o, 49o) dOod49o=g~(Q, 49). (26) 

Here e -> a, 0 < 49 < 2re, 

g2(o, 49) = O ! r~2 ..2a3/2-- V(Oo, 49), (27) 
d b  ~ - -  ~ 0 1  " 

Q2(Q, Co, 49 - 490) 
{ x/eQo ei(~-r176 [ e'(r - r176 -- (eo/e)l'/2~, qo (28) 

~ 2 ( ~  (eei(,-e~o)_eo)Rtan-'t_,emo--eF~---~o) ~ l t T 2 - q ~  / J R 2' 

and R is defined by (21). The following integral was used: 

f ~  ~~ 
~ / ~ -  r2(e 2-  y2)3/2(e2 - m) 

__ m [m _ y:]l/2 y2 
- ( m  - y 2 ) 3 / ~ . , , / r 2  - m t a n - '  L } - ~  - m J  - @2 _ y2)( m _ y2). (29) 

We note that Ql(q, Qo, 49 - 490) = Q:(Qo, q, 49 - 490)- This circumstance will 
allow us to decouple the equations by introduction of new variables. 
Indeed, substituting in (18) t x / ~  instead of q and x /~ /x  instead of ~o 
yields 

F, (t, 49) + K(tx, 49 -- 49o)F2(x, 490) ,:Ix d49o = G, (t, r (30) 
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Here 0 < t < k, 0-< 49 < 2re, 

F, (t, 49) =/~( tx/ /~ ,  49), 

a, (t, 49) = g, ( t , f ~ ,  49), 

{, /<(xt, 49 - 49o) = ~ m ~ 

Dirichlet problem for an annular  disk 

F~(t, 49) = A ( , , / ~ / t ,  49)/t, k = , , /~/a; 

2 2 
R x t  

R~, = x /1  + x2t  2 - 2x t  c0s(49 -- 490), 7 = 
x f  xt e i(q3 - qbo) 

ei(O - ~o) _ x t"  

339 

(31) 

(32) 

(33) 

and Equation (26) can be transformed by substitution ~ = 
~o0 = xx/ -~  to exactly the same form as (30), namely, 

F2(t, (9) + K( tx ,  49 - 49o)F, (x, 490) dx  d49o = Gz(t,  49). (34) 

Here 0 < t <-k, 0 < 49 <2re, 

Gz(t, 49) = g2(x//--~/t)/t ,  (35) 

and all the remaining notations are given by (31)-(33). Equations (30) and 
(34) can be easily uncoupled by summation and subtraction 

;?fo F+ (t, 49) + K( tx ,  49 - 49o)F+ (x, 490) dx  d49o = G+ (t, 49), (36) 

;?;o F_ (t, 49) - K( tx ,  49 - 49o)F_ (x, 49o) dx  d49o = G _  (t, 49), (37) 

where 0 -<- t < k, 0 -< 49 < 2re, 

F+_=FI___F2, G_+=GI+G2.  (38) 

Thus the problem has been reduced to two independent integral equations 
(36) and (37) with elementary non-singular kernels which can be solved by 
iteration. Convergence of the iteration procedure is not guaranteed for k 
very close to unity which corresponds to the case of a very narrow annulus.  
Direct computation of the norm of the kernel in space L2 gave the result of 
0.41 for k = 0.9, and it was less than 0.8 for k = 0.95. It is then recom- 
mended to use an asymptotical solution for k > 0.95. We note that the 
arguments of the kernel x and t do not enter it independently but only as 
a product xt.  The following integral representation is useful for computa- 
tion of various integrals of the kernel: 

y r ,  ;o(yz, O) dz 
K ( y ,  t#) =~5~2 J0 x/1 - z ( 1  --y2z)3/2" (39) 
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We recall that 2 is defined by (6). Expression (39) shows that the kernel for 
each particular harmonic will also be an elementary function. For example, 
the kernels for the zero and first harmonic will be respectively 

2 xt Ko(xt) - (40) rc 1 - x 2 t  2 '  

K,(xt) 2 [ 1 1 (, + x q l  ---~ 1-x2t  2 2xt l n \ g - L - ~ ] J "  (41) 

Expression (40) is in agreement with the result of Clement and Love (1974). 
It is important to notice that various integral characteristics of interest can 
be expressed directly through the function f2 (or F2). For example, the total 
charge Q can be written as a limit 

Q = lim {ev2(e, 49, z)}. (42) 
Q--~ c~ 

Substitution of (3) in (42) leads to 

Q=---;_lr~,jol f2~ff ~ f2(Q, 49) ded49 = x/~rc'''" T fo ff2~. F2(x, 49) xdXd49" (43, 

The quantities proportional to magnetic polarizability can be found from 

[- 20V27 
zx = o--,~olim [~ - -~- j ,  (44) 

4~=0 

~V~ 
= l i m  Q 2 -  ~ . 

q~ = ~I2 

(45) 

Substitution of (3) in (44) and (45) yields respectively 

Zx = ~5 fi(e,  49) sin 49Q dQ d49 

=~sab f~;F2(x ,  49) sin49~Ed49, (46) 

2 fo ~ Zy = -2-5 " f2(e, 49) cos 49Q de d49 
rcJo . 

2 f?fo dx - ~2 ab F2(x, 49) cos 49 ~-5 d49. (47) 

Formulae (30)-(35), (43), and (46)-(47) are the main new results of this 
paper. 
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E x a m p l e s  

Conducting annular disk charged to a unit potential 

The governing integral equations in this case will take the form 

f0 F1 (t) + Ko(xt)Fz(x ) dx = G, (t), (48) 

F2(t) + f k  ~ Ko(xt)F, (x) dx = G2(t), (49) 

where K0 is defined by (40), F1, F2, Gl, and G2 are understood as zero 
harmonics of the relevant notations (31), (32), and (35). In this particular 
case 

t kt 
a,-  kagr.. + vq_k2t (5o) 

k 1 
G 2 - t x / ~ _ t  2 t N / / T _ k 2 t 2 .  (51) 

Equations (48) and (49) were solved by Love (1976). We present here a 
slightly different version though based on the same idea, as well as a simple 
approximate treatment of the problem. 

Assuming convergence of the iteration procedure, we can write the 
formal solution in the form 

o o  

F~ = ~ KZ"(G, - KoG2), (52) 
n = O  

F2 = ~, K2"(G2-KoG,) .  (53) 
n = 0  

Here K~' is understood as the ruth iteration of the kernel. The first iteration 
in (53) (n = 0) yields 

k 1 2 F(zl)(t) = - t 
t X / I - ~  - -  t 2 tx/1 -- k2t 2 rc 

X �9 

x/1 - -  k 2 x  2 

k 1 
+ o(t), 

t~/-k 2 -  t 2 t 

where the notation was introduced 

O(t) = --rot2 [sin_l(k2 ) 

x 2 dx 
1 - X2t 2 

(54) 

k ,2)1 ~ s i n -  \ ~  ~_ ~-5)5 " (55) 
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Now we need to consider the action of Ko 2 on the first iteration (54). 

4 ~  tsds  fo~[ ~ 1]  s x d x  
K2F(21)(t) = -~5 l - -  t2s 2 x X 2 X 1 -- S2X 2 + K~)O(t) 

= 2 k t f k  ~ s2Ns 2 

fo ~ (~ +ks h ,~s 
• In \ 1 - k s }  1 - t2s 2 + K~O(t) 

= -O( t )  - K2o(xt ) dx + K~O(t). (56) 
X 

Substitution of (56) in (53) shows that all the expressions containing O(t) 
will cancel out at each subsequent iteration. This allows us to write the exact 
solution in the form 

] jo rz(t) = __k-~_ 1 - .=1 K2"(xt)--'x (57) 

Since all iterated kernels are positive, the term in square brackets in (57) 
gives the upper bound for the solution. Substitution of (57) in (48) yields, 
after simplification, 

F,(t)  - x~ k ~ -  ~ fokK2.+ dx + ~(xt) - - .  (58) 
n = 0  X 

Capacitance of the annulus can be found by substitution of (57) in (43), 
with the result 

 /o f0 C = - 1 - k KZ"(xt) - -  . (59) 
7~ n = l  , X 

Taking into consideration that 

2 
Co = - a (60) 

7~ 

is the capacity of a circular disk of radius a, we can write the expression for 
the dimensionless capacity C* which is defined as the ratio 

C* =--=C 1 - k ~. KZ"(xt) ___dx dt (61) 
Co =i ~o x t 

The symmetry of x and t in (61) allows us to reduce the order of iterated 
kernel as follows: k 

c *  - -  1 - k Z=, K~(x0 dr. (62) 
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Yet another approximate solution for the dimensionless capacity C* can 
be found by a different method. Indeed, from (43) we have 

fo ~ dt C* = k F~(t) t "  (63) 

Multiplying both sides of (49) by k/t  and integrating with respect to t from 
0 to k, we obtain 

k In F'(x)&='fi-k4" (64) 

We can express F~ from (48) and substitute it into (64). The result is 

fo '~ dt 2k fi~ dx k F2(t) t rc 2 T(x)F2(x) x 

=_[ (l+k  l 
2 cos_l(k2 ) + � 8 9  (65) 
~z 

where 

fo '~ (1 + kt ~ t dt 
T(x) = x z In \ 1---L--~J 1 - x2t 2" (66) 

Now we can use the mean value theorem to obtain 

=_[ ) . C* n2 c o s _ , ( k 2 ) + � 8 9  1 - ~ - / T ( X )  (67) 

According to the mean value, theorem, we know about X only that it is 
located somewhere in the interval [0, k]. One needs to find an optimum 
value for X in order to make (67) useful. This exercise is beyond the scope 
of this paper. When X = 0, formula (67) coincides with the result of Smythe 
(1951) who obtained it from physical considerations. Since T(X) is non-neg- 
ative, the term in square brackets in (67) gives the lower bound. Note also 
that it is exact in two extreme cases, namely, k = 0 and k = 1. 

Magnetic polarizability of a circular annulus 

In this case we may assume, without loss of generality, that 

v(Q, qS) = v, ~ cos qS, (68) 

where vl is a constant. The governing integral equations will take the form 

F~ (t) KI (xt)F2 (x) dx = G, (t), (69) 

+ fo f 2 ( t  ) K! ( x t ) f  1 (x) dx  --- G2(t), (7O) 
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w h e r e  K 1 is defined by (41), F,, F2, and G1, G2 are understood as first 
harmonics of the relevant notations (31), (32), and (35). In this particular 
case 

1 - k2t 2 
X / / ~  2 k 2 - t  2 2 - k e t 2  1 

G2(t ) = 1 ) , 7 [ k 7 7 } 2  ,7i --~t~3" 

(71) 

(72) 

Equations (69) and (70) have not been considered before. We employ the 
same method as above. Assuming convergence of the iteration procedure, 
we can write the formal solution in the form 

El = ~ KZ"(G, -- K1G2), (73) n=0 
F 2 =  ~ K 2 " ( G 2 - K ,  G1). (74) n=0 

Here K~' is understood as the mth iteration of the kernel. The first iteration 
in (74) yields 

F~2')(t) = v, --77 | k .  k/gT--t2 

Here the notation was introduced 

O, ( 0  - - -  

21 + 01 (t). (75) 

2v, V#~ [2 sin-l(k2) t , / 1 - k  4" ['1 +kt'~ 
In ~ 1 _-i-Z--~) 

- 2 k 2 -  t2,_2/ZS-----~.2 sin" - l ( k x / C ~ - t 2 ) ]  
k ~ / k ~ -  t 2 \ , /1 - - - '~-~  

Now we need to compute 

f: f0 ~= V'~/-'~F 2k2z~'X24 kz ] KZF~2'~t= K,(ts) ds Kl (sx) -~U-lk_ ,~=-- - -x2  2 

Integration with respect to x in (77) yields 

= - vl X / ~  + 2 ~/1 -- k2s 2 K2F~e1~(t) x 

( l  + k s ~ ]  
x In \ 1 - ks]J  K1 (ts) 

One can easily verify that 

fo k ks 2 01 (t) 
, / 1 - k 2 s  2 (st) ds = - v ,  ` / G  

1 + k2s 2 
2k2s 

ds + K~O 1 (t). 

(76) 

dx + K 201 (t). 

(77) 

(78) 

(79) 
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Substitution of (79) in (78) gives 

2 
K~ F(21)(t) = -O~ (t) + -  v, x//-~ 

loCI1 1 q-k2s  2 ~1 + k s ) ~  x ~ 2 k 2 ~  In \ 1 - ks)[ K,(st) ds + K20, (t). 

By using the identity 

1 l+k2s  2 ( l + k s ' ] =  fo: dx 
k 2 k 2 ~  In \l_---Z~s) - ~ K1 (xs) - -  X 2 '  

we can further simplify (80), namely, 

(8O) 

(81) 

ds 
K~F~)(t) = - O, (t) - 2v, x / ~  K~(st) ~ + K20, (t). (82) 

Finally, substitution of (82) in (74) gives the solution 

F 2 ( t ) = v , x / ~  2 - 2  s (83) 
n = l  

Since iterated kernels are all positive, the first term in (83) gives the upper 
bound for F2. Substitution of (83) in (69) allows us to find 

F1 (1) ---- Vl x//-a-b k~VS-F +2 n=o s K~n+l(sl)-~" (84) 

Formulae (83) and (84) give the complete solution to the problem. We 
introduce the dimensionless magnetic polarizability 1:* as the ratio of 
magnetic polarizability of the annulus -ry to that of a circular disk of radius 
a To = 4v~a3/(3zO. Substitution of (83) in (47) yields, after integration, 

fo fo z* = 1 - 3k 3 K~n(st) s2t2 �9 (85) 
n = l  

Again, the symmetry of (85) allows us to reduce the order of the kernel 
iteration by writing 

s fo [fo ~* = 1 - 3k 3 KT(st) dt. (86) 
n = 1 s2J 

Since all iterated kernels are positive, truncation in (86) gives the upper 
bound for z*. A simple approximate formula for small k can be derived by 
integration of (75), with the result 

{ X/1 - k 4  1 5 + k  4 {1 +k2~1 ~ r* = 1 2 sin_l(k2 ) -t k 2 - - l n  (87) 
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Formula  (87) is exact in two extreme cases, namely, for k = 0 and for k = 1. 
The series expansion of  (87) gives 

"c* 1 2 ( _ ~  9k 14 233k'8'~ 
= - -~ + - - ~  + 2520 J + O(k22). (88) 

It is of interest to notice that all powers of k below 10 cancelled out as 
compared to the relevant expression for capacity where the series expansion 
starts with the sixth power of k. This means that r* will be not  far away 
from unity even for not so small k. For example, T* is greater than 0.98 for 
k = 0.8. Convergence of  the iteration procedure was investigated by com- 
puting the norm of  K1. It was found to be much less than 1 up to the ratio 
b/a = 0.9. Even for b/a = 0.999 the norm is equal to 0.6 which still assures 
a good convergence. 

Conclusion 

The new approach presented here was proven to be very effective in 
dealing with non-axisymmetric problems involving an annular disk. The 
main advantage of  the new method is in reduction of  the problem to a 
non-singular integral equation with an elementary kernel which can be 
solved by iteration. The method can be generalized for spherical and 
toroidal coordinates, so that similar problems for a spherical ring could be 
considered in general formulation. 
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Abstract 

A general formulation is given for the first time to the title problem. The method is based on the 
new results in potential theory obtained by the author earlier. The problem is reduced to a two-dimen- 
sional integral equation with an elementary non-singular kernel. Several specific examples are considered. 
Exact solution has been obtained in terms of the iterated kernel. 
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