
T H E  E F F E C T  O F  A N  I N T E R A C T I O N  O F  M A G N E T I C  F L U X  A N D  

S U P E R G R A N U L A T I O N  O N  T H E  D E C A Y  O F  M A G N E T I C  

P L A G E S  

C.J.  SCHRIJVER* 

Joint Institute for Laboratory Astrophysics, University of Colorado and National Institute of Standards and 
Technology, Boulder, CO 80309-0440, U.S.A. 

(Received 23 August, 1988; in revised form 3 February, 1989) 

Abstract. This paper studies how the properties of large-scale convection affect the decay of plages. The 
plage decay, caused by the random-walk dispersion of flux tubes, is suggested to be severely affected by 
differences between the mean size of cellular openings within and around plages. The smaller cell size within 
a plage largely explains the smaller diffusion coefficient within plages as compared to that of the surrounding 
regions. Moreover, the exchange of flux tubes between the inner regions of the plage and the surrounding 
network is suggested to be modified by this difference in cell size, and the concept of a partially transmitting 
plage periphery is introduced: this periphery preferentially turns back flux parcels that are moving out of 
the plage and preferentially lets through flux parcels that are moving into the plage, thus confining the flux 
tubes to within the plage. This semi-permeability of the plage periphery, together with the dependence of 
the diffusion coefficient on the flux-tube density, can explain the observed slow decay of plages (predicting 
a typical life time of about a month for a medium-sized plage), the existence of a well-defined plage periphery, 
and the observed characteristic mean magnetic flux density of about 100 G. One effect of the slowed decay 
of the plage by the semi-permeability of the plage periphery is the increase of the fraction of the magnetic 
flux that can cancel with flux of the opposite polarity along the neutral line to as much as 80 %, as compared 
to at most 50% in the case of non-uniform diffusion. This may explain why only a small fraction of the 
magnetic flux is observed to escape from the plage into the surrounding network. 

I.  Introduction 

The first descr ipt ion of  the supergranular  velocity field was given by Ha r t  (1954, 1956), 

soon followed by the statist ical  studies by Leighton e taL  (1962) and Simon and 

Leighton (1964). Singh and Bappu  (1981), Brune and WON (1982), and  KOveler (1983) 

es t imate  that  approximate ly  10 000 supergranules cover the solar  surface, cor responding  

to a typical  d iameter  of  approximate ly  28 000 kin. Lifetime est imates for supergranules  

range from about  20 hr  (S imon and Leighton, 1964; Rogers,  1970; Janssens ,  1970), up 

to about  40 hr (Smithson,  1973; W o r d e n  and Simon, 1976; Duval l  1980). M a n y  o f  the 

est imates of  lifetimes for supergranules are 'deformat ion  time scales ' ,  i.e., correla t ion 

t imes over which the feature used to trace the supergranule (e.g., the area  of  downdraf t ,  

or  the chromospher ic  or  magnet ic  network)  is d isplaced by its own character is t ic  

dimension.  The cell may  exist much longer as a feature t raceable  by eye. Mosher  (1977, 

p. 210), for instance,  notes  that  gradual  dis tor t ions o f  cells in the enhanced  ne twork  

a round  active regions can be followed over per iods  of  up to several days.  Wang ' s  (1988) 

s tudy of  velocity fields of  a small  number  of  supergranules indicates  life t imes in excess 
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of 50 hr. Network cells forming the enhanced network appear to live longer than cells 
in regions with a low flux tube density (Zwaan, 1978), perhaps as long as 3 days 
(Sheeley, 1969) or more (Livingston and Orrall, 1974). 

Evolutionary changes of supergranules, including their formation and disappearance, 
have been suggested to cause the random-walk dispersal of photospheric magnetic flux 
tubes (first proposed by Leighton, 1964). In this process, the flux - that has been 
transported to the areas of downflow immediately after surfacing in the photosphere - 
shifts so that it always remains at the cell boundaries. The dispersion of magnetic flux 
over the solar surface on a scale much larger than a typical plage can indeed be modelled 
accurately by a random-walk diffusion process, provided differential rotation and 
meridional flow are taken into account (e.g., Sheeley et aL, 1985). The decay of magnetic 
plages, however, appears to defy a description by a simple, uniform diffusion process. 
For one thing, a simple diffusion process should result in a rapid decay of the plage with 

- at best - a very vague transition between the magnetic plage and the surrounding 
network. In reality, however, the transition between the main body of the plage and the 
surrounding network is often well defined (see the example given in Figure l(a)), and 
occurs at a mean magnetic flux density of about 50 G when observed at -~ 1" resolution 
(e.g., Schrijver, 1987). The simple diffusion also fails to explain Schrijver's (1987) 
conclusion, based on the study of a sample of plages of different sizes and in different 
stages of evolution using Kitt Peak daily magnetograms (1" resolution), that the mean 
magnetic flux density within the periphery of a plage (defined by a 50 G contour) is 
100 + 20 G. This mean flux density should have been found to decrease with the age 
of the plage if the decay of active regions were a simple diffusion process characterized 
by a single, constant diffusion coefficient. 

This paper studies the consequences on the decay of plages of a proposed modified 
model for the diffusion of magnetic flux tubes in the solar photosphere: it addresses the 
effects that (1) the interaction of magnetic flux and supergranulation, and (2) flux 
transportation predominantly along supergranular boundaries could have on the decay 
of magnetic plages. 

Zwaan (1978) has suggested that the local flux-tube density determines the size of 
network cells: within dense plages there is no cell structure except for some isolated, 
relatively empty patches with diameters up to several thousand kilometers, while rings 
of supergranular sizes are found only in the outskirts of active regions where the 
magnetic flux density is relatively small. Hence, convective cells seem to appear wherever 
the local magnetic flux density is sufficiently small, while the cells are larger where the 
magnetic flux density is smaller. An autocorrelation analysis by Foing, Bonnet, and 
Bruner (1986) of observations made with the Transition-Region Camera yields a charac- 
teristic diameter for the active-region 'network' of - 14 000 km. This is a factor of 2 
smaller than the network in the quiet Sun. Simon et aL (1988) analyze observations 
made with the Solar Optical Universal Polarimeter (SOUP, Title et al., 1986a), flown 
on Spacelab 2, in combination with a powerful technique to track the motions of 
granules (November et al., 1986). They infer (center-to-center) cell sizes in plages from 
the flow-divergence maps of typically 10 000 km to 15 000 km, suggesting that not just 
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Fig. 1. Magnetogram (a) and line-intensity map (b, eight levels of intensity in the 8688/k line) of active 
region No. 16850 (20 May, 1980), observed with 1" resolution at Kitt Peak National Observatory. The field 
of view covers 330" x 220", i.e., 240 000 x 160 000 kin. The bar in panel (a) shows a typical diameter of a 
supergranule (26000 km). Note the absence of large supergranular openings in the main body of  the 

magnetic plage. 
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the network pattern but the flow pattern itself is modified. They also suggest that the 
interaction of magnetic flux and the supergranular flow velocity affects the flow velocity 
in the centers of the cells as well as the cell size; they find average horizontal velocities 
for granules caught in the supergranular flow around 400 m s - 1 and 100 m s - 1 in quiet 
and magnetic Sun, respectively. 

A change in the convective properties should be reflected in the diffusion of magnetic 
flux. The diffusion constant in a random-walk process in given by D = ( r  2 ) / 4 A t ,  with 
r the observed displacement after a time interval At. Note that the expression for the 
diffusion coefficient can be approximated by D = 22/4z, with 2 a typical step length, and 
z the typical time step. The inferred diffusion constants associated with the random 
motions of the traceable magnetic features in quiet regions and in enhanced network 
typically range between 200 and 400 km 2 s - 1 (e.g., Mosher, 1977; DeVore et al., 1985). 
Schrijver and Martin (1989) study displacements of some 170 magnetic features over 
a period of five days. They show that the diffusion coefficient of magnetic features within 
plages is smaller by a factor of about 2 than in the surrounding regions: they find 
O p l a g  e ~ 120 KITI  2 S - 1 for the plage and O qu ie  t ----- 280 km 2 s - 1 for the quiet region. This 
difference is shown to be largely associated with the difference in the length scale and 
only slightly with a difference in velocities. 

If the diffusion properties do indeed depend on the local flux-tube density, the 
random-walk decay of a plage would be severely affected. Numerical simulations, as 
performed in this paper, can be used to determine precisely what the effects are. Before 
I proceed with these simulations, I note that there may be another important effect that 
should be incorporated in the study of plage decay. 

The SOUP observations show that the supergranular velocity field contains more 
structure than the simple model of a close-packed grid of convective cells allows for. 
Simon etal.  (1988) identify several continuous lanes of flow along supergranule 
boundaries, some as long as 50-100 Mm or 2-3 supergranule diameters. In a study of 
magnetograms and Dopplergrams, Wang (1988) finds that flux cancellation often occurs 
after the two opposite polarities have approached each other along the boundary of 
supergranules. A study by Martin, Livi and Wang (1985) of the decay of a particular 
active region suggests that the fragmentation around the periphery of the region took 
place at the boundaries of network cells, in agreement with the model discussed above. 
In the polarity-inversion zone between the main concentrations of flux, the fragmen- 
tation and ensuing migration is not confined to a network pattern, at least in the early 
stages of decay. In the late stages of decay, when large cells appeared in the middle of 
the region, the fragmentation at the polarity-inversion line appeared to be confined to 
specific paths that coincided with the boundaries of supergranules, similar to what was 
observed for the rest of the plage periphery. These observations suggest that motions 
along supergranular lanes contribute substantially to the random walk of magnetic 
features. If the flux tubes move along the supergranule boundaries with a mean velocity 
of 100 m s- 1 (Tarbell, 1987), a supergranule lifetime in excess of 50 hr allows the flux 
tubes to travel 18000 km without experiencing major displacements caused by the 
evolution of supergranules. The process of flux displacement along supergranular lanes 
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could therefore form a major contribution to the random walk of magnetic flux tubes. 
Section 2 argues that this mode of flux-tube displacement would affect the evolution of 
magnetic plages severely. In subsequent sections I develop a model for the random-walk 
decay of plages that allows a study of the effects of a variable diffusion coefficient and 
of flux transport along cell boundaries on the decay of plages. 

Throughout this paper I shall use the term 'flux-tube density' (N) as an equivalent for 
the mean magnetic flux density ( ( f B )  or, more accurately, (fp B I ) ,  the product of the 
photospheric area filling factor f for flux tubes and the intrinsic field strength B) as 
observed with sufficiently low resolution (say 1"-10"). The use of that term should 
avoid confusion with the intrinsic magnetic flux density (or field strength) within 
individual flux tubes (which is commonly suggested to be 1-2 kG, e.g., Howard and 
Stenflo, 1972; Stenflo, 1973). The term also implies that the entity that is being trans- 
ported by the (sub-)photospheric velocity field is in fact the flux tube. I do not wish to 
imply that all flux tubes are identical, although for the purpose of this paper the concept 
of a 'typical magnetic flux tube' may be used: the random-walk diffusion of flux tubes 
can be envisaged as the diffusion of otherwise identical 'atoms' through another medium. 
The term 'magnetic plage' is used for large-scale, coherent regions with a high flux-tube 
density and a well-defined periphery. The surrounding low-density regions are referred 
to as 'quiet' (even though the flux-tube density may be higher than in areas of minimal 
activity). 

2. A Model for the Decay of Plages 

2.1. T H E  S E M I - P E R M E A B L E  P L A G E  P E R I P H E R Y  

A possible feedback between the local flux tube density and the mean size of the 
convective cells would be very important in the decay of plages if the displacement of 
flux tubes (or small bundles of flux tubes) is caused to a large extent by motions along 
cell boundaries. This can be illustrated by tracing the path of a bundle of flux tubes 
originally located within the plage in the idealized grid of rectangular cells sketched in 
Figure 2. After a certain amount of time this bundle ('A' in Figure 2) reaches the 
periphery of the plage. In order to escape from the plage, the flux tubes must move along 
the periphery to find an appropriate exit in the form of a supergranular lane leading away 
from the plage into the 'quiet' region, because they cannot move against the opposing 
flow of the supergranulation. Since the cells within the plage are smaller than in the quiet 
region, the probability to encounter a path leading back into the plage is larger than the 
probability to find a path leading out of the plage. Consequently, if the flux is 
predominantly transported by flow along supergranular boundaries, the periphery of the 
active region acts as a semi-permeable 'membrane' that preferentially turns back parcels 
trying to escape from the plage. A similar argument shows that the plage periphery 
preferentially transmits parcels moving into the plage (see the path of flux parcel 'B' in 
Figure 2). The paths along which bundles move into or out of the magnetic plage 
possibly alternate along the periphery; this does not affect the calculation of the proba- 
bilities of escape or capture. 
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The above model assumes that flux transport occurs predominantly along super- 

granule boundaries both in the magnetic plage and in the quiet Sun. This assumption 

can be relaxed: it is sufficient to assume that the flux escaping the plage travels along 

supergranule boundaries (as suggested by Martin, Livi, and Wang, 1985, see Section 1) 

~176 

"Quiet" 

B ,  

A~ 

fc - dq 
, dp +dq 

"Plage" 

rf e = dp 
dp +~dq 

Fig. 2. Idealized rectangular grid of'convective cells'. The typical size d of the velocity cells is suggested 
to be determined by the flux-tube density N: dp at N > N c , and dq at N < N c. The flux tubes (or small bundles 
of flux tubes) labelled A and B outline possible paths of flux tubes that escape through or are captured by 
the plage periphery, respectively. The escape probability fe and the capture probability fc (see Section 2.1) 
are determined by the size of the velocity cells. Note that in reality a spectrum of cell sizes is observed both 

in quiet regions and in plages. 

into the quiet region, while the transport within the plage may be due to random 

displacements with a time scale much smaller than the life time of a supergranule in a 
quiet region. In this case the probability of escape,fe, through the plage periphery should 
be computed as the ratio of the width of the supergranular lane to the supergranule 

diameter (while the probability of capture of a flux tube into the plage iSfc - 1), which 
basically gives the fractional width of the 'slots' through which the flux tubes may escape. 
With this relaxed assumption, the model does not necessarily require a change in the 
convective velocity field within a plage, but assumes only that the transport properties of 
the flux tubes depend on the flux-tube density (see Section 5), as required by the 
observed dependence of the diffusion coefficient on the flux-tube density (see Section 1). 
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2.2. A N U M E R I C A L  M O D E L  F O R  T H E  D E C A Y  O F  M A G N E T I C  P L A G E S  

The analytical study of the decay of a plage with a semi-permeable periphery and 
density-dependent diffusion properties is very complicated so that instead a numerical 
simulation was made. First the evolution is modelled of a circular, monopolar 'plage' 
with a radius of 38 000 kin, typical of an average-sized plage. Because of the symmetry 
of the problem, only the first quadrant of the plane is included in the simulation, with 
flux tubes reflecting against the horizontal and vertical boundaries at y = 0 and x = 0. 
The first quadrant of the plage initially contains over 5300 homogeneously distributed 
'flux tubes' (a mean magnetic flux density of 120 G and an intrinsic field strength of 
1500 G in the tubes implies a mean flux-tube diameter of 150 km, and a total flux of 
about 6 x 102~ Mx). Another 4700 flux tubes of the same polarity are distributed 
homogeneously over the area of the quadrant outside the plage, within a radius four 
times that of the initial plage (with an equivalent mean flux density of 7 G). 

In each time step (equivalent to 24 hr) each of the flux tubes is moved in a random 
direction, with a specified step length 2 (the mean free path length) and velocity v. The 
'grid-structure' of cells is thus ignored, but this structure only affects the transition of 
flux across the plage periphery. In order to simulate these transition effects at the 
periphery, transition probabilitiesfe andfc are introduced. Although the model discussed 
in Section 2.1 links the ratio of cell sizes in plage and quiet Sun with the probability to 
move through the periphery (and thatf~ = 1 - f~, see Figure 2), the values Offe andfc 
can be varied independently in the computer code so that the effects of density-depen- 
dent diffusion and the effects of a 'semi-permeable' periphery can be studied separately. 

The well-defined transition between plage and quiet Sun suggests that the change in 
the characteristic size of supergranular convection occurs suddenly, at some critical flux 
tube density Arc. Hence, the velocities (v) and step lengths (2) are assumed to change 
in a step-wise fashion at a specified critical flux-tube density Arc. Additional random steps 
are made if the available time interval is not fully used after travelling the previous free 
path length. This ensures that the mean free path length is always completely covered. 
If more than the available time step of 24 hr is used by covering the (last) mean free path 
length, the excess time is subtracted from the next time step. 

After each time step the flux-tube density N(r) is determined as a function of distance 
r from the origin by integration over concentric circular segments of 90 ~ Azimuthal fine 
structure is thus disregarded. The largest radius, RN~, at which the flux-tube density 
drops below the critical value N~ is taken as the periphery of the plage. Thus, small 
regions within the plage may have a density below the critical density, which is usually 
caused by statistically allowed fluctuations. On statistical grounds, the largest density 
fluctuations are expected near the origin where the number of flux tubes that determines 
the flux tube density is rather small owing to the small area of the concentric circular 
segments used to determine the density profile. Note that the model allows such 
low-density areas to exist within the plage, as long as their scale is smaller than, say, 
an unperturbed supergranule. The circular shape of the plage periphery at r = RNc 
prescribes a cylindrically symmetric evolution. 
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If a step would take a flux tube across the periphery of the plage at Ruc, it is given 
a certain transition probability to cross the periphery: it has a probabilityfe to escape 
from the plage into the quiet region, and a probabilityfc to be captured from the quiet 
region into the plage (compare Figure 2). If the flux tube crosses the periphery, the 
direction of motion is maintained, but the velocity and step length are adjusted at the 
periphery to the values specified for the relevant region. If the flux tube does not cross 
the periphery, it bounces back along its original path while completing the remaining part 
of the step. 

Simulations of the evolution of a bipolar plage are also made. The introduction of the 
second polarity breaks the cylindrical symmetry, so that the flux-tube density has to be 
determined more or less locally. The computer code was revised to determine the 
flux-tube density N(r, c~) in segments of A~ = 15 ~ as a function of distance r from the 
origin. The plage is assumed to consist of two identical halves: one polarity occupies 
the space at x > 0, the opposite polarity the space at x < 0. Again only the first quadrant 
is simulated, but the reflection at x = 0 is modified: if a parcel reaches x = 0 it is 
assumed to cancel with a flux parcel of opposite polarity. In reality not all flows between 
convective cells may direct flux tubes towards the neutral line, while also other factors 
may make it harder for a flux parcel to actually reach a flux parcel of opposite polarity 
at the neutral line. In order to study the results of such effects on plage evolution a 
'cancellation probability' fd  is introduced that measures the fraction of flux tubes that 
meets a tube of opposite polarity and cancels upon reaching x = O. A fraction 1 - fd  
of the tubes bounces off the 'polarity-inversion line' back into the first quadrant. 

The cancellation of flux tubes reduces the flux-tube density near the 'polarity- 
inversion line' drastically, which would result in a switching to the diffusion properties 
of quiet regions, but ordinary supergranulation should not develop there because of the 
lack of space where N < N~. In reality, supergranulation is not observed around the 
polarity-inversion line unless the regions of different polarity are widely separated. 
Therefore, the distance RNc(q~ ) of the periphery to the origin is taken to be constant for 
4~ > 45 ~ regardless of the actual flux-tube density for q5 > 60 ~ . 

3. The Random-Walk Decay of a Unipolar Region 

If the velocity and step length are chosen independent of the magnetic flux density 
(Vquie t = Vp~,g~ and 2p~ag~ = )-quiet) and the transition probabilies to cross the plage 
periphery equal unity (fc = fe = 1), the situation is a simple two-dimensional diffusion 
problem. Its characteristic properties (Figure 3) are a rapid smoothing of the initial 
discontinuous change in density at the plage periphery, and a rapidly decreasing flux-tube 
density in the original plage area. The unipolar plage (defined as the coherent body of 
flux with a local flux density above 80 G) has a life time of about 10 days (Figure 4(a), 
curve 1). Note that the life time would be even shorter for a bipolar plage with internal 
cancellation of magnetic flux. 

If the random-walk properties are independent of the flux-tube density but an escape 
probabilityfe through a periphery (defined by the contour at N = Arc equivalent to 80 G) 
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Fig. 3. Simulated evolution of a monopolar plage (see Section 2.1), in the case of uniform diffusion. The 
fractional flux loss as a function of time is shown in Figure 4(a), curve 1. 

is specified suff• smaller than 0.5 (with fc = 1 - s  a steep density gradient is 
maintained at the periphery (Figure 5). The mean flux-tube density within the plage 
decreases only slowly, and the flux density profile can be almost independent of radius 
if the escape probability is small enough. Even with a density-independent diffusion 
coefficient, the introduction of a semi-permeable plage periphery drastically increases 
the lifetime of the monopolar plage: Figure 4(a) (curve 3) shows that only some 50~o 
of the flux is lost after four weeks with diffusion properties typical of a solar quiet region. 

If the diffusion coefficient in the high-density plage is much smaller than in the 
low-density surroundings (in the simulation: ~)quiet "~ Vplage a n d  '~plage "~ ~quiet), a steep 
density gradient can be maintained at the periphery of the plage even iff~ = fc = 1. In 
this situation the density profile within the plage can be virtually independent of radius, 
but the mean flux-tube density does decrease rather rapidly with time (Figure 6) (an 
analytical solution to a similar problem is discussed by Crank, 1986). The existence 
of a steep gradient appears to be related to the rapidity with which flux tubes can be 
moved away from the plage periphery in the quiet region: if the removal is slow, the 
density change at the periphery is kept smaller, resulting in a lower net loss of flux from 
the plage per unit time. For typical solar diffusion properties, the monopolar plage looses 
all its flux in about a month (Figure 4(a), curve 2). 

If the plage diffusion coefficient is much smaller than the diffusion coefficient in its 
surroundings, and the escape probability f~ through the periphery is much less than 
unity (with fc = 1 -f~), an abrupt transition in flux-tube density is maintained at the 
periphery of the plage, the mean flux-tube density within the plage decreases only slowly, 
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Fig. 4. Fractional flux loss from the plage as a function of time. The flux loss is measured by the number 
of flux tubes that have crossed a contour at a flux-tube density Arc equivalent to the critical flux density 
( f B ) c  -~ 80 G. (a) shows losses for the simulated evolution of a monopolar plage: (1) uniform diffusion 
(parameters given in Figure 3), (2)non-uniform diffusion (Figure 6), (3)uniform diffusion, but with a 
semi-permeable periphery (Figure 5), (4) non-uniform diffusion and semi-permeable periphery (Figure 7). 
(b) shows the flux losses for the evolution of a two-polarity plage, with non-uniform diffusion but without 
a semi-permeable periphery: (1) no flux cancellation (same as curve 2 in (a)), (2) cancellation probability 

f a  = 0.5 (see Section 2.2), (3)fa  = 1.0 (remaining parameters as in Figure 6). (c) shows flux losses in the case 
of the evolution of a two-polarity plage with non-uniform diffusion and a semipermeable periphery 
(parameters as in Figure 7): (1) no flux cancellation at the polarity-inversion line (same as curve 4 in panel 
(a)), (2)fd = 0.5 (cf. Figure 8(a)), (3)fa  = 1.0 (cf. Figure 8(b)). In (d) curves 1 and 3 repeat the total flux 
losses in situations 2 and 3 in (c), and separately shown is the loss associated with cancellation at the 

polarity-inversion line at x = 0 (curves 2 and 4 for cancellation probabilities 0.5 and 1.0, respectively). 

and the plage density profile is virtually independent  o f  the distance f rom the 
origin (i.e., independent  of  the proximity to the flux leak at the periphery). For  

typical solar conditions ()'plage = 4000 km, 2quiet = 12000 kin, Vpiage = 100 m s -  1, and 
Vquiet = 140 m s -  1) the plage life t ime depends strongly on the escape probabil i tyfe.  A 
mean  plage flux density of  about  100 G is maintained if N c is equivalent to ~-, 80 G. I f  
f e  = 1, the plage looses all of  its flux in a month,  while a t f e  = 0.25 the plage still has 70~o 
of  its initial flux after that  time (Figure 4(a), curve 4). 
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Fig. 5. Simulated evolution of a monopolar plage with uniform diffusion, but surrounded by a semi- 
permeable periphery (see Section 2.1). The critical flux density at which the diffusion properties change 
discontinuously is <fB > c = 80 G. The numbers at the top of the panel show the diffusion properties above 
and below the critical density (values at left and right, respectively), and the escape probabilityfe (left) and 
capture probability fc (right). The fractional flux loss as a function of time is shown in Figure 4(a), 

curve 3. 
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Same as Figure 5, but for non-uniform diffusion and a completely transmitting periphery 
(fe =fc = 1). The fractional flux loss as a function of time is shown in Figure 4(a), curve 2. 
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Fig. 7. Same as Figure 5, but including a semi-permeable periphery. The fractional flux loss as a function 
of time is shown in Figure 4(a), curve 4. 

4. The Evolution of a Bipolar Magnetic Plage 

The simulated evolution of a bipolar plage is shown in Figure 8(a) for a cancellation 
probability at the polarity-inversion line offal = 0.5 and in Figure 8(b) for complete 
cancellation (fd = 1.). Despite the fact that a strong sink now occurs within the plage, 
the mean flux density of the plage remains at about 100 G while the periphery receeds 
towards the center of the plage. This is of course related to the fact that the flux density 
must remain just over the critical flux density of 80 G in order for the plage to survive: 
as soon as N drops below Arc the strong increase in the diffusion coefficient from Oplag e 

to  Oquie t would quickly erase the plage. 
Figure 4(c) shows that the flux loss in the plage is strongly increased by the cancel- 

lation at the polarity-inversion line: while the monopolar plage still has 703 of 
its original flux after a month, the bipolar plage has all but disappeared after this time. 
While the typical life time of a medium-sized bipolar plage with non-uniform diffusion 
and a semipermeable periphery is about one solar rotation (Figure 4(c), curves 2 and 
3), a bipolar plage with a fully transmitting periphery would completely disappear in less 
than two weeks (Figure 4(b), curves 2 and 3). 

The plage evolution is very sensitive to values of the cancellation probabilityfd < 0.5, 
while the flux loss atfd > 0.5 shows a much weaker dependence on the value offal: as 
fd  approaches unity the critical factor becomes the supply of flux from the body of the 
plage, rather than the cancellation probability. Figure 4(d) shows that at f d >  0.5/'~ 
approximately two thirds of the total flux initially contained in the plage is lost by internal 
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Fig. 8. Simulated evolution of a bipolar plage with flux cancellation at the polarity-inversion line. Opposite 
polarities occupy the space at x > 0 and x < 0. The contours are drawn at the critical flux density of  80 G 
at which the velocity v and the mean  free path length 2 change discontinuously: ~)plage = 100 m s -1 ,  
Vquie t = 140 m s - 1, 2piag e = 4000 km, 2q,ie t = 12000 km. The escape and capture probabilities a r e s  = 0.25, 

fc = 0.75, respectively. In the simulation the distance R~v~(q~) of  the periphery to the origin is taken to be 
constant  for ~ > 45 ~ (see Section 2.2), regardless of  the flux-tube density for q~ > 60 ~ (the region near x = 0 
enclosed by the diagonal lines); i.e., no ordinary supergranulation is allowed to develop within the plage near 
x = 0. Contours outline the plage after 0, 10, 20, and 30 days. Note that only the outer 80 G contours are 
drawn: the depletion of flux near the polarity-inversion line is not shown. The probability of  cancellation 

f~t at x = 0 is 0.5 in (a) and 1.0 in (b). The fractional flux loss as a function of time is shown in Figure 4(d) 
by curves 1 and 2, and the loss due to cancellation are given by curves 3 and 4. 

50.C 

cancellation, leaving only a third of the flux to escape into the surrounding quiet regions. 
In the case of non-uniform diffusion without the partial confinement caused by the 
semi-permeable periphery, more than half the flux would eventually escape into the 
surrounding quiet regions (not shown in Figure 4) within the plage life time of two weeks. 

5. Discussion and Conclusions 

Section 1 discusses evidence for the interaction of the magnetic field and the photo- 
Spheric velocity field: the mean size of cellular openings that are observed in magneto- 
grams of regions with a mean magnetic flux density above about 50 to 80 G (when 
observed at 1" or 2" resolution) which extend over a semi-coherent area larger than that 
of a few unperturbed supergranules, is a factor of two to three smaller than a typical 
supergranule in regions with a mean flux density below that critical value. This suggests 
a corresponding change in the size of the convective pattern, which has as yet been 
verified only by the flow-divergence maps of the brief sequence of SOUP observations. 
The change from one mean cell size to another associated with the change in flux-tube 
density appears to be rather abrupt (e.g., Figure l(a)). The critical flux-tube density N c 
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at which the change occurs probably corresponds to about 50 to 80 G, i.e., to a 
photospheric tilling factor of about 5 ~o. 

The typical mean flux density in plages is 100 G (Schrijver, 1987). With an intrinsic 
field strength of 1-2 kG inside flux tubes, this implies an area tilling factor in the 
photosphere between 5 and 10 ~ .  Such a large filling factor may affect the transportation 
of flux tubes by convective motions either because the convective motions themselves 
are affected, or because the convective flow looses its grip on the closely spaced flux 
tubes that resist being displaced. The resistance of magnetic flux tubes against displace- 
ments may be caused by an anchoring of flux tubes deep in the convection zone. 
Alternatively one may speculate that it is caused by the contiguous character of the 
upper-chromospheric magnetic field over the photospheric plage. Parker (1986) noted 
that flux tubes of the same polarity repel each other due to the expansion of their fields 
above the solar surface until the expanded fields of the flux fibrils crowd firmly against 
each other. Shuffling of footpoints by granular motions may still occur (a mechanism 
that has been suggested to cause the heating of the corona, e.g., Parker, 1979a, b), but 
the rigidity of flux tubes (caused by the curvature force or tension) may prevent them 
from being pushed much closer together than a tilling factor that corresponds to the 
equipartition field strength for the supergranular motions. The typical flux density of 
-~ 100 G of the upper-chromospheric field is somewhat larger than the equipartition field 
strength of 50 G for the unperturbed supergranular motion (Parker, 1963, 1974). Hence, 
the flux tubes may slip in the photospheric flow, resulting in a drag force which may react 
back on the convective flow. 

If the magnetic flux of a plage escapes into the surrounding network predominantly 
along the boundaries of convective cells (as discussed in Sections 1 and 2), the decay 
ofplages is severely affected by a difference in cell size: the plage periphery will function 
as a 'membrane', that preferentially turns back flux tubes trying to escape from the plage, 
and preferentially transmits flux tubes moving into theplage. Diffusion through a partially 
transmitting periphery maintains a steep density gradient at the periphery (because the 
flux-tube density on the low-density side is kept smaller and on the high-density side 
larger than in the case of a fully transmitting periphery by the action of the periphery), 
and an almost constant flux-tube density within the periphery. This agrees with the 
remarkable observed property that all plages appear to have an average flux density of 
_ 100 G. 

Two interdependent processes compete in the simulated decay of a monopolar plage 
in the presently proposed model: the flux leak at the periphery lowers the flux density 
everywhere in the plage, while the periphery 'retreats' toward the centre of the plage 
because of the "evaporation' of flux tubes into the quiet region. Whether the mean 
magnetic flux density in the plage can drop near the critical flux-tube density Arc before 
a large fraction of the flux tubes has 'evaporated' from the periphery depends on the 
transmission probability of the periphery and on the ratio of diffusion coefficients in the 
high and low flux-density regions. With typical observed values for cell size and step 
length, the mean flux density within the unipolar plage decreases only slowly. At some 
point in time the mean flux-tube density will drop below the critical value N c, and 



SUPERGRANULATION AND THE DECAY OF PLAGES 207 

supergranulation is predicted to occur suddenly everywhere within the remaining part 
of the plage. This may result in a rapid decay of an old plage into enhanced network 
after a relatively stable early life. 

The reflection of flux tubes internal to the plage and capture of external flux tubes by 
the plage periphery serves to contain the plage flux much longer than would be expected 
in a simple, uniform diffusion process. Consequently, flux in a bipolar plage has a 
relatively long time available to cancel against flux of the opposite polarity at the 
polarity-inversion line. This explains observations by Martin, Livi, and Wang (1985), 
who find that during the early stages of decay of a plage fragmentation and subsequent 
losses of flux seemed to happen more frequently in the polarity-inversion zone in the 
middle of the active region than within any equivalent area around the periphery of the 
region. The flux confinement and the correspondingly large flux cancellation along the 
polarity-inversion line also explains the observation by Harvey (1988) that at most 30~o 
of the flux that surfaces in plages escapes into the plage surroundings. The simulations 
yield a typical life time for a medium-sized bipolar region of about one solar rotation. 
Small magnetic plages with very few supergranular 'escape routes' suffer an even more 
effective confinement of magnetic flux, so that flux cancellation may be even more 
important in these small regions. 

Note that the model does not necessarily require a change in the convective velocity 
field within a plage, but requires only that the transport properties of the flux tubes depend 
on the flux-tube density. Perhaps the observed openings in plage magnetograms and 
spectroheliograms do not correspond to velocity cells (although SOUP observations 
suggest this to be the case, see Section 1) but merely to evacuations of flux from a small 
area of a cell that has little grip on the flux tubes permeating it. If alternatively the 
convective flow is itself affected by the presence of magnetic flux tubes, it is still not clear 
what actually happens: is the cell size of the supergranulation reduced, or is the 
supergranulation suppressed completely so that only the mesogranulation (November 
et al., 1981; Title et al., 1986a, b) is left to operate? This question, and the possibility 
of a slipping flow, can be studied by direct observations of the horizontal photospheric 
velocities. The study of time-sequences of high-resolution magnetograms (or spectro- 
heliograms at suitable wavelengths) can reveal how flux is transported within plages, and 
allows a direct study of the role of the periphery in the evolution of a plage. 

The currently proposed model explains some of the observed characteristics and the 
time scale of the decay of solar magnetic plages by making a few assumptions about 
the photospheric velocity field that appear to be supported by observations. The decay 
of plages may of course be linked to subphotospheric processes, but the present model 
suggests that no assumptions concerning such processes are required. Hence, the 
validity of the model can be verified by detailed observations of the photospheric super- 
and mesogranular velocity field. 
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