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Abstract. In this paper we present an investigation on the tidal evolution of a system of three bodies: 
the Earth, the Moon and the Sun. Equations are derived including dissipation in the planet caused by 
the tidal interaction between the planet and the satellite and between the planet and the sun. Dissipa- 
tion within the Moon is included as well. The set of differential equations obtained is valid as long as 
the solar disturbances dominate the perturbations on the satellite's motion due to the oblateness of 
the planet, namely aiR e greater than 15, and closer than that point equations derived in a preceding 
paper are used. 

The result shows the Moon was closer to the Earth in the past than now with an inclination to the 
ecliptic greater than today, whereas the obliquity was smaller. Toward the past, the inclination to the 
Earth's equator begins decreasing to 12 ~ for a/Re = 12 and suddenly grows. During the first stage the 
results are weakly dependant on the magnitude of the dissipation within the satellite, whereas the dis- 
tance of the closest approach and the prior history are strongly dependent on that dissipation. In par- 
ticular, the crossing of the Roche limit can be avoided. 

1. Introduction 

This paper is the third and the last of  a set of  papers devoted to the study of  the evolu- 

tion of  a planet-satellite system under the influence of  the tides. In the two previous 

papers, hereafter referred to as Paper I and Paper II, we discussed the tidal evolution of  

an isolated two body system, that means we disregarded the effects of  the solar distur- 

bances. It is well known that today the most important departures of  the orbit of  the 

Moon from the Kepler laws are caused by the gravitational action o f  the Sun. For our 

purpose we only retain the precession of  the node along the ecliptic and the nearly con- 

stant inclination of  the orbital plane of  the Moon to the ecliptic. The last property gives 

rise to a periodic variation in the inclination with respect to the Earth's equator. 

In the past the Moon was closer to the Earth than now and the solar disturbances 

weaker, whereas the effect of  the Earth's oblateness was larger. Thus there is a critical dis- 

tance ac obtained by equalling the two disturbances (Goldreich, 1966). With the current 

conditions ae is found equal to 10Re, where R e  is one Earth's radius. If allowance is made 

for the constancy of  the total angular momentum of  the Ear th-Moon system this value 

increases to 15Re because of  the fact that the rate of  rotation of  the Earth was greater in 

the past, as well as its flattening (Munk and McDonald, 1960). 

From a purely theoretical point o f  view it seems our results o f  Paper II are no longer 

valid in the Moon's case because we have neglected the solar gravity. However we have 

shown in this paper that the most outstanding changes in the lunar orbit have occurred 

at distances smaller than 15Re, inside the critical sphere. The problem lies in the knowl- 

edge of  the value of  the different parameters when the semi-major axis of  the Moon was 
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equal to 15Re. But the backward integration from the present state to the state with a 

semi-major axis of 15Re did not exhibit important changes in the inclination and in the 

eccentricity, which made our results on Paper II similar to those obtained by Goldreich 

(1966). Then the integration performed by neglecting the Sun's action was probably 

fairly good for the purposes of investigating closer to the Earth than 15Re. Nevertheless it 

was of interest to check this assumption by looking for new equations which would take 

the gravitational solar torque into account. 

In fact other advantages come from this new formulation. In the case of a study of an 

isolated two-body system there is no possibility for binding the orbital plane of the Moon 

and the Earth's equator to the ecliptic. Then in this case the best-suited reference plane is 

the plane normal to the total angular momentum of the system, which is inertial, insofar 

as the act of the Sun is ignored. Unfortunately such a plane is quite independent of the 

ecliptic. But by introducing the Sun we introduce the ecliptic as a reference plane which 

allows us to investigate the evolution of the obliquity resulting from the tidal forces 
among the three bodies. Second, since the Moon's orbit undergoes a steady precession on 

the ecliptic, a good manner to represent the orientation of that orbit will be to determine 

the value of its inclination to the ecliptic, the past value of which is of great interest for 

theories of the origin of the Moon. Third, the current solar torque exerted on the Earth 

contributes to the lengthening of the day by 20%, the remainder being due to the Moon. 

In the future the Moon's torque will decrease faster than the solar one, which will become 

relatively more important. Therefore a study of the recent past as well as the future his- 

tory of the Earth-Moon system requires a modelling of the forces including the three 

bodies. 

A preceding investigation similar to that presented here has been carried out by Gold- 

reich (1966). In this important paper the author presents a method for calculating the 

past history of the Earth-Moon system by considering the tidal interaction between the 

Earth and Moon as well as between Earth and Sun. But the method used to treat the pre- 

cessional equations prevents him taking the eccentricity of the Moon's orbit into con- 

sideration, and its result is only valid for a circular orbit. For this reason, Goldreich does 

not include dissipation within the Moon, since it influences the evolution only in case of 

elongated orbits. This assumption is true as far as the semi-major axis is concerned, but 

we shall see later in this paper that effects occur in the inclination of the Moon's orbit to 

the ecliptic on account of the dissipation in the Moon. In the work of McDonald (1964) 

the author allows for the eccentricity but solar tides are not included. The phase lag is 

introduced in a geometrical way which is quite irrealistic when the eccentricity becomes 

significant. Moreover, if the computation relating to the evolution of the inclination to 

the Equator is valid, the one concerning the obliquity is only an approximation, prin- 

cipally because the author assumes that the normal to the ecliptic and both the angular 

momentum of the Moon and the Earth are coplanar. 

It is useful to notice that the Sun modifies the set of equations given in Paper I1 in two 

ways. First, a n e w  tidal dissipation occurs within the Earth and variations in the total 
angular momentum of the Earth-Moon system are involved. Such an effect gets significant 
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from 50Re and increases with the Moon's semi-major axis. The gravitational effect of the 
Sun is quite different. The precession of the orbit of the Moon obliges us to introduce an 

intermediate time-scale between the orbital periods of the Sun and Moon and the time 
defined by the rate at which the dissipation changes the orbital parameters of the Moon. 

Consequently all equations must be averaged over a precessional period. As explained at 
the beginning of the introduction, the gravitational effect will be included from 15Re and 

the larger the semi-major axis, the more important is its influence. 
The present paper is divided in three sections. We recall the notations and equations 

obtained in Paper II in Section 2. Section 3 deals with the derivation of three new differ- 
ential equations: two for the orbital inclination of the Moon to the ecliptic and for the 

obliquity of the ecliptic, the third equation accounting for the variation of the length of 
day. A numerical integration is performed in the course of Section 4 and the results are 
discussed. 

2. Review of Equations Previously Obtained 

In Paper II we derived a set of differential equations to study the tidal evolution of a sys- 

tem composed of a planet and a satellite. These equations are obtained by assuming a 
time delay At between the moment when the planet feels the tidal force exerted by the 
satellite and the one when the planet is distorted in its equilibrium figure. The forces and 
torques which lead to the differential equations are worked out at the outset of Paper H, 
and here we only give their expressions for l -- 2, which will be useful in the second sec- 
tion of this paper: namely, 

,~ *2r~S 
= --  3k  ~c 'm nE At[2r(r 'v) + r2(r x ~ + v)], (1) FEM riO 

Gm*2R~ 
At[(r-  ~ ) r - -  r2ca + r x v]. (2) TEM = + 3k2 r-----g-- 

The meaning of the various parameters involved in Equations (1) and (2) will be given 

later. FEM and TEM are the force and torque experienced by the Moon and due to the dis- 
torted Earth. The torque acting on the Earth is exactly the opposite. In the case when the 
Sun is the tide raising object we must change m -->Ms and the orbital parameters into that 
of the Sun. 

The equations for the evolution of the semi-major axis and the eccentricity are un- 
changed when allowance is made for the solar disturbances and they are taken from the 
set S1 of Paper II: 

r n m A t  1 
= 6 x 4zr2k2M 

dt II p2 X 7 

[ 1 ( 31e2 25s 185e6 25est 
x (1 e2)lSl 2 1 +  + e4+ + 

- -  2 8 16 6 4  ] 

-t -- e2)6 1 + e 6 (3) 
n(1 2 8 ' 
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__ = 4Tr2k2 Mrnm At  1 
de 3 x p2 X 8 
dt # 

[ 1 ( 9 1 3 5  135eS+45e7 ] 
x - (1 e2) la/2 e +  e 3+  

-- 4 8 64 ] 

co cos/  1(_~_ 33e3+11eSl l  
+ - _ e2)S e + . (4) n (1 4 16 ]] 

The third equation of the set S1 was concerned by the evolution of the orbital inclina- 

tion of the Moon to the plane normal to the angular momentum which was the plane of 

the precession. Now this plane is replaced by the ecliptic and we shall derive the corres- 
ponding equation in the next section. 

COMMENTS AND EXPLANATIONS 

We rapidly recall the meanings of the various parameters embodied in Equations (1)-(4). 

In this set only the second harmonic of the tidal potential is retained because we intend 
to stop the integration at X = 10. 

The semi-major axis is represented by X = a/Re where Re means the Earth's radius. M 

and m are respectively the Earth's and the Moon's mass and the so-called reduced mass of 
the system /~ = Mrn/(M + rn). The Love number is k2 its value being taken equal to 0.3 

for the Earth, and At is the time delay. If  the major part of the secular acceleration of the 

Moon can be modelized by means of Equation (1) then the value of At is of the order of  

10mn. Indeed, the current evolution of the Earth-Moon system mainly takes place under 

the influence of the ocean tide. Then the previous value of At is overestimated for the 

solid tide. It is thought there was a smaller extent of  the shallow sea in the past so the 

contribution of the dissipation within the oceans, to the evolution of the Moon's orbit, 

was less important than now. The history of At remains unknown and prevents us from 

giving a scenario with a chronology. Then instead of the time as independant variable we 
shall choose the semi-major axis and we shall compute a relative chronology. 

P is the period of a light satellite orbiting the Earth at 1Re, the grazing satellite, and co 

means the rate of  rotation of the Earth, n the mean motion of the Moon, I the inclination 

of the Moon's orbit to the Earth's equator. In fact because of the intermediate time scale 

only the average value of cos (/) will be used in these equations. 

The dissipation within the satellite is taken into account by expressing the ratio of the 
effects of  the tide in the satellite and in the planet as explained in Paper II. Henceforth A 

will denote this ratio. 

3. Supplementary Equations of  Motion 

As we have noted it is better to use the inclination of the orbit of  the Moon with respect 
to the ecliptic than to the equator. In addition other variables are required to obtain a 
thorough description of the system: the orientation of the Earth's equator with respect to 
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the ecliptic will be given by the obliquity of  the ecliptic and the last unknown is the mag- 
nitude of  the total angular momentum. Therefore, three new differential equations are to 

be derived. 

3.1. EQUATION FOR THE INCLINATION OF THE ORBIT OF THE MOON ON THE ECLIPTIC 

In Paper II we derived an expression for W, the component of  the force, normal to the 

oscillating plane. For l = 2, its expression is given by 

m 2 ~ / a ~  
w = - o - ~ e ~  3~ l - j  cos(05 + v)sin~. (5) 

# a'\r] 

In this Equation the orbit is referred to the equator of  the planet, and the meaning of  

I, 05 + v is shown on Figure 1. 

ORBIT OF THE MOON 

f / I WM= ~*v 

XM= .~ v 

ECLIPTIC 

E OuATOR 

Fig. 1. Coordinate system used in this paper. 

The Gauss equation for the variation of  the inclination 7 of  an orbit referred to the 
ecliptic can be written as 

d7 1 
r cos (ca + v) W, 

dt  - na(1 -e2)  1/2 (6) 

where ~ + v is an argument measured from the node in the orbital plane (Figure 1). 

Because o f  the precession of  the node on the ecliptic. [ and 05 undergo a periodic 

variation with the same period and Equation (6) will be averaged over this precessional 

period. By introducing W in Equation (6), 

d7 _ m 2 ~ {~_16 
dt  G - - k 2 2 x t  R s 3 u .(l_e2),/~a8 W c o s ( ~ +  v +  WX) 

x cos ( ~  + v) sin I. 
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The average over one orbital period is carried out as in Paper II for deriving S1, by assum- 

ing ~ ,  I and WX are constant over such a period: i.e., 

~ s i n I [ c o s ( 2 ~ + v ) + W X ) + c o s W X  = 

(8) 
sin I 

- ~ [H(6,0) cos(WX)+H(6,2)cos(2~o+ WX)], 

where H(I,J) are functions of  the eccentricity defined in Paper II. 
In the spherical triangle VWX (Figure 1) the following relationships hold, 

cos /  = c o s e c o s ' ) , + s i n e s i n T c o s ~ ,  

c o s e - -  cos I  COST 
s in /cos  WX = , (9) 

sin 3' 

sin I sin WX = sin e sin ~2. 

The average value of the left-hand side of  these equations is 

(cos/)  = cosecosT ,  

( s in / cos  WX) = cose sin')', (lO) 

(s in /s in  WX) = O. 

The last system leads for the secular variation to 

d 7 341rZkz rnmT-.- At 1/2 
- - -  cose sin T X13/2 , (11) 

dt 2 ~v~/1 p2 na  

where nG = 2triP is the mean motion of  the grazing satellite. 

In order to include the effects of  the dissipation within the satellite we assume that the 

inclination of the equatorial plane of the satellite to the ecliptic is small, as is shown by 
Cassini's laws. By computing W as in Equation (5), but with the Earth as tide-raising 
object, and by adding the two contributions to the equation for 3' we obtain 

~ i m A t { #  ll/2[co A ] 1 H(6 ,0 )  
d.__~_7 = d t  34a'2k22 /~ ~ m ]  l~c~ + ~-~ sin'rx--~ (1 - e2) u2" 

(12) 
The term with A will become significant when the semi-major axis is small. 

Let us recall the expression of A given in Paper II, of  the form 

Equation (12) has been obtained by taking the ecliptic as the precessional plane. Such a 
choice was imposed by the fact that the solar disturbances overwhelm those due to the 
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Earth's oblateness. In fact it can be shown that Equation (12) remains valid for every pre- 
cessional plane provided that 3' and e mean the inclination of the lunar orbit and of the 

Earth's equator with respect to this precessional plane. This property will be used to 
extend the integration very close to the Earth. 

3.2. EQUATION FOR THE OBLIQUITY OF THE ECLIPTIC 

Rather than the obliquity of the ecliptic a better variable is the component of the rota- 

tional vector of the Earth along the normal to the ecliptic. 

The evolution of the angular momentum of the Earth is governed by the equation 

d 
~ t (Co)  = TME + TSE, (13) 

where TME and TSE are, respectively, the torques exerted on the Earth by the Moon and 
by the Sun. 

I f  E is the unit vector along the normal of the ecliptic, a scalar equation can be 
obtained 

d 
~ t ( C ~ ' E )  = TME'E + TsE'E.., (14) 

But the equation of evolution for the orbital angular momentum of the Moon, HM, can 
be written as 

d 
~tt(/~'HM) = - -  TME. 

A scalar equation is obtained by forming the dot-product of this equation with E - i.e., 

d 
~0JaC/M COS'~') = - - T M E ' E .  (15) 

As H M = (G(M + re)a(1 --e2)) x/2, Equation (15) is intimately related to Equations (3), 
(4) and (11). 

To get the right-hand side of Equation (15) we intend to make use of Equations (3), 

(4) and (11), rather than derive a supplementary one. But it must be pointed out that the 

torque TME in Equation (14) is only due to the dissipation within the Earth, the Moon 
being regarded as a point-like mass. Therefore all equations required must be taken by 
putting A = 0. That can be explained as follows: let us consider the dissipation within the 
Moon only, caused by a spherical Earth. The Earth exerts a force at the center of mass of 

the Moon and a torque. The Moon exerts an opposite force at the center of mass of the 
Earth but the resulting torque is null for a perfect Earth. Then we can conclude that the 

tidal dissipation within the Moon affects the orbital evolution of the Earth-Moon system 
but does not act on the Earth rotational vector. 

Since d(#HM-E)/dt can be computed with the help of (3), (4) and (11), we are only 
�9 terested now in expressing the part due to the action of the Sun on the Earth. 
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A straightforward transformation of Equation (2) leads to 

(16) 

= -- 3k2GM20ReAt  co cos e - -  no , 

where Me and R are the mass of the Sun and the semi-major axis of  the Earth's orbit 

around the Sun. 
Let us evaluate now the different parts of the Equation (15) we obtain 

d d H  M + d 
(/~HM "E) = /~ cos ~, ~ - -  gr im ~ (cos 3'). 

The equation of  evolution of  3' has previously been computed (Equation (11)) and an 

easy handling of Gauss's equation or a direct use of  the angular momentum theorem 

(Burns, 1976) leads us to expect that 

d 
~THM = a S,  (17) 

where S is the orthoradial component  of  the force given in Paper II. 

Finally, it remains to average the three different parts which contributes to the change 

of co cos e. 
In Equation (16), no periodic term appears if the Earth is assumed to orbit the Sun in 

a circle. 
Omitting the constant multiplicating term we can transform Equation (17) into 

[ r ]  (1 - e 2 ) m  [a]  8 co c o s / [ a l 6  ' 
a S cc a 6 n a 6 

l a i r ] s \  ( 1 - - e 2 )  1/2 c o c o s /  

\[7]/ x6 ~/(8,0) n ~ -  I-/(6,0). 

(18) 

By inserting (10), (11), (16), (18) in the right hand side of (14) we reach the final 

result after some algebraic transformations. Let us put U = (co~no) cos e; then 

dU _ __ 3 47r2 At 2 U - -  no _ 1 

at T < e  -Y [71 1~1 x-~  • 

x [(1 -- e2)mH(8 ,0)  -- UX a/2 cos 7/ / (6 ,  0)] cos 7 + 

1 rml = �9 2 ~66H(6 ' + ~ l ~ ]  Usln ")' 0)} . 

In this equation, the first term on the right-hand side is due to the action af  the ~nlnr 
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terms are due to the Moon tides. Currently, the solar effect is five times smaller than the 

lunar one. 

3 .3 .  EQUATION FOR THE EVOLUTION OF THE LENGTH OF THE DAY 

Equations (3), (4), and (19) constitute a set of  four equations with four variables which 

can be integrated. But this set of  variables does not  allow us to separate the evolution of  

the rate of  rotation of  the Earth from the evolution of  the obliquity of the ecliptic. That 

is an important drawback that we wish to solve by looking for an equation for the evolu- 

tion of  the length of  the day. 

At a first glance it seems that the best new variable is the total angular momentum of 

the Earth-Moon system because of its constancy if no allowance is made for the act of 

the Sun. Thus the effect of  the Sun on that parameter would be significant only in the 

future. However this choice has been proved to be ineffective, the rate of rotation of  the 

Earth being obtained in computing the difference between two quantities very large with 

respect to the result and in turn the obliquity of the ecliptic was determined badly. Con- 

sequently we retain the rate of  rotation as a well suited variable and we derive the corre- 

sponding differential equation. 

For that purpose we start from the Equation (13) 

d(C~)  
= TME + TSE . (13) 

dt 

By forming the dot-product of  this equation with 

1 d(Cco 2) 
-- TME" CO q- TSE" ea . (20) 

2 dt 

The analytical expression of  the right-hand side of (20) is obtained from (2) as: 

Re 
TME" ~ = 3Gm2k2At ~ [(r "~ )2 _ r2co2 + (r x v)~ I. (21) 

If  we refer the lunar orbit to the equator the following relations hold: 

(r ca) 2 = r2co 2 sin2I sin2(o5 + v), (22) 

(r x v)" ~ = //MOO cos/. 

We now insert these relationships in (21) and average over one orbital period, i.e., 

( T M E - r  = 3Gm2kaAt~6 
(23)  

x -- 6o2H(6,0) (1 + cos2/) +  -coH(8, O) cos I . 

This equation has been used in Paper II to investigate the effect of the lunar or solar 

torque on the Earth's rotation for various values of  the inclination and the eccentricity. 
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In (23) the parts depending on the inclination of the Moon's orbit to the Earth's equa- 
tor are to be averaged over one precessional period; i.e., 

(cos/) = cosecosT, 
(24) 

(C0S21) = COS 2 e COS2') ' + ~ Sin2e sin2') ,. 

By carrying out a similar calculation for the solar torque we obtain 

Re s [09z(1  + cos2e) 
(TsE 'o)  = 3GM~~ R g [-- 2 -1- /'/o09 COS 61 . (25) 

Some straightforward algebraic manipulations in Equations (20), (23), (24) and (25) lead 
to 

d { 09 ~ 2 4rr 2 m rn 
= Tk2 t -j x 

/ 3 m  1 [_ [(~_~)2 2 + sin27 + U2 3 cos27 -- i] + 
x [ - ~  H(6,0) 2 2 

)]3g(got2{Rel6[At_ _ (09)2__ _ U 2 n 1} 
+ ~ U  cos 3' H(8, 0 -2 m[M-] IR-] na + 2 ~ U ,(26) 

which is the desired result. Recall now the meaning of the different notations 

09 
U ~ - - c o s e ,  

nG C 

HM = [X(1--e2)] 1/2, MR~ 

In Equation (26) the part containing the Moon's mass as a factor proceeds from the Moon 
and the other from the Sun. The ratio of these two terms is expressed as 

M o o .  ~ 
Sun \M4 a ! 09 

This ratio means that today the Moon is slowing down the rate of rotation of the 
Earth five times more than the Sun does. But in the future, when the Moon is more 
distant from the Earth than now, the action of the Sun will increase. In fact, the action of 
the Moon drastically decreases because of its removal and the approach of the synchron- 
ous state when (09/n) cos/approaches 1. In conjunction with Equation (3) the last ratio 
allows us to obtain a useful relationship between the secular acceleration of the Moon and 
the lengthening of the day, of the form 

10969/09 = (0.92 + 1/4.8)h = 1.13h. 
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3.4. COMMENTS 

A qualitative discussion of the future evolution of the Moon's orbit is possible by assum- 

ing a small eccentricity as well as a small obliquity and inclination, With these simplifying 
hypotheses Equations (3) and (26) reduce to 

dX 1 [ ~ ]  
- -  = - - - -  1 -  ( 2 7 )  
dt X 7 ' 

l Xl 
In the last equation the mean motion of the Sun has been neglected with respect to that 

of the Earth. Today coin is of the order of 27 and decreases as the Moon recedes from the 
Earth toward the synchronous point. 

Before reaching this point the first part of the right-hand side of (28) will become 

smaller than the second: namely, the effects caused by the Sun will exceed those of the 
Moon to reduce the rate of rotation of the Earth. The closeness of coin to 1 prevents the 

orbit of the Moon to evolve during this stage. After a very long time the solar tide will 

have removed a part of the angular momentum of the Earth and coin will become smaller 

than 1, then the Moon will reverse its evolution and will start approaching the Earth 

definitively. Such a scenario has already been pointed out by Darwin (1880) and by Gold- 
reich. 

During the last stage co remains smaller than n and the first part of (28) again becomes 

greater than the second one. Then the month will be shorter than the day but both 
decrease as the Moon approaches the Earth. 

This qualitative result remains roughly unchanged if the equations are numerically 

integrated, except for the obliquity, which does not maintain a small value. The exact 
integration also indicates that the time scale is really prohibitive. In addition we can say 

that the extreme smallness of the torques in the vicinity of the reversing point makes the 
model questionable, residual torques being probably able to lock the Earth-Moon system 

in the synchronous state. 

4.  Integrat ion  o f  the  E q u a t i o n s  o f  M o t i o n  

4.1. OUTLINE 

The differential set is composed of Equations (3), (4), (12), (14) and (26). Equations (3) 

and (4) are to be modified as in Paper II to account for the dissipation within the Moon. 

The routine used is based upon an Adams-Moulton-Cowell method developed by N. 
Borderies and L. Castel at C.N.E.S. (1975). The values of functions H(I, J) are computed 
at each step by means of the recurrence relation derived in Paper II. The following 
starting values have been used in the various trials: 

x = 60, e = 0.055, "r = 5.145, U = 0.0538, eo/nG = 0.0587. 
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Several assumptions have been made for the value of  A and the curves are plot ted with 

the two extreme values, A = 0 and A = 20. 

As we have already pointed out  the time is not well suited as an independant  variable, 

due to our poor knowledge of  the rate of  dissipation, and also for numerical reasons. The 

equations previously derived are strongly dependent on the value of  the semi-major axis 

of the Moon. For  example the rate of  variation of  the eccentricity is proport ional  to 1/X 8 
and in the course of the integration X varies from 70 to values smaller than 10. Conse- 

quently if  we keep the time as an independant variable, the size of the time-step should 

be variable and the integration would be highly time-consuming. 

Equation (12) proves that the orbital inclination of the Moon to the ecliptic is always 

increasing backwards, in the time and, moreover, the equation dX/d% de/dT are slowly 

varying. Therefore T is a convenient parameter to replace the time and we actually inte- 

grate four equations. The time scale is determined step-by-step by computing dT/dt. 
We shall discuss the results in three stages: The past and distant past, the current state 

and the future. 

4.2. PAST AND DISTANT PAST 

The results of  several numerical integrations are displayed in Figures 2 -7  with the semi- 

major axis along the abscissa. The greatest influence of  the dissipation within the satellite 

I -  e _  i 
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I - -  
Z 
14J 
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x 
14.1 
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o . o l  - I  I I  / A:O 

~176176 I ! 

o.ooo,-i I/ 

0.0000 

Fig. 2. History of the Moon's eccentricity versus the semi-major axis. Arrows are pointing present. 
At X = 10 we used I = 11 ~ 8 ~ 6 ~ and 4 ~ to integrate toward the past. 
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History of  the inclination of  the Moon to the ecliptic versus the semi-major axis. 
Arrows are pointing to the present.  
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History o f  the obliquity of  the  ecliptic versus the  semi-major axis. Arrows are pointing 
to the present. 
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History of the inclination of the Moon to the equator of the Earth versus the semi-major axis 
in the distant past. Arrows axe pointing to the present. 
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Fig. 7. History of the length of the day. Arrows are pointing to the present. 

appears in the evolution of eccentricity as it was expected after the results of Paper II. 

But in spite of this influence eccentricity remains smaller than its current value in a region 

where X is greater than 10. In case of large dissipation within the Moon, the eccentricity 

is strongly increasing in the vicinity of the closest approach. Indeed Equations (3) and (4) 

are like those used in Paper II and the influence of the Sun is only felt by means of 

cos (/). The solutions given here and in Paper II do not show important differences in the 

behaviour of cos (I). Then the evolution of X and e computed in Paper II remains plenty 

valid. In particular the eccentricity tends to 1 in the very distant past. 

The past history of the Moon's inclination to the ecliptic, for A = 0 is very similar to 

the mean curve given by Goldreich, whereas the case A = 20 exhibits a larger increase for 

small distance. However in Equation (12) we have assumed the equator of the Moon 
joined with the ecliptic. If such assumption is left and the equator of the Moon kept on 

its orbit, the two curves in Figure 3 meet. At distances as close as 10Re the Earth's angular 
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momentum (rotational) is larger than that of the Moon (orbital) and the precessional 

motion of the Moon takes place on the equatorial plane of the Earth. So the inclination 

of the equator of the Moon to its orbit tends to 0, as well as the normal componant of 

the force resulting from the dissipation within the Moon. 
Consequently, the departure of the curve A = 20 from the curve A = 0 is overesti- 

mated in Figure 3 in the vicinity of X = 10. A similar conclusion can be drawn for the 

obliquity of the ecliptic and the inclination to the equator in Figures 4 and 5. 

At this stage it is of interest to view the evolutionary tracks inside the critical distance, 
namely for X ~< 15. Our purpose is to carry on the integration with the help of the differ- 

ential set developed in Paper II. There is no difficulty with X and e, but some problems 

arise with the various inclinations. 

Let us assume a satellite orbiting the Earth which is much lighter than the Moon in 

order to satisfy the inequality 

HE >~ HM,  

where HE and H M are the rotational and orbital angular momentum of the planet and of 

the satellite. For a semi-major axis greater than 20Re the ecliptic is the precessional plane 
and if X ~ lORe that is the Earth's equator. At intermediate distance the precession takes 

place along the Laplacian plane (Laplace, 1805), which lies between the equator and the 
ecliptic. As the satellite approaches the Earth the Laplacian plane leaves the ecliptic and 

evolves toward the equator by taking the orbital plane off. This last plane keeps a constant 
inclination to the Laplacian plane in the course of the change of precessional plane, 

except small variations caused by tidal forces normal to the orbital plane. 
This scenario does not apply to the Moon directly. The law of the conservation of the 

angular momentum can be written as follows for an equatorial and circular orbit 

H = H E + H M  = c ~ - - - - +  
r a n g  

The current value of H is 9.15 and was slightly larger in the past, because of the 

angular momentum removed by the Sun, namely H = 9.4. The equality of the angular 

momentum of the Earth and Moon is obtained for (a/R) 1/2 = 4.7 that is to say X = 22. 

Inside this distance the angular momentum of the Earth is larger than that of the Moon. 
At a distance greater than 20Re the Moon precesses on the ecliptic and keeps a 

constant mean inclination to this plane. But for semi-major axis of the order of 1 ORe the 

precessional plane is not the equator but a plane normal to the total angular momentum 

vector. In fact the Moon tends to keep also an invariable inclination to the equator but 

only the plane normal to the total angular momentum is nearly inertial because of the 
precession of the Earth's spin axis around the total angular momentum. 

Then during the transition which goes from X = 25 to X = 10 the precessional plane 
lies between the ecliptic and the plane normal to the ' total  angular momentum and 
gradually changes from the first plane into the second. So from 25Re the Moon does not 
keep a constant inclination neither to the ecliptic, nor to the equator as it can be seen i~  

the paper by Goldreich. A useful discussion of this point is made by Rubincam (1975) .  
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As we have noted Equation (12) remains valid to investigate the variation of the 

inclination to the precessional plane even during the transition period. Except for the 

variations given by Equation (12) the inclination of  the Moon's orbit to the precessional 

plane remains constant during the transition which allows us to know the value of  the 

inclination o f  the Earth's equator and of  the Moon's orbit to the plane normal to the 

total angular momentum as the semi-major axis reaches 1 ORe. Such a quantity is required 

to perform an integration of the set S1 which rules the evolution of  an isolated two-body 

system. 

At X =  10 the value 7 = 8  a n d I =  15 lead to i = 1 0  and J = 5  where i a n d J a r e ,  

respectively, the inclination of  the Moon's orbit and of  the Earth's equator to the 

invariable plane. From now on the ecliptic is theoretically lost. But since the angular 

momentum of the Earth is greater than that of the Moon, the inclination J is small and 

will become smaller as the Moon will approach the Earth. Therefore the angle between 

the normal to the ecliptic and the total angular momentum, namely the normal to the in- 

variable plane, is not very different from the obliquity of  the ecliptic, more precisely as 

long as the Earth bears the major part of  the angular momentum of the Earth-Moon sys- 

tem, its spin axis is nearly invariable and the obliquity of the ecliptic keeps an average 

value close to 12 ~ and oscillates between 8 ~ and 16 ~ because of the common precession 

of the Earth's spin axis and the Moon's angular momentum around the total angular 

momentum. 

On the other hand the orbit of  the Moon undergoes large variations in its orientation. 

Indeed the tidal torque acts strongly upon the small angular momentum of the Moon and 

causes it to change greatly. 

We have carried out numerical integration with two sets of starting values surrounding 

those previously given in order to account for the uncertainty in their determination. The 

results are very similar to those obtained in Paper II. As the Moon approaches the Earth 

the eccentricity of  its orbit increases to value larger than 0.9 and  its angular momentum 

keeps a constant magnitude. The results relating to the minimum distance and the inclina- 

tion to the Equator are greatly influenced by the ratio of the dissipation within the Moon 

and the Earth. By taking A = 0 the closest approach is found to be about 3Re and the 

asymptotic value of  the inclination I to the equator to be 100 ~ that means the Moon was 

on a retrograde orbit. In case of  important dissipation inside the Moon, A = 20, the main 

change occurs in the closest approach, which becomes 8Re, quite outside the Roche limit, 

whereas the inclination I remains smaller than 20 ~ and the orbit direct. Various additional 

runs have been made with different initial conditions and indicate that while the closest 

approach is only depending on A, the final value of I decreases with its initial value. For 

example with A = 0, 

/ init ial  = 17 ~ / f ina l  = 125 ~ 

Iinitial  = 13 ~ I f ina l  = 110 ~ 

Iinitial  = 10 ~ I f ina l  = 90 ~ . 

Such modifications occurs also with A = 20. 
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In every case the length of  day evolves in accordance with Figure 8 of  Paper II and 

greater is A ,  larger the length of  day in the distant past: 4 hours w i thA = 0 and 6 hours 

with A -- 20. Of course, in the very distant past when the eccentricity was close to 1 and 

the semi-major axis larger than IOR e our results are only indicative and a careful investi- 

gation of  the gravitational motion of  a highly eccentric satellite is needed before giving 

definitive conclusions. 

4.3. CURRENT STATE 

The immediate past and future are well represented by the values of  the various derivatives 

used in the differential equations. All quantities given in Table I are computed with A t  = 

10ran. In order to account for the observed secular acceleration of  the Moon's mean 

longitude. As explained in the introduct ion the true effect of  the bodily tides is weaker 

than that computed with A t = 10 mn. 

TABLE I 
Current variations of the lunar orbit. 

d/ de d(day), de -1) ~) da (cm Y-~) ~-,(deg y -1 ) - ~ -  ts y - ')  d.'u (deg y ~1) y ~-(deg y 
d--t at dt (aeg 

A = 0 3.9 1.4 • 10 -11 2.5 X I(Y s -- 1.3 • 10 -1~ 3.2 X 10 -9 3.2 X 10  -9 

A = 2 0  3.8 6.4• 10 -12 2.5• -s - -2.4X10 -1~ 3.2• -9 3.2X 10 -9 

4.4. FUTURE 

In addition to the scenario sketched at the end of  Section 3, we give numerical pre- 

cisions. The maximum distance of the Moon from the Earth is found to be 75Re, and 

10 l~ years are required to reach it. The length of  day at this stage is of the order of  15 

days and goes on growing up to 55 days to end decreasing very slowly after. In Paper I we 

have shown that  the equilibrium point  was distant 84Re from the Earth which seems to 

disagree with the result given here. In fact the synchronous point can be located at the 

distance where the total  angular momentum is incorporated in the orbital motion of the 

Moon. As the sun in continuously removing angular momentum from the system the 

theoretical maximum distance is continuously decreasing. 

The major improvement to the equatorial  scenario previously described concerns the 

inclinations. Both the obliquity and the inclination to the equator reach values as large as 

55 ~ while the inclination to the ecliptic remains moderate at 4.8 ~ Immediately after the 

Moon will have gone through the stat ionary point  the obliquity suddenly decreases 

toward 0 ~ Then the system evolves to a situation in which the orbital plane, the equator 

and the ecliptic are coplanar and orbit circular, the Moon approaching the Earth. 

5. Conclusions 

Once more the relative dissipation within the Moon with respect to the Earth has been 
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proved to be a critical parameter in the past history of  the Earth-Moon system. In the 

conclusion of  Paper I we intended to look for a mechanism allowing the inclination of the 

Moon to the proper plane of  the system to increase, in order to avoid an approach to the 

Earth closer than 2Re. Then we proposed to investigate the act of  the Sun and the in- 

fluence of  the eccentricity of  the Moon's orbit. In fact, neither the Sun nor an elliptical 

orbit lead to such a result. They particularly influence the history of  the inclination. But, 

on the other hand, moderate dissipation within the Moon is able to increase the distance 

of  the closest approach and to provide an answer to the question raised. In the opinion of  

the present author, this result constitutes the major achievement of the theory developed 

here. 

Besides, the dissipation within the Moon gives rise to the possibility for placing the 

birth or the capture of  the Moon in a direct orbit with a moderate inclination to the equa- 

tor and an eccentricity close to one. The integration of  the dynamical equations in the 

distant past gives a solution with a constant orbital angular momentum even in case of  

large inclination. This last property prevents the Earth from possessing an unrealistic 

initial angular-momentum density and allows an impediment for the capture theory to be 

cleared off. 

The time-scale problem is not yet solved and no progress has been made by our calcu- 

lations. However, it is nearly certain now that the observed secular acceleration is caused 

by tidal dissipation within the oceans and seas, the configuration of  which is greatly 

changing over a period as short as five million years. Hence, the solution of  the time-scale 

problem required the almost unattainable knowledge of  the locus of tidal dissipation in 

the past. 

Possible improvement that might be done in our calculations are of  two kinds. First, 

an analytical solution of  precessional equations where satellite and planet have an angular 

momentum of  the same magnitude would be welcome and would permit the uncertainties 

of  the computation during the transition period to be removed. Until now I did not 

succeed in obtaining such a solution. Second, our whole theory is based on the assump- 
tion of  a time delay At between the stress and strain of  Earth and Moon: that is to say, 

we have assumed a phase-lag proportional to the frequency. Such an assumption is very 

difficult to prove or disprove; the artificial satellites being quite insensitive to the lag and 

the current evolution of  the Moon to the frequency law of  the lag. In a paper now in pro- 

gress we shall attempt to show that the inclination of  Phobos could be used to discrimin- 

ate between the different models. 

Of course, a determination of  the time-delay of  the Moon will be of  great interest for 

a choice of  the most realistic one among all trajectories of  the phase space. 
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