
It is evident from the figure that with a sufficiently long time of action of the pulse 
O o To, ~, § i. With short times, the value of ~, is considerably greater than unity, i.e., the 

estimate obtained is not trivial, coincident with the critical force under static loading N e. 
Rather, it is significantly greater than this force, which makes it possible to obtain a sub- 
stantially higher permissible compressive force during shock loading than under static load- 
ing. Consequently, the structure can withstand larger loads than originally believed. A 
determination should be made of the boundaries of the parameters which, when approached, sig- 
nify that the results obtained here have become unreliable. 

At T, < 2-3, the results may prove unreliable due to failure to account for the finite 
rate of propagation of the compressive force in the rod. 

When Wo/so < i0, the results become unreliable due to representation (2.8) and the 
fact that the remaining part of the sum was ignored. On the other hand, with large values 
of Wo the results become unreliable because we examined a linear equation of rod bending. 
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METHODS OF SOLVING CONTACT THERMOELASTICITY PROBLEMS WITH ALLOWANCE 

FOR THE WEAR OF INTERACTING SURFACES 

V. M. Aleksandrov and E. V. Kovalenko UDC 539.375.6:539.377 

i. Assume that a heavy cylindrical stamp is pressed into a rough, elastic (G, ~) layer 
with a large thickness, h. A force P, which is constant in time, is applied with the eccen- 
tricity e for each unit length of the stamp. The stamp moves at a constant velocity V along 
its generatrix; it is assumed that its area of contact with the layer has the width 2a(ha -I >> 
I) and does not change in the course of time (see Fig. i). This involves wear of the layer 
surface, which is accompanied by heat release in the region of contact. We assume that the 
stamp itself is not subject to wear. Coulomb friction forces arise in the region of contact 

[1, 2], 
�9 y~ = (h + hT)q, (I. i) 

where kl and k2 are constants, T is the temperature in the region of contact, and q = q(x, t) 

is the contact pressure. 

The condition of contact for solids 1 and 2 is written as follows: 

vl + 92 + 93 = --[5(t) + a(t)x --i(z)] (Ix I ~ a), (1.2) 

where vl is the displacement of the elastic layer's upper boundary due to the crushing of 
roughnesses, v2 is the elastic deformation of the layer's surface, v3 is the displacement of 
the y = 0 boundary of the layer due to its wear, 5(t) + ~(t)x is the rigid displacement of 
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the stamp under the action of force P, and f(x) is the shape of the stamp's base~ 

We assume that the displacement v~ depends linearly [3] on the contact pressure q: 

v~ = - z g  ( 1 . 3 )  

where 7 is a constant which characterizes the degree of roughness of the solids in contact. 

The displacement v~ is defined by [4] 

t ~ ~ q ( ~ , t ) ( _ l n ] ~ _ x l t d ) d ~ , O  = G 
v2 -- a0 i -- v ~ (1.4) 

where d = in h + do; ~o = 0.527 for v = 0.3. 

Before we proceed to determine the displacement v~, we should note the following fact. 
We denote by A the work of the friction force Ty z along the sliding path of the stamp. It 
can obviously be represented in the following form: 

J : J 1 ~ Jz, J l  : n lA,  A2 : n2A, nl ~ n2 : t,  ( 1 . 5 )  

where A~ is the work of the friction force expended on wear of the layer surface, and A2 is 
the work of the friction force expended on heat release in the contact region. 

Considering the latter relationships and expression (i.i), we write the displacement v3 
in the following form [5]: 

v 3 - : - - n l V  !'m[T(x' ~)][~l + k 2 T ( x ' T ) ] q ( x ' ~ ) d T '  ( 1 . 6 )  

0 

where m is the coefficient of wear intensity, which is a function of the temperature. 

T h u s ,  t h e  i n t e g r a l  e q u a t i o n  f o r  d e t e r m i n i n g  t h e  c o n t a c t  p r e s s u r e  i n  c o r r e s p o n d e n c e  
with (1.2)-(1.4) and (1.6) is given by 

t 

Iq(x,t)+-.~-~ q(~, t ) (-- lnl~--x[+d)d~+nlV m[T(x,x)l[kl+ ( 1 . 7 )  

- - a  0 

+k2T(x,T)]q(x,~)dT=~(t)@a(t)x--/(x) ( I x l ~ a , O ~ t ~ @ <  ~). 

We assume here that the value of @ is sufficiently large, but such that G(@) + @(@)~ has 
the order of magnitude of displacement in linear elasticity theory. 

In solving thermal conductivity problems for solids 1 and 2, we shall assume that they 
are unbounded in the direction perpendicular to the contact plane. We neglect the term @T/~t, 
in the equation of thermal conductivity, since the wear process occurs relatively slowly in 
time. In this case, the thermal conductivity equations must be added to the integral equa- 
tion (1.7): 

ATi( ~, y, t) = O(i = l ,  2, A = O~/Sz~ ~ 82/8y~) 1 . 8 )  

for the boundary conditions 

~I~T~/~v  - -  ~ a r ~ / a u  = n ~ v ( h  + k2~)q (y = o, f~l < ~); ( 1 . 9 )  

r l  = T2 (y = 0, Ix I ~ a ) ;  ( 1 . 1 0 )  

(--l)iOTi/'Oy ~ • 0 (y : 0, Ix I > a, i = l, 2); 
( 1 . 1 1 )  

the gradients of T i vanish at infinity. Here Ti(x, y, t) is the temperature in the i-th solid, 
ei are the thermal conductivity coefficients, z i are the heat exchange coefficients, and B is 
the thermal equivalent of mechanical work. 

For closure in the statement of the problem, the conditions of quasiequilibrium of the 
stamp on the layer must be added to Eqs. (1.7)-(1.11): 

P= q(x, t) dx, Pe= xq(x, t) dx. ( 1 . 1 2 )  
- - a  - - a  

2. It should be noted that the above statement of the problem necessitates the solution 
of the nonlinear system (1.7)-(1.12). However, the problem can be simplified in the follow- 
ing manner. 
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Fig. 1 

We introduce the coefficient of thermal flux separation in the contact region by assum- 
ing that 

o71/oy = --aoT~/Ou (y = 0, Ix I ~< a). (2. i) 

The thermal conductivity problem (1.8)-(1.11) is then separated into two independent problems 
with the following boundary conditions for y = 0: 

al[i + a~(alct)-l]OTJOy = n,~V(k 1 ~ k~T1)q ( 2 , 2 )  
(Iz[ ~ < a), - -  OTdOy + • = 0 (N > a); 

--al~z[i + a2(o~la)-l]OT2/OY = n2~V(ki @ k.,T2)q ( 2 . 3 )  
(M ~< a), aT~lau + • = 0 (M > a), 

where  T i ( i  = 1, 2) v a n i s h  a t  i n f i n i t y .  

A f t e r  p r o b l e m s  ( 1 . 8 ) ,  ( 2 . 2 ) ,  and ( 2 . 3 )  have  been  s o l v e d ,  t h e  c o e f f i c i e n t  of  t h e r m a l  f l u x  
separation a must be found from the boundary condition (I,i0), written in integral form. 

TI=T2' Ti(t)= ~--a i T~(x,O,t) dx. (2.4) 
- - a  

For the sake of simplicity, we furthermore assume that, instead of q(x, t), its mean 

value ~(t) -: ~ = P(2a) -I appears in Eqs. (2.2) and (2.3). We then note that the functions 
Ti, defined in accordance with (1.8), (2.2), and (2.3), and, thus, also the Ti functions 
(2.4), no longer depend on the time. 

Using the integral Fourier transform with respect to the longitudinal coordinate x, we 
reduce problems (1.8), (2.2), and (2.3) to the solution of the integral equations 

Pi(X)@'-~ "- Pi(~)d~ O u ~  i d~--~ (2.5) 
--05 0 

([zl < a, l = t ,  2). 

Here, Pi(X) are related to Ti(x, y) for y = 0 by the expression 

7~(z, O ) -  t eosu• du, ( 2 . 6 )  
- -  . 7 "  P~ @)d~ u + i  

- - a  0 

w h i l e  t h e  c o . s t a r t s  a n d  g ! i )  h a v e  t h e  f o l l o w i n g  f o r m :  

n~kl~v$=l-~ ,~2~v$'= a-~ 
, , 

% + % + % - 

The integral equation (2.5) is uniquely solvable in the space of continuous functions 
C(~, a) for k2 > O, which can be ascertained by using the method given in [6], while its 
solution can be found, for instance, by expanding the function Pi(X) in a series with re- 
spect to Legendre POlynomials. If k2 < 0, there obviously exists a denumerable set of 
parameter values[g2(iJ)] (i= i, 2,'j = i, 2, ...), such that the homogeneous integral 
equation (2.5) is solvable in C(-~, a), i.e., in this case, there is a denumerable set of 
stamp velocities which entail loss of quasistationary thermoelastic stability of the system. 
This denumerable set of constants [ (iJ) ~ g2 " ] can be determined by using the Ritz method [8]. 

If g(i) is not a point in the spectrum of the integral operator on the left-hand side 
of (2.5), we simplify Eq. (1.7) by substituting in it the mean temperature value T found 
from relationships (2.5) and (2.6) instead of T(x, t). We then have 
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t 

�84 j zq (z, t) + ~ q ($, t) ( -  1~ L ~ - x L + d) d~ + , ~  (T) V ('~1 + k ~ )  q (x, "~) d'~ = 
- - a  0 

= 6 ( t ) + a ( t ) z - - f ( x )  ( I x l ~ a ,  O ~ t ~ O < o o ) .  

The solution of the latter integral equation for conditions (1.12) can be obtained by using 
the method described in [8, 9]. Thus, for a sufficiently long time of wear, we obtain 

5'(t) = nlm(-fi)Y(k 1 ~ k~T'--)q~ ~ ' ( t )=  3n~m(T)V(k I ~ k2T)eq/a ~. 

In conclusion, it should be noted that the coefficients nl and n2 must be determined 
experimentally for each specific combination of contiguous solids. 
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NUMERICAL ANALYSIS OF FRACTURE IN PLATES UNDER THE ACTION OF IMPACT LOADS 

N. N. Belov, A. I. Korneev, 
and A. P. Nikolaev 

UDC 539.375 

Calculation of fracture in solids with limited dimensions under the action of impact 
loads can be considered by formulating a macrofailure criterion. Fulfillment of such a cri- 
terion in a particle of the material signifies its breakdown. In the presence of a complex 
wave interference pattern in the numerical solution, such a criterion is satisfied in entire 
regions. This requires formulation of a model of the fractured solid in numerical calcula- 
tions [i, 2]. 

There is another approach to calculating the disintegration of solids under detonation 
or impact loads, which is based on the porous solid model [3-6]. We shall write below the 
basic equations of a compressible elastoplastic medium with pores and investigate numerically 
the disintegration process in plates under the action of dynamic loads. 

i. We shall assume that spherical defects with the radius So exist in the solid. We in- 
troduce a spherical coordinate system with the origin in the spherical cavity, whose present 
radius is denoted by a. Assume that the stress o r = --p acts at the distance b from the cav- 
ity. The porosity is characterized by 
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