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I N T R O D U C  T I O N  

The mathemat ical  model of "shallow water" ,  i .e. ,  the asymptot ic  theory of  unsteady wave motinns on the 
surface  of a thin, ideal incompress ib le  fluid layer  in a t r ansver se  gravi ty field, iswellkno~vn [1]. The ag ree -  
ment  between the fundamental differential  equations and the gasdynamics equations of isentropic motions of a 
polytropic gas with polytropy index two is especia l ly  remarkable .  Tais theory was formulated in [2] on a s t rong 
asymptot ic  basis ,  a definite s t r i c t  foundation was obtained in [3, 4], and in this sense can be considered com-  
plete. Meanwhile, oceanology problems resu l t  in the need to study the wave motions of strat if ied fluids, i .e. ,  
that incompress ib le  fluid of variable density which is stratif ied in a lmost  horizontal  layers  by a family of 
i sochor ic  surfaces .  Of special  in teres t  a re  such cases  of s trat i f icat ion when the number of layers  is finite, 
and the density is constant  in each layer.  The possibil i ty of sliding of one layer over the other is hence 
allowed, i.e., the formation of contact  discontinuities on the boundaries of layers  of different density. Such 
motions a re  of in teres t  in that because of the t ransfer  of momentum f rom one layer  to another ,  waves of con- 
s iderable  amplitude with comparat ively  slightly per turbed outer surface,  the so-cal led  internal waves,  can be 
formed [5, 6]. The exact  hydrodynamic theory  of the formation and development of internal  waves is quite 
difficult and bare ly  advanced (one of the few exact  resul ts  on s ta t ionary waves is obtained in [7]}. Hence, the 
construct ion and investigation of the s imples t  models containing the basic singulari t ies should be the f i rs t  steps 
in a study of this phenomenon. One such model, l inear theory,  is a l ready a lmost  one hundred years  old and has 
been studied well enough. It is impossible to say this about the nonlinear theory of nonstat ionary internal 
waves,  in which the state of the a r t  is re la ted pr incipal ly to the numer ica l  solution of individual problems.  
There  is c lear ly  a deficit  in analytical investigations in this area .  

This paper  is devoted to the derivation and pre l iminary  analysis  of three mathemat ical  wave-motion 
models of a two- layer  fluid in the asymptotic  "shallow water"  approximation. Only the case  when l:he lighter 
fluid is above the heavier is examined here.  

The f i rs t  model describes motion with a free upper boundary and is an autonomous quasi l inear homo- 
geneous sys tem of four f i r s t  o rder  differential equations. In principle,  the singulari ty of this sys tem is that it 
is of composi te  type in a definite domain of values of the depth of the layers  and the flow velocit ies while out- 
side this domain it is s t r ic t ly  hyperbolic.  This fact needs a subsequent detailed analysis  since the possible 
incor rec tness  of the natural  Cauchy problem for wave motions is related thereto. 

in the second model the upper boundary is a horizontal  impermeable  wall. Here the two-layer  fluid 
moves in a horizontal  tube, or,  as is said in the text, "under a cover ."  This a l ters  the boundary co,]dition on 
the outer  boundary substantially,  and introduces a significant simplification in the model. Despite the fact that 
the method of simplifying problems by introducing an upper impermeable  wall in papers on internal waves is 
used sufficiently extensively,  the equations of two- layer  "shallow water" that is nunder a cover"  have apparently 
not been encountered in previous l i terature.  In this model, which consists  of just  two differential  equations, 
the above-mentioned singulari ty appears in a more  explicit  form. The sys tem obtained turns out to be simply 
a sys tem of mixed e l l i p t i c -hype rbo l i c  type. The question of the cor rec tness  of the Cauchy problem hence 
occurs  especia l ly  acutely. 

The third model is of more  par t icular  nature and is subject to the f i r s t  two. It r e f e r s  to the case of a 
smal l  re la t ive difference in the layer densities and low Froude numbers of the re la t ive  slip of one layer on the 
other .  As a r e su l t  of the specific asymptot ic  representa t ion  of the nature of this smal lness ,  both the preceding 
models r e su l t  in the very  same sys tem of two equations of mixed type. The a t t rac t iveness  of this sys tem is 
that the Riemann invariants  are  calculated explicitly, and the whole analyt ical  s t ruc ture  of the model is thereby 
made t ransparent .  The remarkab le  fact  that the sys tem obtained is exactly equivalent to the sys tem of gas-  
dynamics equations of a polytropic gas with the polytropy index 2 is hence established,  where the solutions of 
the gasdynamics  equations must  also be considered even for negative values of the gas density. 
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Fig. i 

I t  can be hoped that  a fu r the r  detailed invest igat ion of these r e l a t ive ly  s imp le r  models  will p e r m i t  sep-  
a ra t ion  of the nonlinear  wave motions of a two- l aye r  fluid into the essen t i a l  s ingular i t ies  in o rde r  to produce a 
bas i s  for the development  of an exact  theory  and to make sui table  r ecommenda t ions  of an applied nature.  

M O D E  L I 

The p l ane -pa r a l l e l  unsteady motion of an i ncompres s ib l e  fluid above a level  horizontal  bot tom is con- 
s idered  in a gravi ty  field (g= 1). I t  is a s sumed  that  the fluid cons is t s  of two immisc ib l e  layers  of different  
densi ty in each of which the motion is potential  (Fig. 1). The p r e s s u r e  on the upper  f ree  boundary is considered 
zero .  

Let  4,i, hi, Pi, r i  be the ve loc i ty  potential ,  depth, densi ty,  and upper boundary of the i - th layer  (i = 1, 2), 
r e spec t ive ly .  If boundary conditions for the potentials  (Pij = ~i[Fj a r e  introduced by the formulas  (i, j = 1, 2; 
i_> j),  then the following s y s t e m  of equations is obtained f~om the kinemat ic  and dynamic conditions on the 
boundar ies  r i :  

(h~ + h~), + ~ x  (h~ + h~)~ = (1 + (h~ + h2)~) N~2, 

"-~-=~-(t+ -~ ,J~J 22, qD~t -~ T ~ + h1-4- h~ (hi " h ~2~ N 2 

where  Nij = qHylFj (i, j = 1, 2), and the subsc r ip t s  t, x, y denote the pa r t i a l  de r iva t ives  with r e s p e c t  to the c o r -  
respondit ig a rgumen t s .  

Modeling is p e r f o r m e d  in the manner  of  the ~shallow wa te r "  theory ,  in which the change of va r i ab le  is 
made (the new quanti t ies on the r igh t  of  the - -  symbol  a r e  hencefor th  cal led model  quantities) 

y - ~  sg, hi --~ eh~, @~ ~ e~l~Oi, r .-~ el/~%j, t ~ e-I/2t (2) 

and the subsequent  f o r m a l  passage / to  the l imit  as e ~ 0  is based on the l e m m a  following below. Model quantit ies 
f r o m  (2) take pa r t ,  where  Nij ~ e-U'Nij,  a sui table smoothness  of  the functions hi, r  is a s sumed ,  and the con- 
dition of nonpenet ra t ion  at y = 0 is taken into account.  

FUNDAMENTAL LEMMA. The l imi t  r e la t ions  

lim (q%1 ~ r = 0, lim 8-2Nll = - -  ]hcPn.~x, (3) 
8 ~ 0  8 ~ 0  

l im s-2N2, = h**(p21= --  (h,(pl,x)~ , 
8->0 

lira s-2N~.. = h~.(p2~. - -  h , q ~  --  (h~cp,~)~, 
8~0  

a r e  valid for the model  quantif ies (2), where  the f i r s t  al lows different ia t ion with r e s p e c t  to t and to x. 

The f o r m a l  p roof  of  this l e m m a  is based  on the r ep re sen t a t i ons  of the model  potentials  

o~ = o ~ + s~r + o (s'), 
whose components  a r e  sought under  sui table boundary conditions a f t e r  subst i tut ion into the equation 

and compar i son  of t e r m s  with ident ical  powers  of  s 

Taking (3) into account ,  (1) for  the model  quanti t ies pass  to the l imi t  into the s y s t e m  of two- layer  
t sha l low water  ~ equations a f t e r  s l ight  manipulat ion (the dynamic re la t ionships  a r e  different ia ted with r e s p e c t  

t o x )  
hit -~- u~h,~ -b hlu~x = O, h.,t + u~h~ ~ h~u.,~ = 0, (4) 
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ul, § uluI~ § h,-~ § ~h2= = O, ust § u~_u~.x § hl~ § h2~ =0, {4) 

where ui = (Piix ( i= 1, 2); h = P2/PJ.. The usual equations of s ingle- layer  %hallow water ~ a re  obtained f rom (4) 
for the quantities h i and u 1 if we set  ~= 0 and discard the second and fourth equations. The f i r s t  two equations 
of (4) express  the differential "mass  conservat ion" laws for each of the layers ,  and the Iast  two express  the 
differential "momentum conservat ion" laws for these layers .  More exactly,  we should speak of the exchange of 
momentum between layers  in this latter case.  

The proper t ies  of the wave motions of a two- layer  fluid described by the sys tem (4) are  c losely  allied to 
its type. Their angular coefficient k = dx/dt is introduced to analyze the charac te r i s t i c s ,  and the charac te r i s t ic  
determinant  D(k), a fourth degree polynomial in k, is formed by a known rule.  A calculation yields 

D(k)  ----- ((u 1 - -  k) 2 - -  th)((u 2 - -  k) 2 - -  h,.) :-- Lhlh~. 

A graphic geometr ic  representa t ion  of the a r rangement  of the roots of the equation D(k) = 0 is obtained if the 
quantities p, q a re  introduced by the relat ionships 

ul - k = p V ~ ,  , s  - k = ~ V ~ .  m)  

The equation D(k)= 0 takes the standard form 
(p~ - ~)(q~ - t )  = ~,  (6) 

and elimination of k f rom (5) yields the relat ionship 

= V h ~ , h ~ . p  + (us - u 0 J V ~ :  (7) 

On the (p, q) plane (6) descr ibes  a fourth order  curve having four axes of symmet ry ,  while (7) is a line with a 
posit ive angular coefficient ,/~l/h2 and an initial ordinate (u 2 - u0/,f~. 2. These lines are  shown in Fig. 2, where 

= 1 - X and it is assumed (as well as everywhere  below) that 0 < ;~< 1. 

It follows f rom Fig. 2 that the line (7) always has at  least  two points of intersect ion with the curve (6) for 
nonzero hi, h2, and a maximum of four such points. Since each point of intersect ion of the curve (61) with the 
line (7) yields a charac te r i s t i c  with the slope k = u 1 - p d ~ l ,  then the following deduction is obtained. The sys tem 
(4) is of mixed type: It is s t r ic t ly  hyperbolic in cer tain solutions (four rea l  charac te r i s t i cs ) ,  and a sys tem of 
composi te  type in some (two rea l  and two imaginary  charac ter is t ics)  ; the passage f rom one to the other is 
obtained upon the merge r  of the two charac te r i s t i c s  into one (corresponding to the tangency of the line (7) and 
the curve (6)). 

By relying on this geometr ic  representa t ion  of the cha rac te r i s t i c s ,  it can be noted that the composite 
type of the sys t em (4) is rea l ized in the domain of values of h i, u i of the form 

V ~ ] I ( h J h l )  < [u S --u~[ < V ~ f s ( h s / h ~ )  

with cer ta in  specific functions fi dependent only on h. Hence, fi -> ~ ,  f2 -> 1. Therefore ,  s t r ic t  hyperbolicity 
holds ei ther  for sufficiently smal l  or  for sufficiently large values of the Froude number defined relat ive to the 
veloci ty  

The factor of the existence of a domain of var iables  hi, u i in which the sys tem (4) is of composi te  type impugns 
(but does not disprove')  the co r rec tness  of  the Cauchy problem with a r b i t r a r y  initial data at t = 0. 
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P A R T I C U L A R  S O L U T I O N S  

A group ana lys i s  of the s y s t e m  (4) shows that  it admi t s  of a 5 - p a r a m e t e r  fundamental  group genera ted by 
o n e - p a r a m e t e r  t r a n s fo rm a t i on  groups in t and in x, a Gali lean t r ans fo rma t ion ,  and two independent extensions.  
This p e r m i t s  the invest igat ion of  the d i f ferent  pa r t i cu l a r  solut ions,  which a r e  sought by the reduct ion to sy s t ems  
of o rd ina ry  di f ferent ia l  equations.  For ins tance,  s imple  waves a r e  descr ibed  by using the p a r a m e t e r  k, which 
has the meaning of a slope of the c h a r a c t e r i s t i c s  of the s t r a igh t - l ine  fami ly  to the t ax is ,  by means of the fol- 
lowing sys t em:  

dhddk =- -Vh~h~(q  ~ - -  l)A, dhddk = --Vh~h~A,  

du~/ak = V ~ ( r  - i ) p a ,  ~ , / d k  = V ~ q A :  

where  

A = 3  p ( q ~ -  i) l/-~ ~, q ( p ~ -  i)'V-~l 
2 p~ (q' - t)~h2 -~ q' ( p 2  - -  1) h i ' 

and the quantit ies p and q a r e  defined by (5) and a r e  re la ted  by (6) and (7). 

Still another  fami ly  of  pa r t i cu la r  solutions is descr ibed  by using the assumpt ion  about  the polynomial  
dependence of the des i red  hi, u i on the va r i ab le  x. Namely,  the s y s t e m  (4) has exact  solutions of the f o r m  

ui = r -~ [~i(t), h~ = "~(t)x ~ -t- 8i(t)x -4- el(t) (i = t ,  2 ), 

�9 where  the functions a i ,  . . . ,  ei sa t i s fy  a definite no rma l  s y s t e m  of o rd ina ry  f i r s t - o r d e r  different ia l  equations 
obtained by subst i tut ing these exp res s ions  into the s y s t e m  (4) and "spl i t t ing" it  with r e s p e c t  to the var iab le  x. 

I t  is a l so  useful  to note that the s y s t e m  (4) al lows being wri t ten  in the f o r m  of the conserva t ion  laws 

Mt + Nx = 0 (8) 

with functions M, N dependent on hi, ui. In all  there  a r e  six,  and only six,  l inear ly  independent conserva t ion  
laws of the f o r m  (8). Four a r e  seen  d i rec t ly  f r o m  the wri t ing of the s y s t e m  (4), where  the function M equals 
one of  the quanti t ies h i o r  u i. Two addit ional  conserva t ion  laws a r e  t rue  with the functions 

M = 2hlt h -+- 2~,h2u2, N = 2h~u 2 + 2~,h.2u 2 _{2 h~ + 2~,h~h~ + ~,h 2 

or  

wate r"  equations.  

M = hlu ~ + ~h~u'~ -4- h~ + 2~.hlh2 + ~,h~, 

In the l imi t  case  ~= 0, the mot ion in the lower l ayer  is de te rmined  by the known s ing le - l aye r  "shal low 
The o ther  l imi t  case  h = 1 will be cons idered  below. 

M O D E  L I I  

The analogous motion of a two- l aye r  fluid is descr ibed  by p e r f e c t l y  different  equations in the case  when 
the upper  l ayer  is "under  a cove r "  (Fig. 3). Here  the boundary F2 is a hor izontal  i m p e r m e a b l e  wall  (the fluid 
is "fixed" f r o m  above and below). In this case  the third and fifth equations drop out of the s y s t e m  (1) and the 
impe rmeab i l i t y  condition ~2y[F2 = 0 is added. 

The v e r y  s a m e  model ing p r o c e s s  (2) and the appl icat ion of an analog of the fundamental  l emma  r e s u l t  in 
the following s y s t e m  of equations for  the model  quanti t ies  

h 1 + h~ --- H,  ha t + thhlx + hxul.~ --" O, 

h2t "~ u2h~x -~- h~u~x = O, (9) 

ult + ulul~ + hlx = ~,(u~t + u2u~ + h~) .  
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The n f l o w - r a t e  i n t e g r a l  u fo l lows  f r o m  the  f i r s t  t h r e e  equa t ions  of  (9): 

Ulh 1 -]- u~h~ = a(t). 

In the  a b s e n c e  o f  s o u r c e s  t h e r e  m u s t  be  a(t) = a = c o n s t .  In a c o o r d i n a t e  s y s t e m  m o v i n g  u n i f o r m l y  with the 
v e l o c i t y  a /H ( G a l i l e a n  t r a n s f o r m a t i o n ) ,  t h e r e  wi l l  be  a = 0. Hence ,  i f  we put  h I = h, then the f o r m u l a s  

u, = u, u~ --- - -  [h/(H - -  h) ]u 

wi l l  be v a l i d  fo r  the  v e l o c i t i e s  of  the l a y e r s .  This  p e r m i t s  the  e l i m i n a t i o n  of  u 2 and h 2 f r o m  the l a s t  equa t ion  
in (9), which r e s u l t s  in a s y s t e m  of t w o - l a y e r  % h a t l o w  w a t e r "  equa t ions  "under  a c o v e r " :  

ht + uhx + hux = O, 

(//-~- ~th) u t ~- H: --  (2 H + - -  ~) Hhh + Ith~ ( (H ~'H~-- utt x -~ ~ (H - -  h) h)'-' uc) hx--'~0* 

w h e r e ,  a s  b e f o r e ,  #= 1 - ?~. A m o r e  s y m m e t r i c  f o r m  o f  t h e s e  equa t ions  is  ob ta ined  if  a " n o r m a l i z e d "  v e l o c i t y  v 
is  i n t r o d u c e d  i n s t e a d  of  u by  the f o r m u l a  

u = [(H - -  h) / (H - -  td~)lu. 

Then the  p r e c e d i n g  s y s t e m  is  c o n v e r t e d  into the fo l lowing:  

H 2 - 2 H h + ~ h 2 ~  vh x , h ( i - - h )  
ht ~- (g  -- bth) 2 -~- ~ v x = O, (10) 

H"- --  2Hh -L ~th2 ( ~H2 ) 
Vt -~  (H-- t th)e  VVx + ~ ' - - (H- -p~h)  s v2 hx = 0 "  

E v a l u a t i o n  of  the c h a r a c t e r i s t i c s  of  the s y s t e m  (10) y i e l d s  the fo l lowing  e x p r e s s i o n  for  the a n g u l a r  
c o e f f i c i e n t  k = dx/d t :  

m-2 .h+ . .  V (11) k (H --  uh)2 -- r ~ - ~ - ~  ~ ( H -  ~hT" 

I t  iS s e e n  f r o m  (11) tha t  the s y s t e m  (10) is  of  m i x e d  type .  I t  is s t r i c t l y  h y p e r b o l i c  in the  s t r i p  0 <h <H for 
t h o s e  (v, h) for  which  

iv] < V ~ T . H - 1 ( H  --~h)3/2 (12) 

whi le  the s y s t e m  (10) is  e l l i p t i c  for  va lue s  of (v, h) s a t i s f y i n g  the o p p o s i t e  inequa l i ty .  

U n f o r t u n a t e l y ,  the d i f f e r e n t i a l  equa t ion  of  the c h a r a c t e r i s t i c s  in the (v, h) p lane  is not  i n t e g r a t e d  
e x p l i c i t l y  h e r e .  The d o m a i n  (12) and the c o r r e s p o n d i n g  ne tw ork  of  c h a r a c t e r i s t i c s  ob t a ined  by  a n u m e r i c a l  
c o m p u t a t i o n  a r e  shown in Fig .  4. 

I t  is  u s e f u l  to note tha t  on the  t r a n s i t i o n  l ine  w h e r e  

v = + V  I~]~'H-1(H - -  ~th) ~/2, 

the  c h a r a c t e r i s t i c s  in the  (v, h) p l ane  have a r e e n t r y  point .  M o r e o v e r  they  have  a s e c o n d - o r d e r  t angen t  with 
the  s i n g u l a r  l ines  h = 0 and h = H. 

Mode l  II is  r e m a r k a b l e  for  the  fac t  tha t  i t  y i e l d s  an  e x a m p l e  of  the e v o l u t i o n a r y  s y s t e m  of two d i f f e r e n t i a l  
equa t i ons  which  has  an  e x p l i c i t  p h y s i c a l  m e a n i n g  and is a s y s t e m  of  m i x e d  type .  Study of  the  p h y s i c a l l y  
m e a n i n g f u l  p r o b l e m s  in m o d e l  II is  f r a u g h t  wi th  de f in i t e  d i f f i c u l t i e s .  In f ac t ,  the c o r r e c t  f o r m u l a t i o n  o f  the  
C a u c h y  p r o b l e m  with i n i t i a l  da t a  a t  t = 0  is t y p i c a l  fo r  e v o l u t i o n a r y  s y s t e m s  on the one hand. O n t h e  o t h e r  hand,  
the  e m e r g e n c e  of  the quan t i t i e s  v ,  h in the d o m a i n  of  e l l i p t i c i t y  of  the s y s t e m  (10) should  r e s u l t  in a C a u c h y  
p r o b l e m  with the  d e v e l o p m e n t  o f  a H a d a m a r d  i n s t a b i l i t y .  The q u e s t i o n  of  in wha t  m a n n e r  the  m o d e l  II  hand les  
the  d e s t r u c t i v e  t e n d e n c i e s  which o c c u r  s t i l l  r e m a i n s  open.  The a b s e n c e  of  any  known a n a l o g s  of th is  s i t ua t i on  
in h y d r o g a s d y n a m i c s  should  be no ted ,  w h e r e  s y s t e m s  o f  m i x e d  type have on ly  been  e n c o u n t e r e d  in ,~ta t ionary 
p r o b l e m s  un t i l  now. 

The s p e c i f i c  a n a l y t i c a l  d i f f i cu l t i e s  in i n v e s t i g a t i n g  the so lu t ions  of  the  s y s t e m  (10) a r e  r e l a t e d  to the f ac t  
t ha t  the R i e m a n n  i n v a r i a n t s  a r e  not  c a l c u l a t e d  h e r e  in an  e x p l i c i t  f ina l  f o r m .  This  c i r c u m s t a n c e  s u g g e s t e d  a 
s t u d y  of  the  l i m i t  c a s e  p ~  0 in which,  a s  i t  t u r n s  out ,  e x p l i c i t  a n a l y t i c a l  f o r m u l a s  a r e  o b t a i n e d  for  the R i e m a n n  
i n v a r i a n t s .  H o w e v e r ,  i f  we s i m p l y  s e t  p= 0 in the s y s t e m  (10), by c o n s i d e r i n g  a l l  the r e m a i n i n g  qua n t i t i e s  
f in i t e  and n o n z e r o ,  then  i t  r e v e r t s  into a s y s t e m  of  e l l i p t i c  type .  More  e x a c t l y ,  the  e l l i p t i c  type  is  o b t a i n e d  for  
any  v # 0 whi le  p a r a b o l i c  d e g e n e r a t i o n  o c c u r s  for  v = 0. This  l a s t  r e m a r k  shows t ha t  i t  is  p o s s i b l e  to e x p e c t  to 
o b t a i n  a s u b s t a n t i a l l y  new m o d e l  if  the  s i m u l t a n e o u s  p a s s a g e s  to the l i m i t  g ~  0 and v--* 0 a r e  m a d e .  
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M O D E  L I I I  

To obtain a s impler  model of mixed type, a new modeling with the small  p a r a m e t e r  # i n d e p e n d e n t  of (2)is 
per formed in model I I :  

h---~ H h ,  v - -~  V ~ H ~ ,  t ~ t /V--~H.  (13) 

Substitution into (10) and the formal  passage to the limit p ~ 0  resul ts  in the following sys tem of equations for 
the model quantities: 

h t -~ (i --  2h)vh~ + h(l --  h)v~ = 0, (14) 

vt ~, ( i  - -  2 h ) w  x + (i  - -  v2)hx = 0 .  

Henceforth,  the hydrodynamic sys tem descr ibed by (14) will be called ~model III." 

Before turning to its analysis ,  it is useful to note that the ve ry  same equations (14) a re  obtained if 
modeling of the kind (13) is applied to the sys tem (4). Indeed, the f i r s t  two equations of (4) hence remain  
invariant  for the model quantities, while the last  two take the form 

~(u~t + u~uix - -  h~x) + (h~ + h~)x = 0, (15) 

~(u,t + u~u~x) + (h~ + h~)~ = 0. 

In the l imit  as #-~0 it is hence obtained that hl+h2=b(t) .  But then the f i rs t  two equations yield the "flow ra te  
integral"  

h i u l  -~ h~u2 = - - b ' ( t ) x  ~- c(t). 

The assumption about no sources ,  analogous to that made in deriving the model II, implies the neces sa ry  equali-  
ties b ( t ) = b = c o n s t  and c ( t ) = c = c o n s t .  It is c lear  that we can make b = 1 because of a suitable choice of the con- 
s tant  H in a modeling of the kind (13). Hence, additional utilization of the Galilean t ransfer  resul ts  in the r e l a -  
tionships 

h 1 -~ h~ = i, hl~ 1 -~ h~tt~ = 0, (16) 

whereupon the f i r s t  two equations in (4) reduce  to one, for instance,  the f i r s t  of them. To obtain an additional 
equation (the second in the des i red  model system) it is neces sa ry  to fo rm such an equation f rom (15) as would 
not contain higher approximations in It; it is obtained by subtract ing (15) 

ult  -? UlUl~ - -  h ~  - -  u~_t - -  u~u~... = O. 

It can now be verified that af ter  el iminating h 2 and u 2 by using (16), the sys tem (14) is obtained exactly for the 
quantities h = h i and v = ul/(1 - h). 

An interest ing and important  question about the foundation of a modeling of the kind (13) in the pa ramete r  
It occu r s  in connection with model III. The nontriviali ty of this question is re la ted to the difference in the 

b e h a v i o r  of the charac te r i s t i c s  of the sys tems (14) and (10) on the line of parabolici ty.  

Thus, the model III is intended to descr ibe wave motions on the interface of a two- layer  fluid with a 
smal l  positive re la t ive  difference in the densities tt = (Pi - P2)/Pl for both a layer "under a cover"  and in the 
p resence  of a free upper surface of  the upper layer .  In this latter case ,  cer ta inly not all possible wave motions 
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w i l l  be  e n c o m p a s s e d  by  th is  d e s c r i p t i o n ,  bu t  on ly  t h o s e  for  which both r e l a t i v e  F r o u d e  n u m b e r s  F i =  tu2 - u 1 i /  
~ i  ( i =  1, 2) a r e  on the  o r d e r  of  ~ .  In o t h e r  w o r d s ,  th is  is  mo t ion  with r e l a t i v e l y  low s l i p  v e l o c i t i e s  of  the  
u p p e r  l a y e r  on the  l o w e r  l a y e r .  

QUALITATIVE PROPERTIES OF MODEL III 

The plane of the variables (v, h) will henceforth be called the "hodograph plane" (this terminology is used 
below without the quotation marks). In the sense of the derivation, (14) should be considered in the strip 
0_<h_<l. 

The equations for the characteristics of the system (14) 

dx/dt = k -  = (l - -  2h)v 2= ]tfh(i - -  h)]fl{ - -  v "2 (17) 

show tha t  th i s  s y s t e m  is  h y p e r b o l i c  for  Ivl < 1 and e l l i p t i c  for  tvl > 1. The R i e m a n n  i n v a r i a n t s ,  i . e . ,  those  func-  
t i o n s  r = r ( v ,  h) for  which  r t + k r x  = 0 b e c a u s e  of  (14), a r e  found e x p l i c i t l y  h e r e  

r= = (l - -  2h)v 2= 2~fh(i : -  h ) ] f i  - -  v ~, (18) 

w h e r e  both u p p e r  o r  both l o w e r  s igns  should  be  t aken  s i m u l t a n e o u s l y  in (17) and (18). S ince  the  c h a r a c t e r i s t i c s  
a r e  l e v e l  l ines  of  the  R i e m a n n  i n v a r i a n t s ,  then the l ines  r ~  = c o n s t  a r e  the  i m a g e  of the c h a r a c t e r i s t i c s  on the 
h o d o g r a p h  p l ane .  A l l  t h e s e  l i ne s  a r e  con ta ined  in  the  r e c t a n g l e  of  h y p e r b o l i c i t y  Iv[-< 1, 0 ~ h ~ 1. M o r e o v e r ,  
(18) for  r = r +  is e q u i v a l e n t  to the equa t ion  

(v + r(2h - -  i)) 2 ~ - ( i - - r 2 ) ( 2 h _ i )  2 = i - - r  ~. 

H e n c e ,  Jr I-< 1, w h e r e  the  i m a g e s  of  the  c h a r a c t e r i s t i c s  a r e  e l l i p s e s  i n s c r i b e d  in the  r e c t a n g l e  of  h y p e r b o l i c i t y  
(F ig .  5). Now i t  is  s e e n  what  is  the  a b o v e - m e n t i o n e d  d i f f e r e n c e  in the  b e h a v i o r  of the  c h a r a c t e r i s t i c s  for  
m o d e l s  II and I Ih  A t t h e  s a m e  t i m e  as  the c h a r a c t e r i s t i c s  have a r e e n t r y  po in t  on the l ine  of  p a r a b o l i c i t y  in 
the  m o d e l  II ,  t hey  a r e  t angen t  to an  a n a l o g o u s  l ine  in m o d e l  III. 

I t  i s  u s e f u l  to note tha t  the r e l a t i o n s h i p s  

4k+ = 3r+ ~- r_, 4k_ = r+ - -  3r_ (19) 

fo l low f r o m  (17) and (18). Hence ,  b e c a u s e  of the  i n e q u a l i t i e s  l r ~ t -  < 1, the fo l lowing  e s t i m a t e s  a r e  ob ta ined :  

3 r ~ _ - - i ~ k . _ ~ 3 r =  + !. 

By us ing  the R i e m a n n  i n v a r i a n t s  the s i m p l e  w a v e s  a r e  d e s c r i b e d  in e l e m e n t a r y  t e r m s ,  a s  p a r t i c u l a r  s o l u -  
t ions  of  the s y s t e m  (14) for  which  a func t iona l  r e l a t i o n  of  the  f o r m  F(v,  h) = 0 is  va l i d .  A s  is  known, such  a 
r e l a t i o n  has  the  f o r m  of  c o n s t a n c y  o f  one of  the  R i e m a n n  i n v a r i a n t s .  The R i e m a n n  i n v a r i a n t  r +  is  c o n s t a n t  
i d e n t i c a l l y  in a s i m p l e  r+  wave ,  and s i n c e  the i n v a r i a n t  r_  i s  a l s o  c o n s t a n t  a long  each  c h a r a c t e r i s t i c  with the 
a n g u l a r  c o e f f i c i e n t  k_, then t h e s e  c h a r a c t e r i s t i c s  a r e  s t r a i g h t  l ines  on the  (x, t) p l a n e .  In p a r t i c u l a r ,  the  e q u a -  
t ion  of  the  f a m i l i e s  o f  r e c t i l i n e a r  c h a r a c t e r i s t i c s  in a s i m p l e  r+  wave  c e n t e r e d  at  the  po in t  (0, 0) h a s  the  
for  m 

x = (i/4)(r+ + 3r_)t ( - - I  ~ r ,  ~ l) .  

The p l a c e s  of  r+  and r m u s t  be  i n t e r c h a n g e d  for  a r _  wave .  Seek ing  the func t ions  v and h in a s i m p l e  wave  i s  
s i m p l i f i e d  if  new quan t i t i e s  ~ and 0 a r e  i n t r o d u c e d  by  m e a n s  of  the f o r m u l a s  

v = s i n  (p, h = sin ~"(072) ( - - ~ / 2 ~  ~ . ~ / 2 ,  0 ~  O ~ . ~ ) .  (20) 

I t  fo l lows  f r o m  (18) tha t  with t h e s e  quan t i t i e s  

r+ = sin (~0 @ 0), r_ = sin (q~ - -  0). 
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Hence ,  i f  we put  ~ = x / t ,  then fo r  the  c e n t e r e d  s i m p l e  r + w a v e ,  f o r  i n s t a n c e ,  3r_ =4~ - r +  and 

(p ~ 0 = arcsin r+, ~0 - -  0 = arcsin ((4~ - -  r+)/3), 

f r o m  which  ~ and 0 a r e  found, and then  v and h by  m e a n s  of  (20). 

E Q U A T I O N S  O N  T H E  H O D O G R A P H  P L A N E  

A s  a l l  q u a s i l i n e a r  h o m o g e n e o u s  a u t o n o m o u s  s y s t e m s  of two equa t i ons  in two independen t  v a r i a b l e s ,  the  
s y s t e m  (14) is  l i n e a r i z e d  by  t r a n s f e r  to the  hodograph  p l a n e ,  i . e . ,  by  tha t  t r a n s f o r m a t i o n  o f  v a r i a b l e s  in which 
v and h b e c o m e  i n d e p e n d e n t  v a r i a b l e s .  F o r  e x a m p l e ,  an  e x a m i n a t i o n  of  the  qua n t i t i e s  (x, t) in the  s y s t e m  (14) 
a s  func t ions  of  (v, h) r e s u l t s  in the  equa t i ons  

x, = (f - -  2 h ) v t ,  - -  h(l - -  h) th ,  Xh = (1 - -  2h)v t  h - -  (l - -  v2)Q. (21) 

Hence ,  x i s  e l i m i n a t e d  by  c r o s s  d i f f e r e n t i a t i o n ,  and one l i n e a r  equa t ion  in t = t (v,  h) is  o b t a i n e d :  

h(i - -  h) thh  - -  (t - -  v2) t , ,  + 2(1 - -  2h) t  h ~ 4 v t ,  = 0. (22) 

F o r  c o n v e n i e n c e  in the  a n a l y t i c a l  i n v e s t i g a t i o n ,  i t  is  e x p e d i e n t  to r e d u c e  (22) to c a n o n i c a l  f o r m  by go ing  
o v e r  to the  c h a r a c t e r i s t i c  v a r i a b l e s  ( the H i e m a n n  i n v a r i a n t s )  r = r+  and s = r_ .  Such a t r a n s f o r m a t i o n  can  be 
p e r f o r m e d  by  two m e a n s :  d i r e c t  r e p l a c e m e n t  of  the  v a r i a b l e s  in (22), o r  by  d u p l i c a t i n g  the p r e v i o u s  m e a n s  
p a r t i a l l y  by  s t a r t i n g  f r o m  the  c h a r a c t e r i s t i c  f o r m  of  the  s y s t e m  (14) 

rt  ~ k+r  x = 0, s t -4- k_s~  -= O, 

e q u i v a l e n t  to the  s y s t e m  

xs = k+ts ,  x :  = k_t , . ,  

which  is  r e w r i t t e n  in t he  f o r m  

when  (19) is  t aken  into accoun t .  
equa  t ion  

3 t ( t r - -  t~). (24) t ~  = ~ 

The  s e c o n d  c a n o n i c a l  f o r m  of  (22) [o r  (24)] i s  ob t a ined  a s  a r e s u l t  of  the  change  of  v a r i a b l e s  

---- (t - -  2h) v = r :-  s t 16 t (r, s) = z (~, ~l) 
�9 - - ~ '  ~ =  h ( i - - h ) ( i - - v  2) = ( r - - s ) ~ ' :  

and t u r n s  out  to be  the  fo l lowing:  

~laz,~ - -  z~ = 0. (25) 

C o m p a r i n g  (24) wi th  the  a n a l o g o u s  e q u a t i o n  which  o c c u r s  in  the  g a s d y n a m i c s  of  a p o l y t r o p i c  gas  in the  
d e s c r i p t i o n  o f  i s e n t r o p i c  mo t ions  for  which  the n u m e r i c a l  c o e f f i c i e n t  equals (~/+ 1) /2 (T-  1) (T is  the p o l y t r o p y  
index)  shows  t ha t  t h e s e  equa t ions  a g r e e  when  T = 2. The a n a l o g y  which  i t  i s  d e s i r e d  to e s t a b l i s h  in e x a c t  f o r m  
hence  o c c u r s .  Th is  t u r n s  out  to be p o s s i b l e ,  n a m e l y ,  i f  the  fo l lowing new q u a n t i t i e s  a r e  i n t r o d u c e d :  

= h(i - -  h)(i - -  v~), ~ = (i - -  2h)v, (26) 

then  the s y s t e m  (14) is  c o n v e r t e d  into  the  e q u i v a l e n t  s y s t e m  

Pt ~- u~p~ ~-pu~ = 0, u, -~ uu~ + p~ = 0, (27) 

i.e.D into e x a c t l y  the  s y s t e m  of g a s d y n a m i c s  equa t i ons  fo r  a p o l y t r o p i c  gas  with T = 2 (and the  equa t ion  o f  s t a t e  

The  u n e x p e c t e d ,  and,  i n a  known s e n s e ,  p a r a d o x i c a l  d e d u c t i o n  fo l l ows :  The  g a s d y n a m i c  e q u a t i o n s  (27) 
have  a de f in i t e  p h y s i c a l  m e a n i n g  fo r  n e g a t i v e  v a l u e s  of  the  gas  d e n s i t y ~ !  

The  J a c o b i a n  of  the  t r a n s i t i o n  (v, h)--* (~, ~) is  e v a l u a t e d  to c l a r i f y  t h o s e  s i n g u l a r i t i e s  which  o c c u r  upon 
s u b s t i t u t i n g  (26). I t  t u r n s  ou t  to e q u a l ,  

A ---- O'(u, "p)/O(v, h) = (i - -  2h) 2 - -  v 2 . 

and  v a n i s h e s  on the  c h a r a c t e r i s t i c s  r +  = 1. M e a n w h i l e ,  the  J a c o b i a n  A c ha nge s  s i gn  when p a s s i n g  th rough  the  

l ine  Ivl = 1. 

4x~ = (3r -~  s)ts ,  4 x  r = (r  -~- 3s)tr (23) 

E l i m i n a t i o n  of  the func t ion  x f r o m  (23) r e s u l t s  in the c a n o n i c a l  E u l e r - P o i s s o n  
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CONCLUDING REMARKS 

In connection with the singularities detected in the behavior of two-layer nshallow water," the question 
naturally arises about what correct boundary value problems are possible for the models considered here. 
There are definite difficulties in this question which occur because of the partial ellipticity of the resulting 
differential equations. Problems of the Dirichlet type should be characteristic for the elliptic case. However, 
formulation of Dirichlet problems on the plane of the independent variables (x, t), where t is the time, raises 
doubts from the viewpoint of its physical meaningfulness. Meanwhile, the physically natural Cauchy problem 
with initial data at t=0 for elliptical data can turn out to be mathematically incorrect. It is here necessary to 
proceed carefully since the equations are nonlinear and it is difficult to predict any definite result of inter- 
action between stability and nonlinearity. 

The study of a strong discontinuity, which is natural for data in the hyperbolic domain, can possibly 
assist in this question. Construction of generalized solutions with strong discontinuities requires the involve- 
ment of some conservation laws of the form (8). As has already been noted, the choice is strictly limited in 
model I, and if some known analogies follow, then it should be expedient to set the two mass conservation laws, 
valid for this model, as well as the total momentum and total energy conservation laws, as the basis. The 
strong discontinuity equations obtained are hence quite complex and difficult to analyze. Conversely, there is 
an unlimited reserve of linearly independent conservation laws in models II and III, and the result will depend 
to a significant extent on their successful selection. The unique solvability of the problem on the dissociation 
of an arbitrary discontinuity under any admissible initial state can hence be proposed as the criterion for 
success. This requirement is not trivial, as can be seen in the example of the gasdynamies equations (27) if 
negative values of the density are also considered allowable. 

The elucidated one-dimensional models and the preliminary qualitative deductions obtained for them 
allow a natural extension in several areas. Among these, for instance, are models of wave motions of multi- 
layer "shallow water," two dimensional ("planar") motions, flows over a rough bottom, etc. However, the 
significance of the corresponding analytical investigations will be determined in large measure by progress in 
studying the one dimensional problems. 
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