TWO-LAYER "SHALLOW WATER'" MODEL

L. V. Ovsyannikov UDC 532.593.2

INTRODUCTION

The mathematical model of "shallow water", i.e., the asymptotic theory of unsteady wave motions on the
surface of a thin, ideal incompressible fluid layer in a transverse gravity field, is wellknown [1]. The agree-
ment between the fundamental differential equations and the gasdynamics equations of isentropic motions of a
polytropic gas with polytropy index two is especially remarkable. This theory was formulated in [2] on a strong
asymptotic basis, a definite strict foundation was obtained in [3, 4], and in this sense can be considered com-~
plete. Meanwhile, oceanology problems result in the need to study the wave motions of stratified fluids, i.e.,
that incompressible fluid of variable density which is stratified in almost horizontal layers by a family of
isochoric surfaces. Of special interest are such cases of stratification when the number of layers is finite,
and the density is constant in each layer. The possibility of sliding of one layer over the other is hence
allowed, i.e., the formation of contact discontinuities on the boundaries of layers of different density. Such
motions are of interest in that because of the transfer of momentum from one layer to another, waves of con-
siderable amplitude with comparatively slightly perturbed outer surface, the so-called internal waves, can be
formed [5, 6]. The exact hydrodynamic theory of the formation and developmént of internal waves is quite
difficult and barely advanced (one of the few exact results on stationary waves is obtained in [7]). Hence, the
construction and investigation of the simplest models containing the basic singularities should be the first steps
in a study of this phenomenon. One such model, linear theory, is already almost one hundred years old and has
been studied well enough. It is impossible to say this about the nonlinear theory of nonstationary internal
waves, in which the state of the art is related principally to the numerical solution of individual problems.
There is clearly a deficit in analytical investigations in this area.

This paper is devoted to the derivation and preliminary analysis of three mathematical wave-motion
models of a two-layer fluid in the asymptotic "shallow water® approximation. Only the case when the lighter
fluid is above the heavier is examined here.

The first model describes motion with a free upper boundary and is an autonomous quasilinear homo-
geneous system of four first order differential equations. In principle, the singularity of this system is that it
is of composite type in a definite domain of values of the depth of the layers and the flow velocities while out~
side this domain it is strictly hyperbolic. This fact needs a subsequent detailed analysis since the possible
incorrectness of the natural Cauchy problem for wave motions is related thereto.

In the second model the upper boundary is a horizontal impermeable wall. Here the two-layer fluid
moves in a horizontal tube, or,asis said in the text, "under a cover." This alters the boundary condition on
the outer boundary substantially, and introduces a significant simplification in the model. Despite the fact that
the method of simplifying problems by introducing an upper impermeable wall in papers on internal waves is
used sufficiently extensively, the equations of two-layer "shallow water® that is "under a cover™ have apparently
not been encountered in previous literature. In this model, which consists of just two differential equations,
the above~mentioned singularity appears in a more explicit form. The system obtained turns out to be simply
a system of mixed elliptic— hyperbolic type. The question of the correctness of the Cauchy problem hence
occurs especially acutely.

The third model is of more particular nature and is subject to the first two. It refers to the case of a
small relative difference in the layer densities and low Froude numbers of the relative slip of one layer on the
other. As a result of the specific asymptotic representation of the nature of this smallness, both the preceding
models result in the very same system of two equations of mixed type. The attractiveness of this system is
that the Riemann invariants are calculated explicitly, and the whole analytical structure of the model is thereby
made transparent. The remarkable fact that the system obtained is exactly equivalent to the system of gas-
dynamics equations of a polytropic gas with the polytropy index 2 is hence established, where the solutions of
the gasdynamics equations must also be considered even for negative values of the gas density.
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Fig. 1

It can be hoped that a further detailed investigation of these relatively simpler models will permit sep-
aration of the nonlinear wave motions of a two-layer fluid into the essential singularities in order to produce a
basis for the development pf an exact theory and to make suitable recommendations of an applied nature.

MODEL I

The plane-parallel unsteady motion of an incompressible fluid above a level horizontal bottom is con-
sidered in a gravity field (g=1). It is assumed that the fluid consists of two immiscible layers of different
density in each of which the motion is potential (Fig. 1). The pressure on the upper free boundary is considered
Zero.

Let &;, h;, pj, I'; be the velocity potential, depth, density, and upper boundary of the i-th layer (i=1, 2),
respectively. If boundary conditions for the potentials ¢y; = <I>ilI‘j are introduced by the formulas (i, j=1, 2;
i=j), then the following system of equations is obtained from the kinematic and dynamic conditions on the
boundaries T'j:

' h1t + q)llxklx = (1 + h?x) Ny, hlt + ‘P21xh1x = (1 + k%x) Now, @

7 Byt Pa)s + @arg (by + Bo)y = (1 + (By + hy)2) N,
P2 (‘Put =+ % ¢hx + hl) — P (‘qu + ‘;- Phix h1) = % (1 4 2%) (p:NF1 — p:V31),
Baat + o 0as - By = (1 (hy + ko)) N,
where N;, =<I’iyll‘j (i, j=1, 2}, and the subscripts t, x, y denote the partial derivatives with respect to the cor-
responding arguments.

Modeling is performed in the manner of the "shallow water™ theory, in which the change of variable is
made (the new quantities on the right of the — symbol are henceforth called model quantities)

y— &y, hi - Shii q)i - sllzq)iv Pij—> 61/2(])”, t—> gV (2)
and the subsequent formal passage to the limit as £¢—0 is based on the lemma following below. Model quantities
from (2) take part, where Nij - Nij, a suitable smoothness of the functions hj, ¢ij is assumed, and the con-
dition of nonpenetration at y =0 is taken into account.

FUNDAMENTAL LEMMA. The limit relations

leif; (@21 — @22) = 0, limo e N, 1= PO, &)

i a2
g{; & "Ny = Ryp@ore — (P1@u12) e

1;_):{)1 S—ZN“ = R1xPox — Ba@orzx — (P1P114)ss

are valid for the model quantities (2), where the first allows differentiation with respect to t and to x.

The formal proof of this lemma is based on the representations of the model potentials
@, = @} + e*D} + O (e4),
whose components are sought under suitable boundary conditions after substitution into the equation
Dyt Dgyy = 0
and comparison of terms with identical powers of €.
Taking (3) into account, (1) for the model quantities pass to the limit into the system of two-layer
"shallow water® equations after slight manipulation (the dynamic relationships are differentiated with respect

to x)
Bye + Uy + Byt = 0, by + by, - hoity, = 0, @
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Uy + Uglly, 7 By 1+ Mg, = 0, Uy, + Ul + By, A By =0, 4y

where uj=ijx (=1, 2); A=py/p;. The usual equations of single-layer "shallow water" are obtained from (4)
for the quantities hy and u if we set A=0 and discard the second and fourth equations. The first two equations

" of (4) express the differential "mass conservation™ laws for each of the layers, and the last two express the
differential "momentum conservation" laws for these layers. More exactly, we should speak of the exchange of
momentum between layers in this latter case.

The properties of the wave motions of a two-layer fluid described by the system (4) are closely allied to
its type. Their angular coefficient k=dx/dt is introduced to analyze the characteristics, and the characteristic
determinant D(k), a fourth degree polynomial in k, is formed by a known rule. A calculation yields

D) = (g — k) — ")((ug — &)* — Dy} — Meyhy.
A graphic geometric representation of the arrangement of the roots of the equation D(k) =0 is obtained if the
quantities p, q are introduced by the relationships '

ul—k=pV-h: uz—kngE;- ©
The equation D(k) =0 takes the standard form
(p* — Mg* — 1) =4, | )
and elimination of k from (5) yields the relationship
g = Viyhy-p + (4 — u)V'F. X

On the (p, q) plane (6) describes a fourth order curve having four axes of symmetry, while (7) is a line with a
positive angular coefficient vhy/h, and an initial ordinate (uy — w;)Vh,. These lines are shown in Fig. 2, where
p=1— A and it is assumed (as well as everywhere below) that 0 <A <1.

It follows from Fig. 2 that the line (7) always has at least two points of intersection with the curve (6) for
nonzero hy, hy, and a maximum of four such points. Since each point of intersection of the curve (6) with the
line (7) yields a characteristic with the slope k=u; — pvhj, then the following deduction is obtained. The system
(4) is of mixed type: It is strictly hyperbolic in certain solutions (four real characteristics), and a system of
composite type in some (two real and two imaginary characteristics); the passage from one to the other is
obtained upon the merger of the two characteristics into one (corresponding to the tangency of the line (7) and
the curve (6)).

By relying on this geometric representation of the characteristics, it can be noted that the composite

type of the system (4) is realized in the domain of values of hj, uj of the form
Vh:f 1halhy) < oy —uy| <V}?1f2(h2/h'1)
with certain specific functions fj; dependent only on A. Hence, fj = vy, f;= 1. Therefore, strict hyperbolicity
holds either for sufficiently small or for sufficiently large values of the Froude number defined relative to the
velocity
' f=luy— w Vb

The factor of the existence of a domain of variables hj, uj in which the system (4) is of composite type impugns
(but does not disprove!) the correctness of the Cauchy problem with arbitrary initial data at t=0.
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PARTICULAR SOLUTIONS

A group analysis of the system (4) shows that it admits of a 5-parameter fundamental group generated by
one-parameter transformation groups in t and in x, a Galilean transformation, and two independent extensions.
This permits the investigation of the different particular solutions, which are sought by the reduction to systems
of ordinary differential equations. For instance, simple waves are described by using the parameter k, which
has the meaning of a slope of the characteristics of the straight-line family to the t axis, by means of the fol-
lowing system.:

diafdk = —V Iho(q* — DA,  dhyldk = —V by,
duyjdk = V'hy(g* — 1)pA, duyidk =V A,

where

43 P@—OVh+e@p—1VE
2 P @ (P DF;

and the quantities p and q are defined by (5) and are related by (6) and (7).

Still another family of particular solutions is described by using the assumption about the polynomial
dependence of the desired hj, uj on the variable x, Namely, the system (4) has exact solutions of the form

u; = )z + Bult), hy = pit)2® + 8it)x + &) (i =1, 2),

‘where the functions oj, ..., & satisfy a definite normal system of ordinary first-order differential equations
obtained by substituting these expressions into the system (4) and "splitting® it with respect to the variable x.

It is also useful to note that the system (4) allows being written in the form of the conservation laws

M+ N,=0 (8)

with functions M, N dependent on hj, uj. In all there are six, and only six, linearly independent conservation
laws of the form (8). Four are seen directly from the writing of the system (4), where the function M equals
one of the quantities hj or uj. Two additional conservation laws are true with the functions

M = 2hjuy + 2Mhgu,, N = 2hyuf + 20hud + b3 + 20k, + MRS
or
M = hyuf - Magul + B3 + 2hhyhy + MRS,
N = hyud + Mayud 4 2h%u, + 2Mhyhy (u; + uy) - 20hu,,.

In the limit case A=0, the motion in the lower layer is determined by the known single-layer "shallow
water® equations, The other limit case A=1 will be considered below.

MODEL II

The analogous motion of a two-layer fluid is described by perfectly different equations in the case when
the upper layer is "under a cover" (Fig. 3). Here the boundary T, is a horizontal impermeabie wall (the fluid
is "fixed" from above and below). In this case the third and fifth equations drop out of the system (1) and the
impermeability condition &,y[I";=0 is added.

The very same modeling process (2) and the application of an analog of the fundamental lemma result in
the following system of equations for the model quantities

By = hy = H, hyy -+ by, + ity = 0,

h‘_’t + uzhzx + h2u2x = 07 (9)

Uy T Uglhyy 1 Ry = Mgy + Upllyy, - Rgy).
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The "flow-rate integral® follows from the first three equations of (9):
why -+ ushy = aft).
In the absence of sources there must be q(t) =a =const. In a coordinate system moving uniformly with the
velocity a/H (Galilean transformation), there will be a=0. Hence, if we put h; =h, then the formulas
Uy = u, Uy = —h/(H —h)lu
will be valid for the velocities of the layers. This permits the elimination of u, and h, from the last equation
in (9), which results in a system of two-layer "shallow water"™ equations "under a cover":

b - uh, + hu, =0,

H? — (2 A)Hh -+ ph? H? 2\
(H + phyu; + @M Hhp uux+(u(ﬂ_h)_w_*:.h.)?u~}nx=0,

where, as before, u=1— A. A more symmetric form of these equations is obtained if a "normalized” velocity v
is introduced instead of u by the formula
u=[(H —H— ).

Then the preceding system is converted into the following:

. H®—2HR+ ph? Bt —
htf (H — ph)? .x+ uk v, =0, {10)
., H?—2Hh L ph? M2,
vtTWUUx"}‘(u_mb)hx:O-

Evaluation of the characteristics of the system (10) yields the following expressmn for the angular
coefficient k=dx/dt:

H?2 — 2Hh - uh? + h(H — h) AH 202 (11)

b=—m—myp =V 7w Vi —m—pm

It is seen from (11) that the system (10) is of mixed type. It is strictly hyperbolic in the strip 0 <h <H for
those (v, h) for which
| <V wh-H-YH —ph)*? (12)

while the system (10) is elliptic for values of (v, h) satisfying the opposite inequality.

Unfortunately, the differential equation of the characteristics in the (v, h) plane is not integrated
explicitly here. The domain (12) and the corresponding network of characteristics obtained by a numerical
computation are shown in Fig. 4.

It is useful to note that on the transition line where
v = £} ph-H-YH — ph)¥?,

the characteristics in the (v, h) plane have a reentry point. Moreover they have a second-order tangent with
the singular lines h=0 and h=H.

Model II is remarkable for the fact that it yields an example of the evolutionary system of two differential
equations which has an explicit physical meaning and is a system of mixed type. Study of the physically
meaningful problems in model II is fraught with definite difficulties. In fact, the correct formulation of the
Cauchy problem with initial data at t=0 is typical for evolutionary systems on the one hand. Onthe other hand,
the emergence of the quantities v, h in the domain of ellipticity of the system (10) should result ina Cauchy
problem with the development of a Hadamard instability. The question of in what manner the model II handles
the destructive tendencies which occur still remains open. The absence of any known analogs of this situation
in hydrogasdynamics should be noted, where systems of mixed type have only been encountered in stationary
problems until now.

The specific analytical difficulties in investigating the solutions of the system (10) are related to the fact
that the Riemann invariants are not calculated here in an explicit final form. This circumstance suggested a
study of the limit case u— 0 in which, as it turns out, explicit analytical formulas are obtained for the Riemann
invariants. However, if we simply set p=0 in the system (10), by considering all the remaining quantities
finite and nonzero, then it reverts into a system of elliptic type. More exactly, the elliptic type is obtained for
any v=0 while parabolic degeneration occurs for v=0. This last remark shows that it is possible to expect to
obtain a substantially new model if the simultaneous passages to the limit y— 0 and v— 0 are made.



Fig. 4

MODEL III

To obtain a simpler model of mixed type, a new modeling with the small parameter yindependent of (2) is
performed in modelIIs
k— Hh, v—V pHv, t > t/}/ ul. (13)
Substitution into (10) and the formal passage to the limit y— 0 results in the following system of equations for
the model quantities: ‘
Ry + (1 — 2hyh, + h(1 — k), =0, (14)
v + {1 — 2hywo, + (1 — v?h, = 0.

Henceforth, the hydrodynamic system described by (14) will be called *model IIL."

Before turning to its analysis, it is useful to note that the very same equations (14) are obtained if
modeling of the kind (13) is applied to the system (4). Indeed, the first two equations of (4) hence remain
invariant for the model quantities, while the last two take the form \

p'(ult + Uplye — h2x) + (h'l + hz)x = 01
W(kar + gy, + (B + By = 0.

In the limit as u~~0 it is hence obtained that h; +hy=b(t). But then the first two equations yield the "flow rate
integral®

(15)

Ryt + houty = —b'(t)z + e(2).
The assumption about no sources, analogous to that made in deriving the model IT,implies the necessary equali-
ties b(t) =b=const and c(t) =c=const. It is clear that we can make b=1 because of a suitable choice of the con-
stant H in a modeling of the kind (13). Hence, additional utilization of the Galilean transfer results in the rela-
tionships
By A By =1, By + houy = 0, (16)
whereupon the first two equations in (4) reduce to one, for instance, the first of them. To obtain an additional
equation (the second in the desired model system) it is necessary to form such an equation from (15) as would
not contain higher approximations in u; it is obtained by subtracting (15)
Uy T Upllyy — Pgy — Upp — Ugllpy = 0.
It can now be verified that after eliminating h, and u, by using (16), the system (14) is obtained exactly for the
quantities h=h; and v=u; /A1 — h).
An interesting and important question about the foundation of a modeling of the kind (13) in the parameter
1 oceurs in connection with model III. The nontriviality of this question is related to the difference in the
"behavior of the characteristics of the systems (14) and (10) on the line of parabolicity.

Thus, the model III is intended to describe wave motions on the interface of a two-layer fluid with a
small positive relative difference in the densities u=(p; — py/py for both a layer "under a cover" and in the
presence of a free upper surface of the upper layer. In this latter case, certainly not all possible wave motions
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will be encompassed by this description, but only those for which both relative Froude numbers Fi= [u;~ w |/
vhj (i=1, 2) are on the order of Y. In other words, this is motion with relatively low slip velocities of the
upper layer on the lower layer.

QUALITATIVE PROPERTIES OF MODEL III

The plane of the variables (v, h) will henceforth be called the "hodograph plane® (this terminology is used
below without the quotation marks). In the sense of the derivation, {14) should be considered in the strip
0=h=1.

The equations for the characteristics of the system (14)
dzldt = ko = (1 — 2k = VI — BV T — o 1"

show that this system is hyperbolic for [v]<1 and elliptic for }v|>1. The Riemann invariants, i.e., those func-
tions r=r(v, h) for which r{+kr,=0 because of (14), are found explicitly here
ro = (1 —2hp £ 2V Rl =BV 1{ -, (18)

where both upper or both lower signs should be taken simultaneously in (17) and (18). Since the characteristics
are level lines of the Riemann invariants, then the lines r, =const are the image of the characteristics on the
hodograph plane. All these lines are contained in the rectangle of hyperbolicity [v|=<1, 0=h=1. Moreover,
(18) for r=r + is equivalent to the equation

w+r2h —102+ 1 -2 — 1) =1 —

Hence, [r|=1, where the images of the characteristics are ellipses inscribed in the rectangle of hyperbolicity
(Fig. 5). Now it is seen what is the above-mentioned difference in the behavior of the characteristics for '
models II and III: Atthe same time as the characteristics have a reentry point on the line of parabolicity in
the model 11, they are tangent to an analogous line in model L

It is useful to note that the relationships

4‘IC+ = 3r+ + r—, 414’1_ = Trs + 37’_ (19)
follow from (17) and (18). Hence, because of the inequalities ]ri[s 1, the following estimates are obtained:
e — 1< ke < 3re + L

By using the Riemann invariants the simple waves are described in elementary terms, as particular solu-
tions of the system (14) for which a functional relation of the form F(v, h) =0 is valid. As is known, such a
relation has the form of constancy of one of the Riemann invariants. The Riemann invariant r is constant
identically in a simple r, wave, and since the invariant r_ is also constant along each characteristic with the
angular coefficient k_, then these characteristics are straight lines on the (x, t) plane. In particular, the equa-
tion of the families of rectilinear characteristics in a simple ry wave centered at the point (0, 0) has the
form

o= (14)(ry - 3r ) (—1 <o < 1)

The places of r, and r_ must be interchanged for a r_ wave. Seeking the functions v and h in a simple wave is
simplified if new quantities ¢ and @ are introduced by means of the formulas

v =sin @, b ==sin? (0/2) (—a2< oL n/2, 0LOL ). - (20)
It follows from (18) that with these quantities
ry =sin (¢ + 8), r=. = sin (p — 0).
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Hence, if we put £ =x/t, then for the centered simple r, wave, for instance, 3r_ =4¢ =1y and

¢ -+ 0 = arcsin ry, ¢ — 0 = aresin ((4E — r4)/3),
from which ¢ and ¢ are found, and then v and h by means of (20);

EQUATIONS ON THE HODOGRAPH PLANE

As all quasilinear homogeneous autonomous systems of two equations in two independent variables, the
system (14) is linearized by transfer to the hodograph plane, i.e., by that transformation of variables in which
v and h become independent variables. For example, an examination of the quantities (x, t) in the system (14)
as functions of (v, h) results in the equations

z, = (1 — 2h)ut, — h(1 — R)t,, x, = (1 — 2h)vt, — (1 — V3¢, @1)
Hence, x is eliminated by cross differentiation, and one linear equation in t=t(v, h) is obtained:
A1 — Bty — (1 — vd)t,, + 2(1 — 2h)t,, — 4vt, = O. 22)

For convenience in the analytical investigation, it is expedient to reduce (22) to canonical form by going
over to the characteristic variables (the Riemann invariants) r=r, and s=r_. Such a transformation can be
performed by two means: direct replacement of the variables in (22), or by duplicating the previous means
partially by starting from the characteristic form of the system (14)

Fe Hhyr, =0, 8 + ks, =0,
equivalent to the system
zy = kb, x, = k_t,,
which is rewritten in the form ,
bz, = (3r + 8)t,, 4z, = (r + 391, (23)
when (19) is taken into account, Elimination of the function x from (23) results in the canonical Euler—Poisson
equation

3 1
Lps = E'r,_s(tr_ts)' (24)

The second canonical form of (22) [or (24)] is obtained as a result of the change of variables

— A _r—s _ 1 . 16 _
E—@,! 2h)v"" 9 ¥ 71— h(i—h)(i—v'—") —-(r—-s)'-‘-"‘ t(",s)—z(g,'ﬂ)

and turns out to be the following:
M2 — 25 = 0. (25)
Comparing (24) with the analogous equation which occurs in the gasdynamics of a polytropic gas in the
description of isentropic motions for which the numerical coefficient equals (y+1)/2(y = 1) (¥ is the polytropy
index) shows that these equations agree when Y=2. The analogy which it is desired to establish in exact form
hence occurs. This turns out to be possible, namely, if the following new quantities are introduced:

p=h1l—B1—1?), u=01— 2w,
then the system (14) is converted into the equivalent system
or + up, +pu, = 0, uy 4w, +p, =0,
i.e., into exactly the system of gasdynamics equations for a polytropic gas with y=2 (and the equation of state
VAL
The unexpected; and, ina known sense, paradoxical deduction follows: The gasdynamic equations (27)
have a definite physical meaning for negative values of the gas density p!

(26)

@7

The Jacobian of the transition (v, h) —(u, E’) is evaluated to clarify those singularities which occur upon
substituting (26). It turns out to equal,
A = 8{u, 0o, h) = (1 — 2R — 1?
and vanishes on the characteristics r, =1. Meanwhile, the Jacobian A changes sign when passing through the
line |v|=1.
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CONCLUDING REMARKS

In connection with the singularities detected in the behavior of two-layer "shallow water,” the question
naturally arises about what correct boundary value problems are possible for the models considered here,
There are definite difficulties in this question which occur because of the partial ellipticity of the resulting
differential equations. Problems of the Dirichlet type should be characteristic for the elliptic case. However,
formulation of Dirichlet problems on the plane of the independent variables (x, t}, where t is the time, raises
doubts from the viewpoint of its physical meaningfulness, Meanwhile, the physically natural Cauchy problem
with initial data at t=0 for elliptical data can turn out to be mathematically incorrect. It is here necessary fo
proceed carefully since the equations are nonlinear and it is difficult to predict any definite result of inter-
action between stability and nonlinearity.

The study of a strong discontinuity, which is natural for data in the hyperbolic domain, can possibly
assist in this question, Construction of generalized solutions with strong discontinuities requires the involve-
ment of some conservation laws of the form (8). As has already been noted, the choice is strictly limited in
model I, and if some known analogies follow, then it should be expedient to set the two mass conservation laws,
valid for this model, as well as the total momentum and total energy conservation laws, as the basis. The
strong discontinuity equations obtained are hence quite complex and difficult to analyze. Conversely, there is
an unlimited reserve of linearly independent conservation laws in models II and III, and the result will depend
to a significant extent on their successful selection. The unique solvability of the problem on the dissociation
of an arbitrary discontinuity under any admissible initial state can hence be proposed as the criterion for
success. This requirement is not trivial, as can be seen in the example of the gasdynamics equations (27) if
negative values of the density are also considered allowable. ‘

The elucidated one-dimensional models and the preliminary qualitative deductions obtained for them
allow a natural extension in several areas. Among these, for instance, are models of wave motions of multi-
layer "shallow water," two dimensional ("planar™) motions, flows over a rough bottom, etc. However, the
significance of the corresponding analytical investigations will be determined in large measure by progress in
studying the one dimensional problems.
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