Untersuchungen im System Hafnium—Tantal—Kohlenstoff

Von

E. Rudy und H. Nowotny

Aus der Metallwerk Plansee A. G., Reutte/Tirol, und dem Institut für Physikalische Chemie der Universität Wien

Mit 5 Abbildungen

(Eingegangen am 18. Februar 1963)

Der Aufbau des Dreistoffes: Hf-Ta-C wird für 1850°C mittels druckgesinterter und vakuum-geglühter Proben bestimmt. Die lückenlose Mischbarkeit der Monocarbide wird erneut bestätigt. Ta₂C löst etwas mehr als 10 Mol% Hafniumcarbid. Die ζ -Phase (Ta₃C₂) wird bereits bei geringen Hf-Konzentrationen unterdrückt. Das Dreiphasenfeld: (Hf, Ta)-Mischkristall + (Hf, Ta) C_{1-x} + (Ta, Hf)₂C charakterisiert den Schnitt. Hafnium reichert sich in der Carbidphase an. Die Gleichgewichte werden unter vereinfachenden Annahmen thermodynamisch ausgewertet und folgende Differenzen für freie $(1850^{\circ}C)$ errechnet: Bildungsenergien $\Delta G_{\rm HfC} - \Delta G_{\rm TaC} =$ - 8500 cal/Mol, $\Delta G_{(\mathrm{Hf}_*\mathrm{C})} - \Delta G_{\mathrm{Ta}_*\mathrm{C}} = -5000$ cal/Mol. Ein zu Ta₂C analoges Hafniumcarbid (Hf₂C) ist jedoch um 10000 cal/Mol weniger stabil als ein Gemenge: $HfC_{1-x} + Hafnium$. \mathbf{Es} besteht gute Übereinstimmung zwischen den gerechneten und den experimentell ermittelten Konoden. Aussagen über das verwandte System: Hf-Nb-C werden gemacht.

Hafniummonocarbid und Tantalmonocarbid sind unter den bisher bekannten die höchstschmelzenden Zweistoffverbindungen. Der Schmelzpunkt der beiden Carbide (p = 1 atm) liegt im übrigen höher als der von jedem chemischen Element. Dagegen soll die ternäre Mischphase (Hf, Ta) C mit 20 Mol% HfC nach Befunden von *C. Agte* und *H. Alterthum*¹ erst oberhalb 4000°C schmelzen. Vor einiger Zeit wurde versucht, dieses Ergebnis zu prüfen; es traten indessen infolge sehr starker Verdampfung von Kohlenstoff erhebliche Schwierigkeiten auf². Auch im System TiC—HfC wird ein Schmelzpunktsmaximum von 4200°C vermutet und

¹ C. Agte und H. Alterthum, Z. techn. Phys. 11, 182 (1930).

² G. A. Geach, mündl. Mitteilung.

einer geordneten Mischphase bei 20 Mol% HfC zugeschrieben³. Dieser Befund bedarf ebenfalls einer Überprüfung, zumal der Verlauf der Gitterparameter in der lückenlosen Mischreihe völlig monoton ist⁴. Interessant im Zusammenhang mit dem Schmelzpunkt von Zweistoffcarbiden sind neue Ergebnisse über die Diffusion in solchen Carbiden und deren Sinterung⁵. Aus dem vergleichsweisen Verhalten wird der Schluß gezogen, daß man für HfC einen noch höheren Schmelzpunkt, als bisher gemessen, zu erwarten hätte. Der besondere Aufbau derartiger Carbidsysteme, rasch abnehmende Stabilität mit zunehmendem Kohlenstoffdefekt, dürfte ganz allgemein die Erfassung der maximalen Schmelztemperatur erschweren. Im Hinblick auf diese Lage schien eine Untersuchung des Dreistoffs: Hf-Ta-C angebracht, um zusätzlich thermodynamische Daten zu gewinnen. Einige Dreistoffe dieser Art wurden bereits früher studiert⁶⁻¹⁰. Kenntnisse über den Aufbau der Carbid-Metalle sind von unmittelbar praktischem Interesse. Denn, obwohl für Zwecke der Hochtemperaturtechnik hochschmelzende Carbide in zunehmendem Maße vorgeschlagen werden, sind die effektiven Anwendungsmöglichkeiten infolge der mäßigen Temperaturwechsel- und Thermoschockbeständigkeit beschränkt. Kombinationen mit metallischen Bindern versprechen hingegen technisch brauchbare Lösungen.

Die Randsysteme: Hf—C, Ta—C und Hf—Ta sind weitgehend bekannt. Neben den Carbiden HfC_{1-x} (37—49 At% C bei 1400°C)^{11, 12}, TaC_{1-x} (42,5—50 At% C bei 2000°C)^{13, 14} und Ta₂C (29—33,3 At% C bei 2000°C)¹³ tritt nach einer neuen Untersuchung des Systems durch *R. Lesser* und *G. Brauer*¹³ bei hohen Temperaturen (>1800°C) noch eine Phase bei 39 At% C auf, die etwa Ta₃C₂ entspricht und mit ζ bezeichnet wird. β -Hf und Ta bilden bei der gewählten Temperatur (1850°C)

⁵ Philips-Forschungslaboratorium Aachen, mündl. Mitteilung.

⁷ E. Rudy, F. Benesovsky und K. Sedlatschek, Mh. Chem. 92, 841 (1961).

⁸ E. Rudy, El. Rudy und F. Benesovsky, Planseeber. Pulvermetallurgie 10, 42 (1962).

⁹ E. Rudy, F. Benesovsky und El. Rudy, Mh. Chem. 93, 693 (1962).

¹⁰ E. Rudy, El. Rudy und F. Benesovsky, Mh. Chem. 93, 1176 (1962).

¹¹ F. Benesovsky und E. Rudy, Planseeber. Pulvermetallurgie 8, 66 (1960).

¹² G. V. Samsonov und J. S. Umanski, Harte Verbindungen hochschmelzender Metalle (russ.), Moskau 1957, S. 118.

¹³ R. Lesser und G. Brauer, Z. Metallkde. 49, 622 (1958).

¹⁴ Vgl. auch *R. Kieffer* und *F. Benesovsky*, Hartstoffe, Springer-Verlag, Wien 1963.

³ V. V. Korshak und K. K. Mozgova, Uspekhi Khimii 28, Nr. 7, 783, 850, 877 (1959).

⁴ H. Nowotny, R. Kieffer, F. Benesovsky und C. Brukl, Mh. Chem. 90, 86 (1959).

⁶ H. Nowotny, E. Parthé, R. Kieffer und F. Benesovsky, Z. Metallkde. 45, 97 (1954).

eine lückenlose Mischreihe, während nach Befunden von J.J. English¹⁵ unterhalb 1500°C eine Mischungslücke besteht. α -Hf und Ta lösen einander nur in geringem Umfang.

Vom Dreistoff Hf—Ta—C war bisher der lückenlose Übergang der Monocarbide bekannt^{1, 16}. Der Verlauf der Gitterparameter von voll carburiertem (Hf, Ta)C weist dabei auf eine — gegenüber Additivität geringe Kontraktion hin, eine Erscheinung, die häufig bei Monocarbid-Mischphasen von Metallen aus benachbarten Gruppen des Periodensystems beobachtet wird¹⁷. Allerdings ist der maximale C-Gehalt der Mischphasen nicht im einzelnen bestimmt worden.

Eigene Untersuchungen

Als Ausgangsstoffe dienten sehr reines Tantalpulver mit 0,2% Nb der Fa. H. C. Starck, Goslar, Hafniumhydridpulver mit 2,2% Zr und 0,18%Sauerstoff der Fa. Wah Chang Corp., Albany/Oregon, sowie reinster Ruß der Fa. Degussa, Frankfurt/Main. Die Herstellung der Proben, deren Zusammensetzung aus Abb. 1 hervorgeht, erfolgte durch Drucksintern und nachfolgendes Homogenisierungsglühen im Hochvakuum $(2 \cdot 10^{-5} \text{ Torr})$. Dem Probenansatz auf dem Monocarbidschnitt wurde jeweils ca. 1% Co zugemischt¹⁸, um die Diffusion zu erleichtern; die Homogenisierung erfolgte in diesem Falle bei 1900°C (40 Stdn.). Die Metall-reicheren Legierungen wurden 55 Stdn. bei 1850°C homogenisiert. Kohlenstoffanalysen an einigen repräsentativen Proben ergaben Übereinstimmung mit dem Ansatz. Für die röntgenographische Untersuchung (Pulveraufnahmen mit CuK_a-Strahlung) wurden die Legierungen, welche neben Carbid die Metallphase enthielten, nach Pulvern kurzzeitig bei der Gleichgewichtstemperatur entspannt. Auf diese Weise konnten scharfe Röntgeninterferenzen erhalten werden.

Ergebnisse

Tab. 1 vereinigt die Ergebnisse der ausgewerteten Pulverdiagramme. Sämtliche Proben auf dem Schnitt: $HfC_{0,82}$ — $TaC_{0,82}$ erwiesen sich als einphasig. Wie aus Abb. 1 zu erkennen ist, tritt keine intermediäre, ternäre Kristallart auf; der Schnitt bei 1850°C ist vielmehr durch das Dreiphasengleichgewicht: (Hf, Ta) C_{1-x} + Ta₂C-Mischphase + (β -Hf, Ta) charakterisiert. Die Gitterparameter der Mischphase (Hf, Ta) $C_{0,82}$ liegen wegen des merklichen Kohlenstoffdefektes stets bei kleineren Werten als jene der entsprechenden Mischkristalle (Hf, Ta)C (volle Carburierung). Allerdings nimmt im Bereich (Hf, Ta) $C_{1,00-0,82}$ der Parameter von Ta C_{1-x} zunächst stärker ab als bei Hf C_{1-x} . Im Falle von Hafniumcarbid setzt erst bei hohen C-Defekten ein plötzlicher Ab-

¹⁵ J. J. English, DMIC-Report 152, Battelle Memorial Institute, Columbus, Ohio, 1961.

¹⁶ H. Nowotny, F. Benesovsky und R. Kieffer, Planseeber. Pulvermetallurgie 7, 79 (1959).

¹⁷ H. Nowotny, Bull. Soc. Chim. France **1960**, 1881.

¹⁸ H. Nowotny und R. Kieffer, Metallforschg. 2, 257 (1947).

fall im Parameter ein. Legierungen auf dem Schnitt: Ta_2C —(Hf₂C) sind bei 2 und 5 At% Hf einphasig, während in einer Probe mit 10 At% Hf

Probe Nr.	Röntgenographisch identifizierte Phasen	Gitterparameter (Å)			
		B 1-Phase	Me_2C -Phase		Metallphase
		a	a	c	a
1	$Me + Me_2C$	n. b.	$3,11_{1}$	$4,95_{2}$	3,312
2	$Me + Me_2C + B 1 \dots$	4,562	$3,12_{0}$	$4,97_{0}$	3,315
3	$Me + Me_2C$	n. b.	$3,11_{0}$	$4,95_{2}$	3,310
4	$Me + Me_2C + B 1 \dots$	4,565	$3,12_{2}$	$4,97_{3}$	3,310
5	$Me + Me_2C + B 1 \dots$	4,560	$3,11_{9}$	$4,96_{6}$	3,315
6	$Me + Me_2C + B 1 \dots$	4,561	$3,12_{3}$	$4,97_{5}$	3,309
7	Me_2C	n. b.	$3,11_{0}$	$4,95_{0}$	n. b.
8	Me_2C	n. b.	$3,11_{2}$	$4,95_{4}$	n. b.
9	$Me + Me_2C + B 1 \dots$	n. b.	$3,12_{1}$	$4,96_{9}$	n. b.
10	$Me + Me_2C + B 1 \dots$		$3,12_{5}$	$4,97_{3}$	n. b.
11	$Me + Me_2C + B 1 \dots$	4,556	$3,12_{4}$	$4,97_{3}$	3,309
12	$\mathrm{Me} + \mathrm{Me}_2\mathrm{C} + \mathrm{B}\ 1\ \dots \dots$	4,559	$3,12_{6}$	$4,97_{6}$	3,311
13	$Me + Me_2C + B 1 \dots$	4,564	n. b.	n. b.	3,310
14	$Me + Me_2C + B 1 \dots$	4,560	n. b.	n. b.	3,315
15	$Me + B 1 \dots$	4,592	n. b.	n. b.	3,322
16	$Me + B 1 \dots$	4,594	n. b.	n. b.	3,336
17	$Me + B 1 \dots$	4,601	n. b.	n. b.	3,344
18	$Me + B 1 \dots \dots$	4,603	n. b.	n. b.	3,351
19	$Me_2C + B \ 1 \dots \dots$	4,469	$3,11_{1}$	$4,95_{2}$	n. b.
20	$Me_2C + B 1 \dots$	4,509	$3,11_{3}$	$4,95_{5}$	n. b.
21	$Me_2C + B 1 \dots$	4,557	$3,12_{0}$	$4,97_{0}$	n. b.
22	$Me_2C + B 1 + Me \dots$	4,561	$3,12_{2}$	$4,97_{0}$	n. b.
23	$Me_2C + B 1 + Me \dots$	4,568	$3,12_{4}$	$4,97_{3}$	3,309
24	$Me_2C + B 1 \dots$	4,453	$3,10_{6}$	$4,94_{6}$	n. b.
25	$Me_2C + B 1 \dots$	4,466	$3,11_{0}$	$4,95_{0}$	n. b.
26	$Me_2C + B 1 \dots$	4,502	$3,11_{2}$	$4,95_{6}$	n. b.
27	$Me_2C + B 1 \dots \dots$	4,532	$3,11_{6}$	$4,95_{9}$	n. b.
28	$Me_2C + B 1 \dots$	4,560	$3,12_{1}$	$4,97_{0}$	n. b.
29	B1	$4,\!445$	n. b.	n. b.	n. b.
30	B1	4,463	n. b.	n. b.	n. b.
31	B1	4,480	n. b.	n. b.	n. b.
32	B1	4,498	n. b.	n. b.	n. b.
33	B1	4,516	n. b.	n. b.	n. b.
34	B1	4,435	n. b.	n. b.	\mathbf{n} . b.
35	B1	4,553	n. b.	n. b.	n. b.
36	B1	4,569	n. b.	n. b.	n. b.
37	B1	4,586	n. b.	n. b.	n. b.
38	B 1	4,605	n. b.	n. b.	n. b.
39	$B 1 + C \dots$	4,496	n. b.	n. b.	n. b.
40	$B 1 + C \dots$	4,537	n. b.	n. b.	n. b.
41	$B 1 + C \dots \dots$	4,576	n. b.	n. b.	n. b.

Tabelle 1. Röntgenographische Befunde und Gitterparameter*

* Me = (Ta, Hf)-Mischkristall; Me₂C = (Ta, Hf)₂C-Mischkristall; B1 = (Ta, Hf)C₁ - x-Mischkristall; n.b. bedeutet nicht beobachtet bzw. nicht auswertbar.

neben (Ta, Hf)₂C bereits (Hf, Ta)C_{1-x} und (β -Hf, Ta) vorliegen. Bei Gehalten ab etwa 30 At% Hf sind die Proben zweiphasig und bestehen aus (Hf, Ta)C_{1-x} + (Hf, Ta). Aus dem Verlauf der Gitterparameter im Schnitt bei 33,3 At% C kann man auf einen Austausch Ta durch Hf in Ta₂C von rd. 10-12 At% schließen; dabei nehmen die Para-

Abb. 1. Verteilung der Proben und Aufteilung der Phasenfelder mit Lage der Konoden bei 1850°C im System; Hf—Ta—C ● röntgenographisch einphasig; ● röntgenographisch zweiphasig; ▲ röntgenographisch dreiphasig

meter auf: $a = 3,12_4$ und $c = 4,97_2$ Å zu (Abb. 2). Das homogene Feld von Ta₂C wird jedoch auf der Metall-reichen Seite nicht im gleichen Maße aufgeweitet. Die Parameter der an obigem Dreiphasengleichgewicht beteiligten Kristallarten betragen im Mittel: $a_{(Hf, Ta)} = 3,312$ und $a_{(Hf, Ta)C_{1-x}} = 4,56$ Å; die entsprechende Zusammensetzung der Metallphase liegt bei etwa 92 At% Ta (der kleine C-Gehalt bleibt unberücksichtigt), jene des Monocarbids bei rd. 32 Mol% TaC_{0,82}. Hafnium reichert sich demnach stark in der Carbidphase an (Abb. 1). Dies geht auch aus weiteren Legierungen im Zweiphasengebiet: (Hf, Ta)C_{1-x} + + (Hf, Ta)-Mischphase hervor. HfC + Ta ist demnach merklich stabiler als TaC + Hf. Man kann für den Bereich (Hf, Ta)C + (β -Hf, Ta), ähnlich wie z. B. von *R. Kiessling*¹⁹ für Boride vorgeschlagen, den Verteilungskoeffizienten ermitteln. Allerdings ist in dem betrachteten Bereich der Kohlenstoffdefekt von der Metall-Konzentration merklich abhängig. Werden die Verteilungskoeffizienten mit $\alpha_{\rm Hf}$ und $\alpha_{\rm Ta}$ bezeichnet, so gilt:

 $lpha = rac{x^{ ext{Me}}}{x^{ ext{MeC}}}, \qquad rac{x^{ ext{Me}} ext{ Konzentration des einen Metalls im Metall-Mischkristall}}{x^{ ext{MeC}} ext{ Konzentration desselben Metalls im Mischcarbid}}$

Abb. 2. Gitterparameter der (Ta, Hf)₅C-Mischphase ● röntgenographisch einphasig; ▲ röntgenographisch dreiphasig

mit $x_{\text{Hf}}^{\text{Me}} + x_{\text{Ta}}^{\text{Me}} = 1$ und $x_{\text{Hf}}^{\text{MeC}} + x_{\text{Ta}}^{\text{MeC}} = 1$. Nach dem Verlauf der Konoden fällt α_{Hf} mit zunehmendem Ta-Gehalt ganz rasch von 1 auf ca. 0,3 ab.

Die ζ -Phase wurde nicht beobachtet, weder in Probe 19 noch in 24. Aus dieser Tatsache muß auf ein sehr schmales Dreiphasenfeld: Ta₂C-Mischphase + ζ + (Ta, Hf)C geschlossen werden. Die Kristallart ζ erfährt jedenfalls durch den Hf-Zusatz keine nennenswerte Stabilisierung. Auf der Kohlenstoff-reichen Seite (Hf, Ta)C + C wird gegenüber dem Ansatz im (Hf, Ta)C eine geringfügige Zunahme an Hafnium gefunden. Eine mögliche Erklärung liegt in der Annahme, daß Kohlenstoff etwas Tantal löst bzw. mehr Tantal als Hafnium aufnimmt. Man hat indessen die Verzögerung der Kohlenstoffaufnahme zu beachten, die sich insbesondere bei vollständiger Carburierung bemerkbar macht.

¹⁹ R. Kiessling, 1. Plansee-Seminar, Springer-Verlag, Wien 1953, S. 297.

Diskussion der Ergebnisse

Der experimentell beobachtete Konodenverlauf im Zweiphasengleichgewicht Monocarbid—Metall-Mk entspricht der Erwartung, da die Stabilität des Hafniumcarbids mit $\Delta G_{298} = -44.3 \text{ kcal/Mol}^{20}$ merklich größer als die von Tantalcarbid ($\Delta G_{298} = -38 \pm 2.5 \text{ kcal/Mol}^{21}$) ist. Über die Ausdehnung von (Ta, Hf)₂C und damit die Zweiphasenbereiche (Ta, Hf)₂C—(Ta, Hf) sowie (Ta, Hf)₂C—(Ta, Hf)C_{1-x} läßt sich dagegen keine Vorhersage machen, doch kann man zweckmäßig mit einem fiktiven (Hf₂C) gleicher Struktur rechnen. Dabei ist zu beachten, daß die dazu homöotekte kubische Struktur im Falle von Hf—C fast noch in den Bereich des Monocarbids fällt (HfC_{1-x}).

Es sollen daher aus der experimentell ermittelten Phasenfeldaufteilung Rückschlüsse auf die Stabilität der an den Gleichgewichten beteiligten Kristallarten gezogen werden. Eine näherungsweise Auswertung ist in folgender Weise möglich.

Im Mittelbereich ist der maximale Kohlenstoffdefekt in der Mischphase (Hf, Ta) C_{1-x} etwa konstant, so daß hier keine Abhängigkeit vom Kohlenstoffgehalt zu berücksichtigen ist; ebenso bleibt die Kohlenstofflöslichkeit in der Metallphase außer acht.

Für ein Dreiphasengleichgewicht: (Ta, Hf)₂C—(Ta, Hf)C—(Ta, Hf) gilt wegen $\Delta G = 0$ für die Reaktion (Ta, Hf)₂C = 1,22 (Ta, Hf)C_{0,82} + + 0,78 (Ta, Hf):

$$\begin{split} 1,& 22\,\Delta G_{(\mathrm{Ta,\,Hf})\mathrm{C}_{0,82}} + 0,& 78\,\Delta G_{(\mathrm{Ta,\,Hf})} - \Delta G_{(\mathrm{Ta,\,Hf})_{s}\mathrm{C}} = 0\\ \mathrm{bzw.}\ 1,& 22\,\Delta G_{0\,(\mathrm{Ta,\,Hf})\mathrm{C}_{0,82}} + 1,& 22\,\Delta \overline{G}_{(\mathrm{Ta,\,Hf})\mathrm{C}_{0,82}}^{\mathrm{mix}} + 0,& 78\,\Delta G_{0\,(\mathrm{Ta,\,Hf})} + \\ &+ 0,& 78\,\Delta \overline{G}_{(\mathrm{Ta,\,Hf})}^{\mathrm{mix}} = \Delta G_{0\,(\mathrm{Ta,\,Hf})_{s}\mathrm{C}} + \Delta \overline{G}_{(\mathrm{Ta,\,Hf})_{s}\mathrm{C}}^{\mathrm{mix}}. \end{split}$$

Für die Berechnung der Beiträge der thermodynamischen Potentiale der einzelnen Kristallarten ($\Delta \overline{G}_i^{\text{mix}}$) wird, wie früher, näherungsweise mit dem Ansatz einer regulären Lösung gerechnet, gemäß:

$$\Delta G^{\min} = \sum a_{ij} x_i x_j + RT \sum x_i \ln x_i.$$

Als Wechselwirkungsparameter für HfC—TaC wurde der seinerzeit ermittelte Wert: $a_{\rm HfC-TaC} = -1200 \text{ cal/Mol herangezogen}^{22}$. In gleicher Abschätzung erhält man aus der Entmischungstemperatur von 1770°K im System: Hf—Ta¹⁵ für $a_{\rm Hf-Ta} = 2 R T_{\rm C} = 7100 \text{ cal/g_atom}$. Die

²⁰ Vgl. D. E. Thomas und E. T. Hayes, The Metallurgy of Hafnium, US Government Printing Office 1960.

 ²¹ O. Kubaschewski und E. L. Evans, Metallurgical Thermochemistry,
2. Aufl. Wiley, New-York 1956.

²² E. Rudy, H. Nowotny, F. Benesovsky, R. Kieffer und A. Neckel, Mh. Chem. **91**, 176 (1960).

Mischungslücke liegt hier einigermaßen symmetrisch. Für die begrenzte Mischreihe (Ta, Hf)₂C fehlen dagegen entsprechende Daten; wegen des kleinen homogenen Bereiches kann man näherungsweise $a_{\text{Ta}_2\text{C}-(\text{Hf}_2\text{C})} = x_{\text{Ta}_2\text{C}-(\text{Hf}_2\text{C})}$ setzen, also mit Idealverhalten rechnen.

Das Dreiphasengleichgewicht ist durch die gemeinsame Tangentialebene an die ΔG -Fläche gekennzeichnet. Für die Zusammensetzung der drei koexistenten Phasen gilt demnach²³: $\left(\Delta G - x \frac{\partial \Delta G}{\partial x} - y \frac{\partial \Delta G}{\partial y}\right)_{x',y'} =$ $= \left(\Delta G - x \frac{\partial \Delta G}{\partial x} - y \frac{\partial \Delta G}{\partial y}\right)_{x'',y''} =$ usw. Die Abschnitte der Tangentialebene auf den Ordinatenachsen der beteiligten Komponenten

gentialebene auf den Ordinatenachsen der beteiligten Komponenten liefern unmittelbar die chemischen Potentiale. Die ΔG -Fläche ist im behandelten Falle nicht als allgemeine Funktion von beispielsweise x_{Ta} und x_{C} darstellbar. Man kann jedoch ΔG auf den entsprechenden Schnitten als hinreichend charakterisiert ansehen. Die oben angeführte Beziehung enthält die Gleichheit der Tangenten in den koexistenten Punkten für irgendeine Konzentrationsrichtung, so daß z. B.

$$\left(\frac{\partial\Delta G_{(\mathrm{Hf, Ta})\mathrm{C}_{1}}-x}{\partial x_{\mathrm{HfC}_{1}}-x}\right)_{T, p} = \left(\frac{\partial\Delta G_{(\mathrm{Hf, Ta})}}{\partial x_{\mathrm{Hf}}}\right)_{T, p} \text{ gelten muß.}$$

Aus den Ansätzen für reguläre bzw. ideale Mischungen folgt dann:

$$\begin{pmatrix} \frac{\partial \Delta G_{(\mathrm{Hf},\mathrm{Ta})}}{\partial x_{\mathrm{Hf}}} \end{pmatrix}_{T, p} = 7100 \left(1 - 2 x_{\mathrm{Hf}}\right) + RT \cdot \ln \frac{x_{\mathrm{Hf}}}{x_{\mathrm{Ta}}} \\ \begin{pmatrix} \frac{\partial \Delta G_{(\mathrm{Ta},\mathrm{Hf})C_{\frac{1}{2}}}}{\partial x_{\mathrm{Hf}C_{\frac{1}{2}}}} \end{pmatrix}_{T, p} = \Delta G_{(\mathrm{Hf}C_{\frac{1}{2}})} - \Delta G_{\mathrm{Ta}C_{\frac{1}{2}}} + RT \cdot \ln \frac{x_{\mathrm{Hf}C_{\frac{1}{2}}}}{x_{\mathrm{Ta}C_{\frac{1}{2}}}} \text{ und} \\ \begin{pmatrix} \frac{\partial \Delta G_{(\mathrm{Hf},\mathrm{Ta})C_{1}-x}}{\partial x_{\mathrm{Hf}C_{1}-x}} \end{pmatrix}_{T, p} = \Delta G_{\mathrm{Hf}C_{1}-x} - \Delta G_{\mathrm{Ta}C_{1}-x} - \\ - 1200 \left(1 - 2 x_{\mathrm{Hf}C_{1}-x}\right) + RT \cdot \ln \frac{x_{\mathrm{Hf}C_{1}-x}}{x_{\mathrm{Ta}C_{1}-x}} \left(x = 0, 18\right)$$

Gute Übereinstimmung mit dem Experiment wird für:

$$\begin{array}{l} \Delta G_{(\mathrm{HfC}_{1/_2})} - \Delta G_{\mathrm{TaC}_{1/_2}} = 2500 \ \mathrm{cal/Mol} \ \mathrm{und} \\ \Delta G_{\mathrm{HfC}_1 - x} - \Delta G_{\mathrm{TaC}_1 - x} = -8500 \ \mathrm{cal/Mol} \end{array}$$

erhalten, wenn man den Gradienten der freien Bildungsenthalpie als Funktion der Konzentration $x_{\text{HfC}_{1-x}}$ bzw. $x_{\text{HfC}_{1/x}}$ und x_{Hf} aufträgt und

²³ Vgl. J. L. Meijering, NPL, The Physical Chemistry of Metallic Solutions and Intermetallic Compounds Vol. II. Her Majesty's Stationery Office, London, 1959.

in der Ordinatenachse gemäß den Gleichgewichtskonzentrationen verschiebt (Abb. 3). Die oben angegebenen Differenzen lassen sich für x = 1/2 entnehmen.

Abb. 3. Gradienten der molaren freien Bildungsenthalpien der Metall- und Carbidmischphasen im System: Hf-Ta-C (1850°C)

Die thermodynamischen Potentiale der einzelnen Kristallarten können dann für den Zwei- oder Pseudozweistoff berechnet werden. Wegen:

$$\Delta \overline{G} = \Delta G + (1 - x_{\rm A}) \frac{\partial \Delta G}{\partial x_{\rm A}} = a (1 - x_{\rm A})^2 + RT \cdot \ln x_{\rm A}$$

gilt für:

$$\begin{split} &-\Delta G_{z\,\mathrm{Ta}_{2}\mathrm{C}} = \Delta G_{0\,\mathrm{Ta}_{2}\mathrm{C}} - 1,22\,\,\Delta G_{0\,\mathrm{(Hf,\,Ta)C_{1}}-x} - 0,78\,\Delta G_{0} = \\ &= 1,22\,a_{\mathrm{HfC}-\mathrm{TaC}}\,(1 - x_{\mathrm{TaC}_{1}-x})^{2} + 0,78\,a_{\mathrm{Hf,\,Ta}}\,(1 - x_{\mathrm{Ta}})^{2} - \\ &- 2\,a_{\mathrm{(Ta,\,Hf)C_{1/2}}}\,(1 - x_{\mathrm{TaC}_{1/2}})^{2} - R\,T\cdot\ln\frac{x_{\mathrm{TaC}_{1}-x}^{1,22}x_{\mathrm{Ta}}^{0,78}}{x^{2}_{\mathrm{TaC}_{1/2}}}\,(a_{\mathrm{(Ta,\,Hf)C_{1/2}}}\approx \\ &\approx x_{\mathrm{(Ta,\,Hf)C_{1/2}}}. \end{split}$$

Die Gleichgewichtskonzentrationen werden aus Abb. 3 ermittelt (für gleich große $\frac{\partial \Delta G}{\partial x}$ -Werte). Damit läßt sich die rechte Seite obiger Gleichung als Funktion von $x_{\text{TaC}_{1} \dots x}$ darstellen. Für $x_{\text{TaC}_{0,82}} = 0,32$ (Gleichgewichtskonzentration bei 1850°C in der Monocarbidmischphase) erhält man: $\Delta G_{\text{Z}_{\text{Ta}_{2}\text{C}}} = +5400 \text{ cal/Mol}$, einen Wert, der mit dem aus dem System: Ta—W—C²⁴ ermittelten (+ 4200 bis + 5600 cal/Mol) gut übereinstimmt. Abb. 4 zeigt die damit errechnete Lage der Konoden

Abb. 4. Berechnete Konoden im System: Hf-Ta-C bei 1850°C. Der Monocarbidbereich ist experimentell festgelegt

für 1850°C. Innerhalb der Fehlergrenzen sind die gerechneten Gleichgewichte mit den experimentell beobachteten in völligem Einklang. Aus der Beziehung für den Energieumsatz:

$$\begin{split} \Delta G_{\mathrm{z_{Ta_{2}C}}} &= 1,22 \ \Delta G_{\mathrm{TaC}_{0,82}} - \Delta G_{\mathrm{Ta_{2}C}} \approx 5000 \ \mathrm{cal/Mol}, \\ \Delta G_{\mathrm{HfC}_{0,82}} - \Delta G_{\mathrm{TaC}_{0,82}} = -8500 \ \mathrm{cal/Mol} \ \mathrm{und} \\ \Delta G_{(\mathrm{Hf_{3}C})} - \Delta G_{\mathrm{Ta_{2}C}} = 5000 \ \mathrm{cal/Mol} \end{split}$$

ergibt sich, daß ein zu Ta₂C isotypes (Hf₂C) gegenüber einem Gemenge von Hf-Monocarbid und metallischem Hafnium bei 1850°C um 10000 cal/Mol instabil ist. (Hf₂C) tritt deshalb im Zweistoff: Hf—C nicht auf. Bei der gewählten Gleichgewichtstemperatur reicht das Monocarbid bis etwa HfC_{0.68}, kommt also nahe an die Zusammensetzung von HfC_{1/2} heran. Das heißt, daß der kubische Defektmischkristall merklich stabiler ist als eine dazu homöotekte hexagonale Phase (Hf₂C). Dies entspricht der allgemeinen Tendenz, wonach die hexagonal dichte Metallpackung gegenüber der kubisch dichten von der 6a- zur 4a-Gruppe

²⁴ E. Rudy, Z. Metallkde., in Druck.

abnimmt. Im übrigen ist das Achsenverhältnis c/a von Ta₂C und isotypen Phasen merklich kleiner als das ideale; auch hat *E. Parthé*²⁵ gezeigt, daß die Struktur von Mo₂C und vermutlich auch anderer Phasen von diesem Typus komplexer ist als früher angenommen.

Abb. 5. Berechnete Konoden und Aufteilung der Phasenfelder im System: Hf--Nb--C (1800°C). Der Monocarbidbereich ist hypothetisch

Der Dreistoff: Hf-Nb-C

Die Berechnungen erfolgen in gleicher Weise mit den entsprechenden Wechselwirkungsparametern²². Im Hinblick auf die nahe Verwandtschaft der Carbide des Niobs und des Tantals ist ein ähnliches Verhalten zu unterstellen; die für 1800°C wahrscheinliche Aufteilung der Phasenfelder ist aus Abb. 5 zu ersehen. Aus dem Vergleich der freien Bildungsenthalpie in den beiden Dreistoffen folgt, daß die Löslichkeit von Hafniumcarbid in Nb₂C noch kleiner sein sollte als in Ta₂C.

²⁵ E. Parthé, Mh. Chem. 93, 263 (1962).