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Abstraet. The paper explores the consequences of metastable self-trapping of positrons 
for the temperature variation of positron diffusion coefficients and trapping rates. It is 
shown that the diffusion coefficient is expected to decrease with increasing temperatures 
from a value determined by the scattering of positron Bloch waves by acoustic phonons 
to a much lower one governed by a hopping process. The temperature variation of the 
rate of trapping by small defects such as vacancies is more complicated since only at high 
temperatures can we expect it to be limited by the positron diffusion coefficient. At low 
temperatures the observed magnitude of the rate of trapping at monovacancies can only 
be understood if the trapping rate is controlled by the rate of capture of positrons that have 
arrived at the trap. 

Index Headings: Positrons - Vacancies in metals Positive muons 

In recent years positron annihilation has become a 
widely used tool for the investigation of vacancy-type 
defects, dislocations, and voids in metals (for reviews 
see [1-7]). The quantitative analysis of such ex- 
periments is based on the so-called trapping model. 
In its simplest, original form [8-101 the trapping 
model compares the rate cr at which thermalized 
positrons are trapped by a unit concentration of 
defects with the annihilation rate of the positrons. 
From this the product o-C, where C is the concentration 
of the defects capable of trapping positrons, but not 
the individual quantities 0- and C may be deduced. 
According to the preceding discussion, positron 
annihilation measurcments alone can at best give 
relative variations of the concentration of traps. When 
investigating trapping of positrons by monovacancies 
one often employs the temperature variation of the 
equilibrium concentration of monovacancies, C~qv, 
which obeys the simple Arrhenius law 

C~qv = exp (S~1 v/kB) exp( -- H~ v/k8 T). (1) 

In (1) HFv and Srv denote the enthalpy and the entropy 
of formation of monovacancies; as usual, k B is Boltz- 
mann's constant and T the absolute temperature. 
Fitting of (1) to positron annihilation measurements 
in order to determine Hey requires the knowledge 
of the temperature variation of the trapping rate alv 
of monovacancies. In 1972 the present author pointed 
out that in metals the diffusion coefficient D§ of 
thermalized positrons in metals must be expected to 
depend on temperature, and that, as a consequence, 
O-iv may also be temperature dependent [11,12]. 
Since then a considerable amount of theoretical 
[6, 13, 141 and experimental [15-17] work has been 
done in order to determine the temperature variation 
of the capture cross-sections of, say, monovacancies 
in metals. No clear and generally accepted picture has 
emerged from these studies. 

The present paper intends to develop a more general 
view of the theoretical situation than has been given 
hitherto. It will be seen that the recently discovered 
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possibility [ 18] of a self-trapped (polaron-like) positron 
state with negative binding energy adds unexpected 
new features to the problem. It is suggested that some 
of the difficulties in obtaining a well-defined tem- 
perature dependence of O-iv are associated with the 
existence of this metastable self-trapped state, which 
is thought [18] to be responsible for the "intermediate" 
temperature dependence in the temperature variation 
of positron annihilation in metals [19, 20]. While it 
will be possible to resolve some of the existing dis- 
crepancies, at least qualitatively, we shall see that 
difficulties remain, particularly in the determination 
of monovacancy formation enthalpies from high- 
temperature positron annihilation experiments. It 
appears likely that investigations using positive muons 
will help to solve some of these problems. Therefore, 
throughout this paper free reference will be made to 
muon experiments, the details of which will be discus- 
sed elsewhere [21]. 

1. Estimates of  Diffusion Coefficients 
of  Positrons in Metals 

By analogy with positive holes in non-degenerate 
semiconductors, the notion of diffusion coefficient of 
thermalized positrons in metals is intuitively clear. 
Not so clear is the quantitative relationship between 
the positron diffusion coefficient D+ and the capture 
rate per unit atomic concentration of traps. Brandt 
and Waung [22], as well as Seeger [11, 12], used 
Waite's formula [23] 

a = 4reD + r o / ~  A . (2) 

In (2) the trap is characterized by a capture radius ro; 
f2 A denotes the atomic volume. The difference in 
energy between the lowest trapping state and the 
ground state of untrapped positrons will be denoted 
by Ae. 
The physical concept behind (2) is that any positron 
that has reached the trap during its diffusive motion 
falls immediately into the trap. However, by analogy 
to electron-hole recombination in semiconductors, 
the transition into the bound state may be a rather slow 
process if the energy Ae that the positron has to give 
up is large compared with the maximum phonon 
energies in the crystal. In positron studies of defects 
in thermal equilibrium this is always the case, since 
trapping can be observed only if [1] 

A e > k J  ln(k BT%/h), (3) 

where h denotes Planck's constant, and z t the lifetime 
of trapped positrons. In thermal equilibrium measure- 
ments kBT is comparable with or larger than the 
maximum phonon energies and the logarithm in (3) 
is large compared with unity, hence Ae is large com- 
pared to the phonon energies. Frank and Seeger [24] 
have, therefore, considered a more general situation, 
in which the positrons have to overcome a barrier 
before falling into the bound state at the trap. They 
obtain the following expression for the trapping rate 

a ~ a(oo)-  4rcr~ 1 
f2A 1 1 (4) 

+ - -  
D+ koroAr o 

Here Ar o denotes the width of the barrier and k 0 the 
rate-constant for the capture by the trap. We see that 
the slower of the two processes (diffusion - charac- 
terized by the positron diffusion coefficient D+ - or 
capture - characterized by the quantity koroAro) 
determines the trapping rate o- and hence its tem- 
perature variation 1. 
In situations in which the main part of the positron 
energy to be given up during the capture process 
cannot be carried away by phonons, the most impor- 
tant process determining the positron capture rate 
in metals is presumably the excitation of electron-hole 
pairs. This process, which should be essentially 
independent of temperature, has been treated by 
Hodges [25], and by Bergersen and Taylor [26]. 
Seeger [11, 12] proposed that the mechanism limiting 
the mobility of thermalized positrons in metals is the 
scattering by acoustic phonons. This has recently been 
supported by Bergersen et al. [27], who considered 
the excitation of electron-hole pairs as an alternative 
mobility limiting process. For an elastically isotropic 
solid one finds for the scattering by acoustic phonons 
[6, 11, 12] 2 

(2rc)1/2h4 Y (1 - # )  
D.h = ~ (m+)S/z(%)Z(ksT)l/2 ( 1  - 2#)(1 + #)' (5) 

where m+ is the effective positron mass, ea the positron 
deformation potential constant [11], h=h/2~z, Y=  
Young's modulus and # =  Poisson's ratio. The mean 

1 In the literature the nomenclature on "trapping" and "capture" 
is not uniform. We propose to distinguish between the trappin 9 
rate cr and the capture rate k 0 or koroAr o. 
2 Equation (3.7) of [6] contains a printing e r r o r :  h 4 should be 
replaced by h 4. 
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free path of the positrons is given by [28] 

7ch 4 Y 1 - # 
lph = mZ+e2kBr (1 - 2/*)(1 +/*) '  (6) 

Equations (5) and (6) hold for temperatures E12, 13] 

m+ Y(1-/*) 
T > T O -= 12 kB(1 _ 2/,)(1 +/,)0 " (7) 

Below T O the positron diffusion coefficient, as limited 
by phonon scattering, increases exponentially with 
decreasing temperature (0 = density of the solid). 
The validity of (5) has been discussed in detail [13]. 
The principal result is that above T O the T - l /e-  

dependence of Dph (and hence also the T -  1-dependence 
of lph) should remain valid for thermalized positrons 
under quite general conditions. 
In all the preceding considerations the assumption 
has been made that the positrons may be described 
by Bloch-type waves or by wave-packets formed from 
them. Of course, this picture is applicable only if the 
positron mean free path is larger than the interatomic 
distance. For a numerical example we use the elastic 
data of a luminum (Y=7.142.1012erg/cm 3, #=0.34  
[29]), e a = l O e V  and T = 6 0 0 K .  We then find that 
for a mean free path of 2.4.10 -8 cm Eq. (6) gives us 
an effective mass m+ = lOre e, where m e is the free 
electron mass. Since the band-mass of positrons is 
unlikely to exceed me by more than a factor of two, 
we may conclude that for free or quasi-free positrons 
the mean free path Iph is long enough for (5) and (6) 
to be applicable. 
If the positron mobility is limited by the excitation of 
electron-hole pairs Bergersen et al. E27] estimated the 
diffusion coefficient 

considered the dominant  mobility-limiting process in 
pure metals 3,4. 
Using the same assumptions as in the above estimate 
of lph together with m+ = m  e we find D+ = 12.3 cm2/sec. 
The high-temperature experiments on aluminum give 
[30] 
~rexp(S~v/kB)= 1.2-1015 sec- 1. (9) 

If we insert SFv/kB=0.6 E5] and the atomic volume 
f2 A of aluminum, we may tentatively use (2) to deduce 
a capture radius r0=0.71 x 10-X~ This value is 
unrealistically small. The numerical values of m§ and 
ad may be somewhat larger than assumed in our 
estimate, but hardly to the extent to bring r 0 into the 
range of 2.10 - 8 cm. It is tempting to conclude that for 
monovacancies in aluminum koroAr o~D__ and that 
in this case the capture of positrons in the bound state 
is rate-determining, i.e., that we may simplify (4) to 
give 

= 4~k o r 2 A to/f2 A . (10) 

However, since the quantum mechanical transition 
rate is essentially temperature-independent,  such a 
conclusion would mean that o- should be temperature- 
independent over a wide temperature range. This is 
at variance with recent observations on A1 [16] and 
Au [17], reporting a T~-dependence with c~= 1.2_+0.3 
[16] and ~=0.9_+0.1 [17]. 
We must therefore look for an alternative explanation 
for the numerical discrepancy found above. We recall 
that in the derivation of (5) and (6) the assumption has 
been made that the positrons are in Bloch states. 
There is the alternative possibility that they are self- 
t rapped in polaron-like states giving rise to a dis- 
placement of neighbouring atoms. The consequences 
of this possibility for positron diffusion and trapping 
will be explored in Section 2. 

4 m e hSF De~- (8) 
(m+) 2 kBT' 

where ev denotes the Fermi energy. It is true that Deh 
decreases more rapidly with increasing temperature 
than Dph, but the temperature at which Deh = Dph, i.e., 
above which the excitation of electron-hole pairs 
rather than the phonon scattering would limit the 
positron mobility, lies so far above the melting point 
that we may completely disregard the effect of the 
electron-hole excitation on the positron diffusion 
coefficient. In conclusion, except for quite low tem- 
peratures where complete thermalization of positrons 
is not achieved anyway, phonon scattering must be 

2. The Effects of Self-Trapping 

The fact that the diffusion of both protons (see, e.g., 
[311) and positive muons [32] in metals proceeds by 

3 Estimates based on the theory of scattering of electrons by lattice 
imperfections show that this statement also holds if the scattering 
of positrons by impurities or dislocations is taken into account. 
See also Brandt [7]. 
4 We use the opportunity to point out that the assumption Deh ~ T 1/2 

made in Ref. [6], Fig. 3, is in error. This error arose from an er- 
roneous statement in a preprint of El4], which has been corrected 
in the printed version. It is regretted that because of the overlap of 
the production schedules of [6] and [141 this error could not be 
eliminated from [6]. In view of what has been said above, the 
reference to electron-hole pair creation should be completely 
eliminated from Ref. [6], Fig. 3. 
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thermal activation indicates that positively charged 
elementary particles may be localized on interstitial 
sites in metals. This "self-trapping", which is ac- 
compagnied by a distorsion of the matrix surrounding 
the positively charged particle, has recently been 
treated semi-quantitatively [18] following the work 
of Toyozawa and Sumi [33] on self-trapping of 
positive holes in semiconductors. In the present 
context the most important result is that a particle 
with mass m+ and elementary positive electric charge 
may be self-trapped in a metal if 

K h 2 
2rc~ 2 m+ --=~Cmax<~C0" (11) 

Here K is an elastic constant of the matrix and •0 of 
the order of magnitude 2.10 +7 cm 1. If the stronger 
condition 

/s < 2tCo/3 (12) 

is satisfied, the binding energy in the self-trapped 
state is positive, i.e., the self-trapped configuration is 
stable relative to a free or quasi-free ("Bloch-wave 
type") particle. For muons, protons, and deuterons 
(11) and (12) are fulfilled for any reasonable choice 
of the deformation potential constant ea and of K. 
If, however, 

2~Co/3 < tom, X < ~CO, (13) 

the self-trapped state lies above the Bloch-wave state 
by an energy 

37rh2 ( 3Kma x 2K~ ) eo=eo(tCo)= 2~+  ~c2 1 >0 .  (14) 

In this situation, which may be realized for positrons 
in metals, the self-trapped positron state is metastable 
with respect to the Bloch-wave state. It is virtually 
unpopulated at temperatures T ~ e o / k B .  At tem- 
peratures T >> eo/kB practically all positrons are in the 
self-trapped state. 
At intermediate temperatures the diffusion coefficients 
of "free" (Bloch-wave) positrons, D I, and of self- 
trapped positrons, Ds,, have to be weighted according 
to the probabilities 

1 
f f = 1 + A T - 3/2 exp( - eo/kB T)  (15a) 

and 

1 
f st = 1 - f I = 1 + A -  1T3/2exp(~o/kBT) (15b) 

that a positron is "free" or self-trapped. The numerical 
parameter A is such that A T  3/2 is large compared 
with unity. The average positron diffusion coefficient 
is thus given by 

+ = D f f  s + Ds~fs t = Ds~ + (D s -  D ~ ) f  s . (16) 

D s has been estimated earlier [11-13], comp. (5). For 
the estimation of Dst different physical pictures may 
be used. These have recently been reviewed by Stone- 
ham [34], and we may therefore be rather brief. 
The self-trapped positively charged particles may be 
considered as "quasi-particles". In an unbounded 
crystal we may form "Bloch states" for these quasi- 
particles; the energy eigenvalues associated with these 
Bloch states form a band structure 5. The general ideas 
of conductivity theory may then be used to calculate 
mean free paths, mobilities and diffusion coefficients 
of the quasi-particles, as limited by the scattering by 
phonons (see, e.g., [35]). Even if the self-trapping of a 
positron leads to a change in the interatomic distances 
by only a few percent, the effective mass of the particles 
will be much larger than the free positron mass. The 
estimate at the end of Section 1 indicates that this 
will reduce the positron diffusion coefficient and the 
positron mean free path so much that the Bloch-wave 
picture becomes inapplicable. 
The alternative description is to consider the self- 
trapped positrons as localized on individual interstitial 
sites, and to treat their motion from one interstitial 
site to an adjacent one as a hopping process. Since the 
positron (and also positive muons and protons) are 
light compared with the lattice atoms, they are able 
to follow the lattice vibrations almost instantaneously. 
The theory of rate processes in such situations has 
been developed by Flynn and Stoneham [34, 36] and 
by Kagan and Klingler [37]; it has been shown to be 
fairly successful for hydrogen in metals [34]. For 
temperatures above the Debye temperature and for 
so-called "direct" processes, in which the energy 
barrier A E  for the hopping process comes entirely 
from the need to "shift" the lattice displacement 

s The formation of Bloch states out of the self-trapped configura- 
tions localized at different lattice sites (which are indeed degenerate 
in an unbounded crystal) may lead to a lowering of the energy. 
However, because of the large effective mass of the quasi-particles 
the band-width is small compared with the free positron band width. 
The treatment introduced elsewhere [18, 33] and used above, in 
which the self-trapped state is characterized by one energy param- 
eter % to be eventually determined by fitting experimental data, 
appears completely adequate. Therefore, we continue to speak of 
"self-trapped" particles on the one hand, and Bloch-type particles 
on the other hand, in the latter case referring to positrons without 
appreciable lattice distorsions. 
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associated with self-trapping from one interstitial 
site to the next, one finds for the diffusion coefficient 

6/2 ] /  7~ 2 
D,,= ~_~lJI e x p ( - A E / k , T ) .  (17) 

In (17) is has been assumed that the lattice sites form 
a simple, body-centred, or face-centred cubic lattice 
with edge-length a of the elementary cube. J denotes 
the matrix element between wave-functions located 
at two adjacent interstitial sites, and AE is the activa- 
tion energy needed to take the lattice fl'om its con- 
figuration with the charged particle on the initial site 
to that with the particle on the final site. If the jump 
geometry is such that the jumping charged particle 
has to open up a window formed by neighbouring 
atoms, the activation energy contains an additional 
term, and the pre-exponential T -  1/2-factor is replaced 
by a temperature-independent term [-36]. 

3. Discussion 

In contrast to the positron case, in many metals the 
diffusion coefficient of positive muons may be 
measured without recourse to trapping phenomena. 
The diffusion coefficient of positive muons in copper 
may be represented by an Arrhenius-type temperature 
dependence with an activation energy of AE = 0.047 eV 
[32]. We may conclude from this that the positive 
muon is self-trapped, in agreement with the theoretical 
estimates [18], and that it moves by a hopping 
process, again in agreement with our estimate of 
Section 3. (The mass of a free muon is m, = 207 me. ) 
For positrons there is considerable experimental 
evidence [19, 20] that in many metals the self-trapped 
state is metastable, with so being of the order of 
magnitude of a few tenth of an eV [18]. This means 
that at low temperatures (but above To)6 the positron 
diffusion coefficient is given by (5). At intermediate 
and high temperatures D§ has to be calculated from 
(16). On account of the large effective mass associated 
with self-trapped positrons 7 in this temperature range 
D~t is given by (17) or its generalization. Df decreases 
with increasing temperature and is large compared 
to Ds,, which increases with increasing temperature 
except for T > A E / k  w Taken together with (15) this 
results in a complicated temperature dependence of 

6 With m+ =me Eq. (7) yields for aluminum To-21  K. 
7 Note that the transition between the self-trapped and the B[och- 
type positron configuration is discontinuous [181; hence in the 
self-trapped state m+ may always be expected to exceed m e by a 
large factor. 

D+, particularly if AE is comparable in magnitude 
with t 0. 
Positron diffusion coefficients are usually deduced 
from trapping experiments [-7, 38]. If there are no 
long-range forces between positrons and traps, (4) 
should be a fairly good approximation to the rela- 
tionship between trapping rate a and positron diffusion 
coefficient D+. We have already indicated that Bloch- 
type positrons have presumably difficulties in getting 
rid of their energy at small traps such as monovacan- 
cies 8. In such a situation koroAr o is likely to be small 
compared with D+ and temperature-independent, 
giving us - the  essentially temperature-independent 
trapping rate (10). 
The existence of self-trapping changes the situation 
of the preceding paragraph in two ways: (i) D§ is 
smaller than Dph as given by (5), and may in fact - at 
least in a certain temperature range - become so small 
that it falls below the capture coefficient koroAr o 
calculated from the electron-hole excitation mecha- 
nism. (ii) The coupling of a self-trapped particle with 
the lattice is likely to be so strong that a positron that 
has arrived at the trap has no diff• in giving up 
to the lattice the energy difference (Ae+e0) between 
a self-trapped and a defect-trapped positron. At 
temperatures larger than T* -= eo/ln(A T* - 3 / 2 ) k B ,  where 
diffusing positrons spend more than half their time 
in the self-trapped state [-18], koroAr o is thus expected 
to increase rapidly with increasing temperature, until 
(4) may eventually be replaced by (2). For positive 
muons, protons, deuterons etc. this simple situation 
is likely to obtain over the entire temperature range 
accessible to experiments because of to <0. 
For positrons, however, we have to expect a more 
complicated temperature dependence a(T) if self- 
trapping occurs with to >0, as appears to be the case 
for many metals. It is therefore not surprising that the 
attempts to deduce o-(T) from rather limited ex- 
periments [,15-17, 39] have not been successful. In 
particular, the comparison between low-temperature 
experiments on quenched-in vacancies and high- 
temperature experiments on the equilibrium vacancy 
concentration should be considered with utmost 
caution, since in the low-temperature experiments the 
positron diffusion coefficient may be given by (5) 

8 In this context "small" means small compared with the de Broglie 
wavelength of thermalized positrons. The wavelength of thermalized 
positrons is indeed large compared with the interatomic distance, 
particuIarly at low temperatures, i.e., in that temperature range in 
which for % > 0  diffusing positrons spend most of their time in 
Bloch-type states. 
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whereas at high temperatures the positron behaviour 
is dominated by self-trapped positrons. 
Simple results for the temperature variation of a can 
only be expected in temperature ranges where one 
and the same mechanism dominates. This condition 
is likely to be fulfilled in the experiments of McKee 
et al. [15], who compared the differences in the mean 
positron lifetimes between 100 K and 275 K of annealed 
gold and of gold that had been quenched from 923 K. 
Within their experimental error they find that o- is 
independent of temperature. Since the observations 
of Triftsh~iuser and McGervey [40] indicate that in 
gold T* lies well above room temperature, this is in 
agreement with the idea that (koroAro) -1 is the 
dominant term in gold at low temperatures. It must 
be said, however, that Hall et al. [17] have determined 
the temperature variation of o- between 115 K and 
298 K on one gold specimen quenched from 1073 K, 
and that they report a T 1/2 temperature variation. 
Further experiments are clearly necessary. 
We may ask the question whether it is possible to 
perform low-temperature trapping experiments on 
traps which are large enough for the capture at the 
trap to determine no longer the trapping rate. Cheng 
and Swanson [-41] have measured the lifetimes of 
positrons in quenched A1+0.09 at.-% Mn single 
crystals between 77 K and 300 K. They found two 
lifetimes, a short temperature-independent one, which 
they consider as the average lifetime of positrons 
annihilating in the bulk and in small vacancy defects 
(monovacancies, divacancies etc.), and a longer life- 
time %, which they attribute to the annihilation of 
positrons trapped in voids. The authors give arguments 
why under their quenching and annealing conditions 
voids may have formed in a concentration detectable 
by positron annihilation. The temperature dependence 
of the trapping cross-section associated with r2 is 
found to be proportional to T -~ with fi=0.3 <fl<0.8 
and thus compatible with a T-1/2-law. The authors 
interpret this as evidence for the T-1/2 temperature 
dependence of the positron diffusion coefficient, 
Eq. (5), in a situation in which the capture barrier is 
negligible because of the large size of the traps. The 
observed increase of z 2 with increasing temperature 
is accounted for by the Hodges-Stott-Nieminen- 
Manninen model of surface trapping of positrons in 
aluminum [42, 43]. 
The interpretation of Cheng and Swanson may be 
tested by extending the measurements to lower 
temperatures. The T-~/2-1aw cannot hold at very 
low temperatures; it must either be replaced by a 

faster rise below T o (which, according to (7), depends 
on the effective positron mass) or by a cut-offassociated 
with the finite capture rate k o. If the interpretation 
proves to be correct it verifies the predicted T-1/2- 
dependence of the positron diffusion coefficient [11, 12] 
and offers the possibility, through a determination of 
void sizes and number densities by electron microscopy 
and X-ray or neutron small-angle scattering, to deduce 
the absolute value of Dph. 
Paulin et al. [44] have recently made an attempt to 
measure D__ on fine-grained metal powders, making 
use of surface trapping. From experiments on Ni, Fe, 
Co, and NiFe-alloys they deduced D+=(1.0+0.5) 
10 -2 cm 2 sec-1 at 300 K. This value is clearly much 
too low to be compatible with (5). There are several 
possibilities that might account for this discrepancy: 
The assumption of no capture barrier at the surfaces 
may be in error; there may be additional trapping in 
the matrix, making D+ an apparent diffusion coef- 
ficient; or T* may be so low that the self-trapping 
mechanism is operative already at 300 K. 
Positrons are also trapped by dislocations, which are 
extended defects, too. They might, therefore, provide 
a possibility for determining Dph experimentally. 
However, long-range drift terms may become significant 
[6], and this introduces an additional temperature 
dependence into the trapping rate. Also, the nature 
of the bound state at dislocations is at present not too 
well known. It appears that additional work is needed 
before dislocation trapping can be used as a tool to 
measure positron diffusion coefficients. 
The discrepancy, mentioned at the end of Section 1, 
between the capture cross-section determined fi'om 
high-temperature experiments and that calculated 
from (2) and (5) with reasonable assumptions on the 
capture radius r 0 of monovacancies, appears to be a 
general phenomenon for metals [1]. It is qualitatively 
accounted for by the concept of metastable self- 
trapping discussed in Section 3, which leads to a 
considerable reduction of the positron diffusion 
coefficient relative to that of Bloch-type positrons 9. 
Quantitative comparisons between experiment and 
theory require the evaluation of the matrix element J 
appearing in (17). 
The theoretical prediction that the diffusion coefficient 
of self-trapped positrons contains an Arrhenius-type 
temperature dependence interferes with the accurate 

9 The empirical reasons why we consider it unlikely that in the 
case of the high-temperature experiments the discrepancy could be 
explained entirely in terms of a low capture rate at monovacancies 
have been given at the end of Section 1. 
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determination of H~v from high-temperature equi- 
librium experiments, since an Arrhenius-type tem- 
perature variation of a will be indistinguishable from 
the temperature variation of C]qv . The values of HV~v 
obtained sofar from positron annihilation must be 
considered as upper limits, requiring more detailed 
discussion. It is obvious that in this area much further 
work is needed. Experiments with positive muons, for 
which the theoretical situation is much clearer [21], 
should prove helpful. 
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