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A rigorous analytical solution is derived for the problem of the excitation 
of electromagnetic waves by a magnetic flux source located at the top of a 
wedge with impedance boundaries. The wedge is placed in a uniaxial aniso- 
tropic plasma that has been magnetized transverse to the edge of the wedge 
direction, 

Investigation of the processes of propagation and generation of waves in a confined 
plasma is of interest for its heating, diagnostics, and other aims. The fields excited in 
a magnetically active plasma have a complex wave structure. Studying diffraction phenomena 
is significantly simplified in a plasma that is located in a very strong external magnetic 
field (in a uniaxial plasm). Its properties are characterized by the diagonal tensor of the 
relative dielectric constant, one of the components of which equals the dielectric constant 
of an isotropic plasma while the other two are equal to unity~ Several problems are examined 
in the literature on the diffraction of waves in a uniaxial medium for a half-plane [1-3] 
and rectangular wedge [4]. Between them, the application of the method of changing the scale 
[5] makes it possible to propagate two-dimensional diffraction in a uniaxial medium at a 
wedge of arbitrary aperture with impedance boundaries (faces). 

Let the boundaries of the wedge and the bisectrix of the wedge angle subtend with the 
anisotropy axis the angles @i, ~2, and 8, respectively (Fig. I). The faces are 9haracter- 
ized by a dimensionless surface impedance ZI, 2 referenced to the impedance of a vacuum. 
The electromagnetic field is createdby a narrow slit at the edge of the wedge which has 
equal-strength magnetic field lines M = Jm6(x)6(y) exp (-i~t)z0 located there. The exponen- 
tial time factor has been dropped in what follows. The medium is characterized by the rela- 
tive dielectric constant tensor 
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where e = 1 - i/~ 2, ~ is the ratio of the field frequency ~ to the plasma frequency of the 
electrons. Maxwell's equations lead to a differential equation in terms of the unit magnetic 
component of the field Hz 
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where e0, ~0 are the dielectric constant and magnetic permeability of a vacuum. The imped- 
ance boundary condition Er = ZHz is given at the faces of the wedge, where Er is the compon- 
ent Of the electric field that is tangent to the face. By introducing the coordinate 9 = 
v~y, the differential operator in Eq. (2) becomes a Laplace operator in the coordinates (x, 
y), and Eq. (2) becomes a wave equation for a vacuum. The transition to polar coordinates 
r, ~ and the introduction of the modified coordinates and the impedance 
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r = rN (?), ? = arctg(V'~tg ?), Z = F ~ Z j N  (?) (3)  

t r a n s f o r m s  t he  o r i g i n a l  boundary  problem f o r  a u n i a x i a l  medium i n t o  an e q u i v a l e n t  p rob lem 
f o r  an i s o t r o p i c  medium. In  Eqs.  ( 3 ) ,  N(~) = / c o s  2 ~ +  e s i n 2 ~  i s  t he  s o - c a l l e d  r a y  index  o f  
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refraction and the value of the arctangent is chosen such that ~ for e + I. The exact 
solution of this equivalent problem is known [6]. It has the form of an integral along the 
contour C located near the Im~ axis and passing through the point e = 0: 
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In Eq. (5), ~(~) denotes the special Malyuzinets functions [7X81A in the composition of the 
arguments of which enter the half-planes of the wedge ~= 0,5(92--qDi) and the complex Brew- 
ster's angles @z,2 = arcsinZ'1,2. At great distances from the edge, the integral in Eq. (A) 
can be approximately calculated by the method of steepest descents, for which the contour C 
is deformed into the line Re~ - grad(Imp) = 0. The contribution from the saddle point ~ = 
0 yields a cylindrical wave HE(r, (P). If in the process of deforming the contour there takes 
place an intersection of the poles in the function under the integral in Eq. (5), then their 
contributions yield surface waves H1,2(S)(r, q~), which propagate along the faces of the wedge 
from the edge to the periphery. Thus, in the far field, the slit-radiator field in a uni- 
axial medium will consist of three terms: 
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The presence of the Heaviside functions n(a) in Eq. (6) indicate the necessity to satis- 
fy the existence condition of the surface waves, it is understood that all parameters in 
Eqs. (6)-(8) denoted with a (-) sign are transformed according to Eq. (3). 

Analyzing the field in the far zone must be done differently for the cases e ~ 0. For 
r > 0 the ray index of refraction N(@) is always real and the fields primarily retain the 
structure that they had in an isotropic medium. A directional diagram of the radiation 
field D(~) is determined by IHE(r, ~)I = and it has the simple form: 
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The surface waves, as in the isotropic case, are possible only for inductive impedance of 
the faces (ImZ1, 2 < 0). If ReZI,= = 0, these waves propagate along the faces without atten- 

uation with a retardation coefficient of N (~I,2)c0s812 = ]/cos=?l,=~-a(sin2?l.2 t Q~'~, where Qi,2 = 
iZi,2 > 0. The retardation coefficient in a uniaxial plasma is less then the retardation co- 
efficient in free space, but greater than the retardation coefficient in an isotropic plasma 
for the same frequency independent of the slope angle of the impedance surface to the aniso- 
tropy axis. The retardation of the surface wave is a maximum when the impedance face is 
located along the anisotropy axis. For purely reactive impedancefaces (8 = i~), the direc- 
tional diagram of Eq. (9) does not depend on the sign of the impedance: 
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In Eqs. (9) and (i0), ~=0,S(~f~-~2) is the bisectrix of the modified wedge. Figure 2 shows 
the diagrams calculated according to Eq. (10) for a half-plane. In comparison with an iso- 
tropic medium (dotted curve), the maximum in the radiation is formed not in a direction 
close to the bisectrix of the wedge, but near directions perpendicular to the anisotropy 
axis. The diagram is plotted for QI = 0.5, Q= = 1.0, and r = 0.I; the angles are referenced 
from the continuation of the half-plane. 

For ~ < 0 (resonance frequency of the region), the field structure in the far field 
sharply changes [5]. The radiation field turns out to be concentrated in the "exposed" re- 
gion of space l~l<u, l~--nl<~. The boundary of the shadow is determined by the angle = = 
arctan (lel-I/2), the far field condition <0rN(~) >> 1 is not fulfilled on that boundary, and 
all components of the field become infinite. In the "dark" region all the fields are expon- 
entially attenuated. The noted discontinuities in the field are characteristic for wave 
equations of the hyperbolic type and they are removed if losses are introduced into the plas- 
ma. In the "exposed" region, the field in the far zone is entirely described by Eq. (6)-(8) 
if one imposes analytic continuation of the solution into the region where 0 ~ arg e ~ ~. 
It can be shown that for e < 0 the modified angles should be expressed according to the equa- 
tion 
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where the integer m is determined from the condition Imv -<Pl < 0.5 ~, and the number s = 0 
in the !'exposed" region and s : -sgn (sin 2@) in the "dark" region. The structure of the sur- 
face waves for ~ < 0 also varies. They can propagate along the faces without attenuation 
only in the "exposed" region and only for capacitive impedance of the faces (Qj < 0). The 
impedance must satisfy the condition 

I Qil < Vsin (= t gi) sin (~-- ?/).'cos ~. (12) 
A 

If Eq. (12) is satisfied, then the modified Brewster's angles turn out to be real: 8j= 
arcsin [--Qcosa/V sin(cL~-epj)sin(a--gi)]. From Eq. (7) it follows that in the resonance region 
the arguments of the ~ -functions are altered, which substantially limits the possibilities 
for obtaining a diagram in a form containing only elementary functions. It turns out to be 
possible to obtain such a representation for angles of the wedge aperture that are multiples 
of 0.5 ~ if the impedances of the faces differ in sign and their moduli are related by 

. fl~in (= + '?:I-sin (= - =~) 
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Let, for example, conditions (12) and (13) be fulfilled and a rectangular wedge of r = 0.75 
be oriented such that its bisectrix is located in the "exposed" region [q~l < c~. Then the 
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modified angles 9=~9', ~ = i~' are imaginary, the modified Brewster's angles e2 = -01 = 8 
are real, and the directional diagram of the radiation field has the form 

c h " i  (,~' A --~') 
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The established variation in the directionality of the radiation of a slit source in 
a confined uniaxial medium as a function of the orientation of the anisotropy axis is pre- 
served in a plasma with a finite magnetic field, which must be allowed for in practical 
investigations. 
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