
THEORY OF CLUSTER SYSTEMS IN PLASMA-LIKE MEDIA 

A. N. Kondratenko, V. M. Kuklin, I. P. Panchenko, 
and S. M. Sevidov 

UDC 517.958 

The conditions of existence of stable formations of charged particles (clus- 
ters) moving in a plasma-like medium are discussed in this paper. The inter- 
action of clusters is considered in the framework of a one-dimensional model. 
It is shown that the stability of a cluster depends strongly on the number 
of particles that form part of it. When two clusters moving with respect to 
each other interact, they break up if the relative velocity is fairly low. 
Fast-moving clusters hardly interact with each other. 

io The formation of bound ~states (clusters) of several moving particles of the same 
sign (ions) was observed in their transit through thin films of plasma-like media (see, 
for example, [i, 2]). As is well known, when a fast charged particle moves in a matter a 
so-called wake (the radiation field of the longitudinal perturbations of the medium) devel- 
ops behind it [3-5]. The mechanism of the formation of such clusters of fast charged parti- 
cles was discussed in [i] and in more recent publications and is due to the capture of 

charged particles into the potential well of the wake of the ion. The characteristic dimen- 
sion of the clusters is of order V0/~ p (V 0 is the particle velocity, ~p is the plasma fre = 
quency of the electrons of the medium) and exceeds the dimensions of the ionized molecules 
used in the experiments of [i, 2]. 

It is of interest to consider the stability of clusters of such a type and to discuss 
their possible means of formation and features of interaction. For a better understanding 
of the mechanisms of these phenomena, it is meaningful to consider the most simple one-dimen- 
sional model first of all. In a considerable number of interesting cases the one-dimensional 
description preserves the qualitative physical picture of the phenomena with relative simpli- 
city (see [6, 7]). 

2. We consider a one-dimensional* bunch of charged particles moving at a constant ve- 
locity V 0 in nonconfined plasma. Let the particle density in the bunch be n(~), where ~ = 
x - V0t; the charge of one particle of the bunch is q; the plasma density np considerably 
exceeds n(g). Going over to the Fourier representation 

+~ 

n(~)  = ] d~e--~"~ .n (~), ( 1 )  

we find the Fourier transform of the electric field without difficulty by means of Poisson's 
equation: 

E (~,  ~) = - -  i8=q~ (~) n (~)/[~.~ (% ~)], (2) 

where e(~, ~) = 1 - ~e2/(~ + cv0) 2 is the plasma permittivity in the (~, ~) representation in 
the rest frame of the bunch; ~e = = 4~eanp/me; e, me are the charge and mass of the electrons 
of the plasma; 6(x) is the delta function. 

We implement an inverse transformation, under which 

n t (~) ' e ~  | (2~)-~ 
, : i ( ~ )  = d n - - ~ ( n )  , (3 )  

(o, n) | ( 2 ~ ) - '  [1 - -~  (o, ~)1 
Lr  (D - |  L 2qn -2 

*A "one-dimensional particle" is a uniformly charged infinite plane with surface charge 
density q. 
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Fig. I. Initial distribution of the particles in the cluster 
(shown by circles) and the shape of the potential well formed 
by them. 

Fig. 2. Phase picture of cluster evolution (N = i0). 

where nt(~), ni(~), respectively, are the total charge density and the charge density induced 
in the plasma, and ~(~) is the potential of the electric field in the plasma. The expression 
for E(~, <) and this entire discussion are valid for V02 >> VTe 2 = Teme, where Te is the elec- 
tron temperature of the plasma. Integrating nt(~) with respect to ~, we find that the total 
charge in the plasma is zero. Thus, the charge induced in the plasma is equal to the charge 
of the bunch with the opposite sign. For a single moving particle n(~) = 6(~), n(K) = i. Re- 
taining the small imaginary part in r ~) [8, 9] and using the relation 

~ - ~ - l  (0, x ) =  (2~o) - l  [ ~ --P~o ~ +P ~u - -  i=~ (~ --  ~o) § 

+ i~a (u + Ko) ] ,  ( 4 )  

where P/x is the principal value of x -z, we write down the following expressions for the 
electric field EI(~), the charge density induced in the plasma, niz(~), and the potential 
~(~): 

n,,(~)|=o(-~) I x~176 ' ( 5 )  
O, (~)j L4=~q~q sin (~0~) 

/O, x < O is the theta function. where ~ , ~ = e / V o ;  O ( x ) =  /1, x > ~ O  

It is important to note that, allowing for finite absorption in the plasma, the right- 
hand sides of (5) are multiplied by ~exp (~$), where ~ - v'/V0, v' is the collision frequency 
of the electrons in the plasma. In the one-dimensional model there is no electric field 
ahead of the particle, while, for convenience, the potentialis selected equal to zero. 

If there are few charged particles moving in the plasma, their behavior can be calcu- 
lated only by means of numerical methods on a computer. The self-consistent system of 
equations which takes into account the back reaction of the field on the particles has the 
form 

where 

-~ ( z )  = _ _ 

d~,~ d,~ 
- -  = '~r  ~ (~0, 
ct: ~ =  

4r. 
"~ cos [2=g~ ('-.~ --  L)] .9 (<~ --  ",), 

" = tco~/2~.; ~ = t% (v --  Vo)/(2:'~); "T 2 = q~tCo/(2=rnq)  , 

g ,  = (1 + p~) - l ;  p = 2=/(tcovo); ~ = ;-t;. 

(6) 
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Fig. 3. Phase picture of the interaction of two clusters 
with initial &v =-~.3. 

Fig. 4. Evolution of a short bunch of particles into a 
cluster. 

N is the total number of particles, e = q~0E/(2~mqy=)�9 

3. In the general case, for an arbitrary initial distribution of the moving charged 
particles in the plasma, the original configuration of the bunch will be distorted�9 However, 
the particles can be positioned so that the stability of the bunch is improved appreciably. 
We will show it is possible to construct such a relatively stable bunch - a cluster. Let a 
charged particle moving in a plasma be the point $ = Sz = 0. We position a particle with the 
same velocity at the point $ = ~= = ~/(iK0) , where the electric field of the leading parti- 
cle is zero (or the potential is minimal, which is the same). Then, locating each subsequent 
particle at the potential minimum of the field produced by the particles positioned ahead 
(see Fig. i), we can construct a cluster whose stability is extremely high�9 The initial 
position of the particles for such a bunch is determined by the expressions 

~ = O; Ko~.=--~arcsin(I/|/m -1), (7) 
m = 2  

while the initial velocities of all the particles in the considered coordinate system are 
zero. The forces exerted by the radiation field on each particle of such a cluster are the 
same and equal to the force of deceleration of a single particle. The amplitude of the elec- 
tric radiation field behind a cluster in which the number of particles is N exceeds the am- 
plitude of the radiation field of a single particle by a factor V~. Thus, the radiation 
intensity of such a cluster of N particles is minimal and proportional to N. We note that 
for the cluster particles p is usually extremely small and can be disregarded�9 

Figure 2 shows the evolution of the particles of a cluster formed in accordance with 
laws (7). 

Analysis of the results of the numerical calculations of the problem for the investiga- 
tion of the dynamics of single bunches of the II kind indicated that when each of the clus- 
ter particles is positioned at a point corresponding to the minimum of the field energy of 
all the preceding particles, the bunch formed is stable for a long time (of the order of 
tens of time units). It can be seen in the phase picture (Fig. 2) that the cluster parti- 
cles, strictly observing the initial spatial distribution, are decelerated at the same veloc- 
ity. The relative spread in velocities for T = 30 is 0.01%, and this does not exceed the 
accuracy of the numerical calculations. 

If the initial spatial distribution differs from the equilibrium (cluster) distribu- 
tion but this difference is negligible, the bunch obtained will evolve as a system of bound 
particles which execute translational-vibrational motion within the limits of the potential 
well of the adjusted field of all particles. In order to determine the limiting value of 
the displacement of the particles from the equilibrium distribution, we turn to Fig. i, 
which shows the potential well of a cluster and the spatial distribution of the particles in 
it. It can be seen that for the satisfaction of the condition of cohesion it is necessary 

435 



that the total energy of each particle (if there isno initial velocity it is determined by 
the field potential of all the preceding particles) be nonpositive. For a particle under 
the number 2 the potential well is the negative semiarc of a sine curve; therefore, the maxi- 
mum displacement for it is 1/4 of the period of the plasma (natural) oscillations. For the 
next particles the potential well becomes steeper as the number of the particle increases; 
hence, the maximum displacement is reduced. Hence, it follows that as the number of parti- 
cles in the bunch increases the probability of the "breakup" of the bunch as a bound system 
increases and the time of its existence as a beam decreases. Computer calculations for the 
values N = 3, 10, 50 showed that when there were three particles in the bunch and they were 
considerably displaced from the position in the cluster the particles retained the bound 
state during a time -20-30, while the spread in velocities did not exceed 20%. For N = 10 
the significant displacement of half of the particles already led to an appreciable spread 
in velocities (A~ ~ 30%) during time T = i0, while for N = 50 the displacement of the last 
20 particles by 0.001 from the equilibrium state led to the complete breakup of the bunch 
during the same times. 

4. We now consider the interaction of two clusters with the relative velocity Ag. If 
A~ appreciably exceeds the critical velocity AUcr = d~cr(N), the influence of the clusters 
on each other can be disregarded. The value of Agcr(N) is determined by the minimum binding 
energy of the particles in the cluster. The depth of the potential well ACm, confining the 
(m + l)-th particle of the cluster between the particles with numbers m + 2 and m, is 

4,=q '  ~ -  
•  ~ I I "  ,;t [l - ( I  - m-')'.'~]. ( 8 )  

�9 ~ .  / 

Thus, for fairly large N, we have A~ - l/N, Therefore, clusters with a large number of 
particles break up at lower relative velocities. However, it is unfortunately not possible 
to give the critical velocity Agcr as a function of N in explicit form. 

It follows from the results of the numerical analysis of the system of equations (6) 
for two clusters with N I = N 2 : i0 and IA~I > A~cr that the relative position of the parti- 
cles in the clusters does not vary after interaction. ,Thus, they retain their stability. 
But if IAqI approaches Agcr(lO) " 0.3, first the cluster which is behind at the initial time 
breaks up, and then (to a somewhat lesser extent) the second cluster breaks up. Figure 3 
shows the evolution of a system of two clusters with N I = N 2 = i0 and [A~ I = 0.3. 

5. In conclusion, we discuss the possibility of the formation of a cluster of several 
charged particles in a system with negative friction. Such a situation is realized if a 
neutral stream containing ions propagates in a plasma-like medium (we note that collective 
processes which lead to the development of instabilities predominate when there is a large 
concentration of charged particles in the stream [i0]). In this case, the second equation 
in system (6) has the form 

d~__~= ~ (~ )  _ x~ ,  
d: 

Figure 4 shows the behavior of three arbitrarily positioned charged particles for X : 3. 
It is easy to verify that these particles form a cluster for T ~ 40. Clusters consisting 
of a larger number of particles can be obtained in exactly the same way, but in this case 
their formation time increases. 
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