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We study the wave functions and energy levels of a one-dimensional oscillator 
with a centrifugal barrier of the form s(s + l)/x 2. It is shown that a bar- 
rier of this kind automatically implies the point potential A(s)6(x)/x. It is 
also shown that two different sets of even states are physically admissible, 
but that only one of these sets transforms continuously into the set of states 
of harmonic oscillator when the centrifugal barrier is allowed to vanish and 
is preferable for this reason. 

An oscillator with a centrifugal barrier has been considered in several papers (for ex- 
ample, [1-611. All of these authors choose the same wave functions for the radial motion 
(odd in the one-dimensional case -~ < x < ~) [7, p. 158] but differ in the construction of 
the even states (-~ < x < ~). 

We choose the potential in the form (~ = 2m = i) 

V(x) xa + s ( s + l )  1 
= . , s > - - - .  ( 1 )  

x ~ 2 

in order to exclude the case where the particle falls to the bottom of the well [7, pp. 143- 
146]. 

The difficulty in constructing the even eigenstates of the Schrodinger equation is due 
to the discontinuity of the wave functions and their derivatives at x = 0 because of the 
singularity of the potential (i). 

Indeed, the independent solutions of the stationary Schrodinger equation with the poten- 
tial (I) in the region x > 0 will be [7, p. 158; 4] 

X ~ 

,5_, ( x ) = x ' + l e - S F  2s~. 4a--E , s + ~ ,  , 

where F(u,  v,  z) i s  t he  d e g e n e r a t e  hype rgeome t r i c  f u n c t i o n  [7, pp. 741-745];  E i s  the  energy  
o f  the  s t a t e .  These s o l u t i o n s  s a t i s f y  boundary c o n d i t i o n s  independent  of  E in the  l i m i t  
x - ~ 0 .  

When s > 1/2 only solution (3) is quadratically integrable about zero; therefore, we 
must continue this solution into the region x < 0 to construct both the even and odd solu- 
tions. The energy levels then are doubly degenerate. From the continuity in s and the con- 
tinuity of ~(x) in x, this set of even functions can also be extended to the region -1/2 < 
s < 1/2 [2, 3]. The discontinuity in ~'(x) as x + 0, however, cannot be avoided for -1/2 < 
s < 0. This even function does not transform into the even harmonic oscillator function 
when s = 0. In [4] the functions (2) were chosen is the even functions for -1/2 < s < 1/2; 
these functions transform continuously in s into the even harmonic oscillator functions. 

Because of these problems we attempt to construct the even functions ~s on the basis 
of a self-adjoint expansion of the differential Hamiltonian operator [8, pp. 478-489] of the 
oscillator (I): 
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^ d~-~ (x2+ s (s+l ) )  
--1-1~ = dx----i - -  x~ ~. (4) 

Because the singularity of the potential coincides with the singularity of the Bessel opera- 
tor [8, pp. 535-539], the expansion of the Hamiltonian "(4) is classified as an expansion of 
the Bessel operator, and the even functions of the Schrodinger equation (i) and (2) can be 
(for -1/2 < s < 1/2) any functions of the form (~=(x) E L2(0, ~)) 

q,~ (x) = cos =q,+ (I xl)  + sin =q,- (I x[) ,  ( 5 )  

where the mixing angle a(s), --"/2 < a ~ ~/2, is chosen from physical considerations and the 
Hamiltonian (4) will be self-adjoint on the functions i~_!x)E L2(0, | Satisfying the same 
boundary conditions as x § +~ as the functions (5). 

As in the nonsingular case (Iv(0)[ < ~), these conditions are conveniently written in 
terms of the logarithmic derivative of ~(+0) [9]. For the functions (5) and (3) the bound- 
ary conditions have form 

lim 1 % (x__~) + = t g a ,  ~.~ ~ 
x-~+o(2s-k-1) x 2s ~, ,(x) "2 ' (6) 

t 

lim (x) s q - I  = 0 ,  ~ = - -  (7) 
~,~ +o (x) x 2 

In the case of the even functions, the condition ~'(0)/~(0) = 0 leads to a 6-function 
addition to the potential [i0]. Therefore, in our case, choice of the condition (7) auto- 
matically includes the additional barrier 

2(s + 1)~(x) (8) 
~V (x) = 

lx l  
which leads to a break in We'(X) at s = 0 and to a twofold degeneracy with respect to parity 
(Een, E0n are the energies of the even and odd states) 

Ee, = E  on = 4 a + 2 s  + 3, n = 0 ,  1, 2... (9) 

Condition (6) for ~ gives a different additional singular potential 

~V(x)= 2s~(x) +21xi~(2 s+ 1 ) ~ ( x ) t g ~ .  ( l o )  
Ixl 

The possible choice a(s) = 0 gets rid of the weak barrier 2[xl=S(2s + i)tan ~.6(x). There- 
fore, ~ = 0 is assumed to be physically justified [6V(x) = 0 when s = 0], together with the 
choice a = s/2. The twofold degeneracy in (9) is removed when = = 0: 

E~a=4n--2s--[- l=/=Eon,  n.=O,  1, Z . . .  (11) 

Objec t ions  have been r a i s e d  a g a i n s t  the  even s t a t e s  (2) ,  (6) ,  (11).  In [3] the  o b j e c t i o n  
was the  a d d i t i o n  of  the  6 - f u n c t i o n  s i n g u l a r i t y  (10) to  the  p o t e n t i a l ,  but the  same s i n g u l a r -  
i t y  (8) a l s o  occurs  fo r  the  choice  We = ~- of  (3) and (8) .  In [2] the  s t a t e  (6) (~ = 0) ,  
(11) was r e j e c t e d  because of  the  d i s c o n t i n u i t y  of  the  q u a n t i t y  ~ ' ( 0 ) ~ ( 0 ) ,  but the  p h y s i c a l l y  
meaningful current j - 21m~*~' -= 0 is not discontinuous. Another reason for rejecting the 
state (ii) in [2] was the divergence of the corrections to the energy levels (ii) in the 
first order of perturbation theory under the transformation s o + s o + 6s. Such a divergence 
does occur for the perturbation 6W(x) = (2s o + l)6s/X 2, but a valid perturbation would be, 
according to (i) and (i0) 

and this perturbation, with an accurate integration using the normalized wave functions of 
[4, 5],  leads  to f i n i t e  c o r r e c t i o n s  which co inc ide  wi th  the  e x a c t . r e s u l t  fo l lowing  from (11):  

6En = -26s. (The integral /= 2j'~L~ (x)dx is evaluated from a(a > 0) to +~ upon the sub- 
0 

stitution 6(x) + 6~ -- ~), ~ > 0. After evaluating the integral, we first take the limit 
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e + +0, and then the limit = + +0. The divergences in the two terms of I cancel one another 
when the latter limit is taken.) The argument of [4] for the advantage of the functions (2) 
as the ~s (continuous transition with respect to s from ~e of (2) to the even harmonic oscil- 
lator functions) is correct but insufficient: One can choose the mixing angle = in the form 
of the function =(s), =(0) = 0; then the continuity with respect to s will be guaranteed and 
only an additional argument, such as discarding the weak barrier in (I0), makes the choice 

E 0 unique. 

The functions (2) and (Ii) have a number of interesting and apparently paradoxical fea- 
tures which are the result of the mutual effect of the potentials (i) and (i0) with ~ = 0. 
The levels (ii) decrease as s increases. The ground-state level [n = 0 in (Ii)] lies below 
the minimum in the potential (I) when s + 1/2 - 0. The density of particles p = ~e = of (2) 
increases under the barrier (s ~ 1/2 - 0). For the functions (2) the mean kinetic energy 

= +~ and potential energy V = -~ both diverge, but the physically meaningful total energy 
is given by ~ = Een from (ii). Here E is calculated with the help of regularization and 

the use of the limit ~ +0, as was done for the integral I. 

When ~ ~ 0, • the functions (5) are physically meaningful as the even wave functions 
of an oscillator with a 6-function barrier [when s = 0 we have 

V (x) = x 2 + 2tg~ta (x) (12) 

instead of V(x) = x a] to which the centrifugal barrier s(s + l)/x 2 is switched on adiabati- 
cally. The equations for the eigenvalues (9) and (ii) become transcendental equations for 
this choice of the @e(x) (compare [ii]) 

F(. 1 - -2 s - -  E,, s) 
+ tg= = O, (13) 

and the normalized wave functions take the form 

4 . [~=,) 

X ~ 

K! 
(x)=It( -s) 

l ,, 

s, x2/, (14) 
2 / 

e - T x . , U {  I - -  2s - E,, X 
4 

where U(a, b, y) is the degenerate hypergeometric function of the second kind [12]. When 
s = 0 the Eqs. (14), (13) and (3), (9) give the solution for the problem of an oscillator 
with a 6-function wall(12) (compared to the analogous problem of a potential box in [13]). 

Hence, a centrifugal barrier s(s + l)/x 2 for the one-dimensional motion in the field 
of an oscillator (or in any even confining field V(• = +~) must, in the quantum-mechani- 
cal treatment, involve the strongly singular point potential A(6(x)/Ix I ) whose magnitude 
depends on the barrier parameter s and on the choice of the boundary condition for the even 
functions. Such a barrier (well) does not occur in the classical treatment of the motion in 
the field s(s + l)/x 2, and hence it is a purely quantum effect. 

Physically there are two possible quantum mechanics of the oscillator (i). The first 
is given by (2) and (6) with = = 0 and (Ii), and it transforms continuously into the quantum 
mechanics of the harmonic oscillator in the limit s + 0. The second is given by (3), (7), 
(8), (9), and when the centrifugal barrier is switched off it leads to a distorted (because 
of the barrier 2(6(x)/Ix j) harmonic oscillator: the Klauder phenomenon [3, 14]. Each of 
the choices for ~(x) has its advantages and disadvantages, as discussed here. The choice 
(2), (6), = = 0, (ii) seems to us to be preferable because it continuously (with respect to 
s) transforms into the even states of the harmonic oscillator because of the absence of de- 
generacy and the Klauder effect, and because of its sensitivity to the 6-function wall (12) 
[the solution (3), (9) is not sensitive to the substitution x 2 ~ x = + 2 tan ~6(x) in the po- 
tential (i)]. 
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Similar results also occur for the one-dimensional (-~ < x < ~) motion in an even re- 
taining field with the singularity V(x) " A/Ix I, 1 ~ 9 < 2 for Ixl + 0. In this case the 
additional barrier arising upon the choice of even states which transform continously into 
oscillator states [the analog of the potential (i0), = = 0] is less singular than the addi- 
tional barrier 6V = 2(6(x)/Ixl), which appears upon the choice of "truncated" odd states as 
the even states [the analog of the potential (8)]. This fact is an additional argument in 
favor of the choice of the functions (2) for the ~e. 

The authors acknowledge useful discussions with B. M. Bolotovskii, B. A. Lysov, and O. A. 
Khrustalev. 
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