
These restrictions and also the absence of a general solution do not allow us to use 
the solution found in [6] for the realization of a complete classification of (N.I) Stackel 
spaces. 
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THERMODYNAMIC CHARACTERISTICS OF FERMI GASES IN A MAGNETIC 

FIELD 

S. S. Lipovetskii, A. A. Olesik, and V. S. Sekerzhitskii UDC 523.877 

Within the framework of statistical thermodynamics of equilibrium systems, 
general expressions are obtained for the chemical potential, pressure, and 
magnetic susceptibility for degenerate ideal nonrelativistic electron, proton, 
and neutron gases in magnetic fields, which exert no pronounced influence on 
the anomalous magnetic moments of the fermions. 

Investigating the influence of the magnetic field on the energy and magnetic character- 
istics of Fermi gases is of definite interest both for solid-state and semiconductor physics 
and for theoretical astrophysics. According to current concepts in superdense astrophysical 
objects, in conditions similar to those for an electron gas in a metal, a relativistic elec- 
tron gas and nonrelativistic proton and neutron gases may exist [I]. In the present work, 
using the method outlined in [2], general relations applicable for the description of degen- 
erate ideal nonrelativistic electron, proton, and neutron gases in a magnetic field within 
the framework of the statistical thermodynamics of equilibrium systems are obtained, taking 
account of the static anomalous magnetic moments of microparticles; in addition, a compara- 
tive analysis is made of the influence of the magnetic field on the pressure, chemical poten- 
tial, and magnetic susceptibility of these gases. 

Following [2], by standard calculations, an expression may readily be obtained for the 
large thermodynamic potential of extremely degenerate ideal nonrelativistic Fermi gas in a 
constant and homogeneous magnetic field with induction B 

R--~ ~(B) = u~ (0). t~,2 (xA. ;~2 (x~), (1) 

where 

o ( 0 )  = - 0,4N~ "-_~ ( o ) ,  x = e ,  p ,  n ,  

o 213  .~ (0)  = (3~-~) 2 3. h-n,~ . (2m, , )  - l ,  n . . : =  N~./l."~ 

(2) 

(3) 
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N~ is the number of fermions in volume V~; m~ is the fermion mass; fi is the Planck constant; 
the subscripts e, p, n correspond to the electron, proton, and neutron; Rs/2(x<) and Rs/2(x~) 
are functions of the parameter 

x~ = ~ ( ~ ) . ( : ~ B ) - ~ ,  (4 )  

and ~ is the chemical potential; for electrons, p is the Bohr magneton; for nucleons, ~ is 
the nuclear magneton. For charged fermions 

l 

Ra,2 (x~) = 1,5. ~%j [(x.  --  2 n - -  1 --  %)r~ q_ (x~ --  2n -- 1 + =.)~ "~l, 
n=O 

I 

Rs,,~ ( x ~ )  = 2 , 5 -  " ~ [ ( x , ~  - 2 n  - 1 - -  a,~) a'~- § ( x .  - -  2 n  - -  1 + %)~,'~], 

summation in Eqs. (5) and (6) is performed until the radicand becomes negative; n is the 
number o f  t h e  Landau  quantum l e v e l .  For  n e u t r o n s  

(5) 

(6) 

Rs,~ (x.) = %5 [ (x . - -  =.)~ + (x. + ~.)a'q, (7) 
Os/~ (x.) = 0,5 [(x~ _9.)~12 + (x. + ~.p;~]. (8) 

Here o~ = ~/g, where ~ is the intrinsic magnetic moment of the fermion. In deriving these 
formulas, it is taken into account that the energy spectrum of the free charged fermion in 
the magnetic field is 

= plx.(2M~) -a + ~B.(2n + T • =x), (9 )  

while for the neutron 

= p~,. (2m.)  -1 • %FB, ( i0 ) 

Pz is the projection of the fermion momentum p onto the direction of induction of the field. 
It is assumed in Eqs. (9) and (I0) that aN does not depend on B; i.e., only the static anom- 
alous magnetic moment of the fermion is taken into account. This limits the applicability 
of the relations obtained to the conditions where B << 4.414.10 Is G for the electron gas [3] 
and B ~ 1016 G for nucleon gases. When B z 1016 G, the cyclotron energy of the pion exceeds 
the energy of 8- decay of the neutron,, and the magnetic moment of the neutrons depends on B. 
Thus, let ae " 1.00116; op " 2.793; an " 1.913 [3]. 

Using the above relations, it is found that 

P,~ (B). = .-- % ( B )  . V- ;  ~ = P~ ( 0 ) .  R~/., ( x~)  . R ~ #  '~ [ x,~), ( 1 1 )  

1 [ 0% (B) ] R~I2 (x~) -- x~R3t~ (x~) 
�9 % (B) = -- V~--~ " L ~ j = *~o n,',~ ' (12)  

where P~ is the pressure;'xK is the magnetic susceptibility; P~(0) ffi 0.4n<.~(0), zK0 = 

nK~2.~K-I(0). It also follows from the condition NK--=-- that 
. .g ~ V/,:3' 

:~ (8) = r:.,, (0)" X~" R3T~ 3 ( X~.). (13 )  

Note that the expressions for the chemical potential and magnetic susceptibility of the 
proton gas were obtained in [4] and [5], respectively; when ae = i, the relations in the 
present work transform to the formulas of [2]. 

In the limiting case of weak magnetic fields (x~ z i0), for charged fermions 

32 R ~  (:c,,:) ~ x , /  �9 [1 -4- 0,125x~-2"(3~ --  l) l ,  (14.) 

i?~,~(x~) ~x~-.{1 + o,625x;~. (3~. - t)t (15) 
and 

;~ (8) ~ ~x (0)- [ 1 - -  3 ~ . - - 1  "~'B= 1 '  (16)  
12 "~ (0) 
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P,  (S)  = # ,  (0) .  [~ ~- ~ ( 3 ~ -  ~) ~ m  l 
�9 ' 1 2  " ~-  ( 0 ) ]  ; 

�9 % (B) :~  X,~o. - - - - 7 - -  24 ~ (0 

(17) 

(18)  

for neutrons 

Rm2 (Xn) ~ X~ ~2" (1 + 0,375x/"z~), 

.s/2 (1 + 1,875x~2~), R.3:2 (x,,) ~ . , , ,  �9 

~,,, (B) ~ -~n(0) �9 [ 1 --0,2~n~2B 2" ~-~2 (0) ], 

P,, (S) .~ P .  (0). [1 + 1,25~,,~'B'.;-~ ~ (0)], 

~. (B) ~ ~.o. ~,5~. ~" [~ - o, ~ 25~i~-~B -~. ; ;~ (0)]. 

( 19 )  

(20)  

( 2 1 )  

( 2 2 ) � 9  

(23) 

Thus, as B + 0, it is found that ~(B) ~ ~K(0), PK(B) ~ PK(0), and also z e(B)Ixe(0) 
1.00348, xp(B)/xp(0) § 11.2013, Xn(B)/~n(0) § 5.4899. 

In the quantum limit of superstrong magnetic fields, for charge fermions n = 0 and the 
spin is directed along the field, i.e., x~ ~ 3 - oN. Then 

R3m (x.) = 1,5 (X~ - -  I + %),/2, (24)  

R5;2 (x~) = 2,5 ix,: - -  I + %)3/~ (25)  

and the thermodynamic characteristics of Fermi gases with specified concentration nK depend 
on the induction of the field B explicitly 

. ( 2 ~  ~'3 ~,(O).x~ = ' b ~  ' " ' - - ~ . ) t . B ,  ( 2 6 )  

5 
P,,(S) = ~ .  .P, , (O).(x , , --  1 +%)21a = 3rn~t ~B~ , ( 2 7 )  

/ 2 ~ ,~ [ 5 ] 

= P , ( B )  4 ( % - - l ) , ~ n ,  (28)  
B 2 B 

For n e u t r o n s  in  a s u p e r s t r o n g  magne t i c  f i e l d ,  Xn ~ on, and 

R3j2 (x,,) = 0,5 (x,, + ,=,,)~i2, 
R512 (x,,) = 0,5 (x,, + ,=,,)5/-'2 

~n (8) : ~: (0)"22/3"Xn (X, + ,,)-I -- 221&~n (0) -- :~n B, 

P~ (B) = 22raP,, (0), 

z,~ (B) = X.o .2-z%. (x.  + %) = ~.n.B -I. 

(29) 

(30) 
( 31 )  

( 32 )  
(33 )  

Thus, the chemical potential of the given Fermi gases when ~(0) = const (n~ = const) de- 
creases with increase in induction of the superstrong magnetic field, and reaches zero when 

�9 B = 2213:~ (0).  3 -2;3. (=, -- 1)-1:3. p-1 

f o r  cha rged  f e rmions  and when 

B = 22/3~ (0) ~ ~21 

for neutrons. In the corresponding real conditions, higher B is hardly achievable, 

(34) 

(35) 

and there- 
fore is not of practical interest at present. Note simply that the pressure of the electron 
and proton gases and the magnetic susceptibility of all three gases tends to zero as B + ~. 
The pressure of the neutron gas is unchanged over the whole region of superstrong magnetic 
fields (does not depend on B). 

The results of numerical calculations are shown in Figs. i-3. It is readily evident 
that, in contrast to an electron gas, the chemical potential of a nucleon gas in a magnetic 
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Dependence of the chemical potential of Fermi gases Fig. i. 
on the induction of the magnetic field: 19 electron gas; 2) 
neutron gas; 3) proton gas. 

Fig. 2. Dependence of the Fermi-gas pressure on the magnetic 
induction. 

Fig. 3. Dependence of the magnetic susceptibility of Fermi 
gases on the magnetic induction. 

field is less than in the absence of a field, and the pressure (except for the region of su- 
perstrong magnetic fields) is higher. Contrary to the assertion of [5], the magnetic-suscep- 
tibility graph for a proton gas is markedly different from that for an electron gas. The 
presence of an anomalous magnetic moment exceeding the nuclear magneton at the proton leads 
to predominance of the paramagnetic susceptibility over the diamagnetic susceptibility in 
the whole range of variation of B. For an electron gas, as shown in [2] and as evident 
from Fig. 3, the inverse effect may also be found. 

The characteristics of the neutron gas are not oscillatorY, since the neutron motion 
in the magnetic field is not quantized. The oscillations of the proton-gas characteristics 
differ somewhat in form from those for the electron gas. Note, however, that each value of 
n also corresponds to two oscillational peaks in the electron gas. For example, for n = I, 
~e(B)/~e(0) = 1.21 and ~e(B)/~e(0) = 1.19 when ~e(0)/~B = 1.65 and 1.69, respectively. In 
the scale chosen here, these peaks coalesce. Therefore, the graphs of the electron-gas char- 
acteristics in magnetic field in Figs. 1-3 are the same as in the case Se = 1 and coincide 
with the graphs of [2] for the chemical potential and magnetic susceptibility. 

Note, in conclusion, that the decrease in chemical potential of the Fermi gas with in- 
crease in induction of the superstrong magnetic field may lead to lifting of its degeneracy 
[6-8]. This must be taken into account in using the formulas of the present work obtained 
for the case when T = 0 for specific physical problems. 
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HAMILTONIZATION OF A SYSTEM OF PARTICLES WITH ANOMALOUS MOMENTS 

IN THE NULL-PLANE FORMALISM 

P. V. Strokov and G. I. Flesher UDC 530.145 

A Hamiltonization of a system of interacting Bose and Fermi fields is performed. 
It is assumed that the fermions possess anomalous magnetic and intrinsic dipole 
moments. The Hemiltonization is conducted using the null-plane formalism in 
the gauge A ~ = A 3 = 0, which is an analog of the Coulomb gauge in a Cartesian 
coordinate system. 

There currently exist a fairly large number of papers on quantum field theory on a null- 
plane (see, for example, [1-3] and references therein). The keypoint of the theory is that 
quantum processes are considered in a special coordinate system introduced by Dirac [4], 
whose variables u~ are related to the Cartesian coordinates x~ by 

V ~ u  ~ = ( x  ~ - x~);  u~-~ = x',~: ] . Q u  ~ = ( x  ~ + x 3 .  ( 1 )  

The variable u ~ in this theory plays the role of time, and the evolution of states is con-. 
sidered from one plane u ~ = const to another. On these planes, called null-planes, are de- 
fined initial conditions and formulated commutation relations for fields. Such relations 
have been obtained in [5-7], where quantization was performed in a special gauge analogous 
to the Coulomb gauge used in quantization in Cartesian coordinate systems. Quantization in 
the Lorentz gauge has been considered in [8]. 

The purpose of this paper is to construct the formalism of quantum electrodynamics on 
a null-plane taking into account the anomalous magnetic and (hypothetical) electric moments 
of fermions. This problem was discussed in the case of a Cartesian coordinate system in 
[9, 10]. In these papers the Hamilton-Dirac formalism was constructed for the system of in- 
teracting photon and fermi fields, Dirac brackets of the field variables were found, and 
the quantization rule was postulated by requiring that the Dirac brackets be replaced by a 
commutator or an anticommutator upon quantization. 

In this paper we shall perform an analogous procedure. We shall Hamiltonize the system 
in the gauge A ~ = A 3 = 0. 

We start with the Lagrangian with the density 

L = i (~7~0r ~ _ 0~7~,~)  _ ,~ ( e T ,  A~ _ :~r.,<O,,.4 ~ + m )  + - -  J -  F~, ,F~;  ( 2 )  
2 ' ' '  ' 4 

where 
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