
Lt(x)=--  -i O : ; ( z  ' x)[,=~. 
2 

3. Notice that the regularization scheme we discuss coincides with the method of [2] 
for the particular case when the set of fields ~A consists of only one field ~, and corre- 
sponds to considering only one differential operator D(x, y) = D(ax, x)6(x - y) in our 
scheme. In the general case, the problem of computing the generalized~-function ~(z, x, 
x') of Eq. (18) can be reduced to solving the eigenvalue problem for a system of integro- 
differential equations (7), which is much more complicated from the mathematical point of 
view than a similar problem for the system of differential equations (i0). It may be pos- 
sible to simplify the solution of Eqs. (7) and (10) when D~8 = 0 (or Dab = 0), or when Dab 
and D=8 are partially or completely diagonal. 

. 

2. 
3. 
4. 
5. 
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EXCITATION OF ATOMIC NUCLEI AND ATOMS BY RELATIVISTIC CHARGE 

PARTICLES BOUND IN A ONE-DIMENSIONAL POTENTIAL 

A. N. Almaliev, I. S. Batkin, and I. V. Kopytin UDC 539.12.04 

The process of exciting atoms and atomic nuclei by relativistic electrons and 
positrons bound in a one-dimensional potential is investigated theoreticilly. 
It is shown that a pole corresponding to the emergence of a virtual photon on 
a bulk surface occurs in the matrix interaction element under definite kinemat- 
ic relationships. It is obtained that the probability of the excitation pro- 
cess depends on the lifetime of the levelbeing excited, the virtual photon, 
and the charged particle in a definite energetic state. An estimate of the 
magnitude of the excitation section of low-lying nuclear states yields a value 
exceeding by several orders the section obtained for charged particles in the 
absence of a binding potential. 

i. In a number of physical problems the particle motion turns out to be confined to 
one direction, for instance, during charged particle motion in a one-dimensional permanent 
magnetic field, between charged plates, along a charged plane or filament, inartificial or 
natural channels, etc. The properties and characteristics of the radiation of charged parti- 
cles bound in a one-dimensional ~otential were studied theoretically and experimentally with 
sufficient completeness by many authors [1-3] and in [3] it was proposed to use it to excite 
atomic nuclei. It is here assumed, however, that the radiation is first formed completely, 
while the activation process itself penetrates because of photoabsorption. It can be con- 
sidered that we deal here with a two-stage excitation mechanism for the atomic nucleus. Such 
a mechanism is not unique, and excitation of a quantum system (atom or atomic nucleus) direct- 
ly by charged particles bound in a one-dimensional particle can be considered. We call this 
a single-stage mechanism. In this paper we perform a quantum study of a single-stage mechan- 
ism. Our purpose is to obtain the excitation probability for quantum systems (atoms or atom- 
ic nuclei) by relativistic charged particles (electrons or positrons) with transversely con- 
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strained motion. Let us note that it is necessary to deal with a mechanism analogous to 
ours even in the classical formulation when problems about radiation properties in an absorb- 
ing medium are examined. The macroscopic solution of such problems is presented in the book 
[4] without taking account of quantum effects. 

2. The matrix element of electromagnetic charged particle interaction with an insulated 
quantum system can be represented in the following form in first-order perturbation theory 
[5]: 

• < / l ~ e - ' " l i > - c '  < F l ~  P~'~e-~='l }, ~ < / I  i >  (1) 

c is the speed of light; fic~ 0 = EF - EI = Ei - Ef; EI, EF (Ei, El) are the initial and final 
state energies of the quantum system (particles); J = iecy; p(e) = ey~ (y, y~ are Dirac ma- 
trices and e is the particle charge); o(r) and j(4) are the charge density and current of 
the quantum system under consideration, respectively (see, e.g., [5]). The superscript t 

A A A 
denotes the transverse component of the total current fo = m X {J X ~)and m = m/K. 

We shall perform the examination in a laboratory coordinate system. We assume that the 
charged particle moves in a one-dimensional potential V(x) while the motion along the y and 
z coordinates is free. Then the wave functions of the initial and final particle states have 
the form 

I i > = L ~ l e - i ~ Y  iy+Kziz) [ n t > ;  l / >  = LI1e-i(KY/Y+Kzl z) ] n/  > ,  (2 )  

where In> is the solution of the Dirac equation with potential V(x); n is the quantum num- 
ber governing the state of one-dimensional motion; L0 is the normalizing length; and m:.! = 
pi/~, where P is the particle momentum. Integration with respect to Ky and Kz in (i) with 
(2) taken into account is elementary in execution and we obtain the following expression 

i "x [ : )  

< f ,  f H ~ t l l  , i ' ~  = 2 { < F l f t ) ( r ) e , ~  ~+~c , [ l > A ( , % )  , 
' "" L-"~ - -  dtcx ,',:x 4- (K")"  - ~':j -:- 

- - o 0  

+co 

+ t" 4 ~ < F l p ( r ) e ' ~ x - : K ~ " " : [ l  > B (x~)} l,t ~ i ,~  (3) 

We here introduced the following notation 

A (~) = < n.tle-i~Satn~>; B ( ~ )  = e < n:le -~.~' i:t~>; 
he 0 e , (4) 

a x =  E tOx'' a: i p i  j K ij = ~i ! - u : .  

For  an a r b i t r a r y  v e c t o r  n t h e  p r o j e c t i o n  on t h e  ( y ,  z)  p l a n e  i s  d e n o t e d  by nil.  I t  was a s -  
sumed t h a t  ticK0 << Ei  in  o b t a i n i n g  ( 3 ) .  We w i l l  c o n s i d e r  m o t i o n  o f  a p a r t i c l e  w i t h  r e s t  mass  
m along the x axis direction to be nonrelativistic. In this approximation the particle ener- 
gy has the form E " E ~ + e, where E 11 = [c2(plJ) 2 + m2c~] I/= while the energy of the trans- 
verse motion e is determined from the equation [6] 

2E u d x ~ +  V(x) I n >  = % , I n > .  (5 )  

We l i m i t  o u r s e l v e s  h e n c e f o r t h  t o  c o n s i d e r a t i o n  o f  s y m m e t r i c  p o t e n t i a l s  V(x)  f o r  which  V(x)  = 
V ( - x ) .  Under d e f i n i t e  k i n e m a t i c  r e l a t i o n s h i p s  t h e  d e n o m i n a t o r s  o f  t h e  i n t e g r a n d s  in  (3)  can  
vanish. Using the energy conservation law, conditions for the existence of pole singulari- 
ties in the integrals I[ t) and I(s can be obtained in the ultrarelativistic limit: 

hClr o ~ 2 (.%t i -- ~nl) (Ei/mc2) 2 for the integral  [(~), 

hc•0 ~ ~n~ -- ~nl for the integral 1 (t~. 

(6) 
(7) 
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Furthermore, we consider the case of exciting quantum systems for which EF - E1 = 
tic<0 >> Eni - enf. Under this condition, existence of a pole is possible here only in the 
integral I(t), which corresponds to the emergence of a virtual photon on the bulk surface. 
We also assume henceforth that the quantum system being excited is outside the limits of 
the localization domain for the wave function of the transverse motion of the bombarding 
particle (Ixl = d, where d is the characteristic width of the localization domain). After 
integrating with respect to KX in (3), this permits separating the variables x and x'. Con- 
sidering the condition (6) satisfied, using the standard rule for bypassing the poles in the 
photon Green's function and assuming x > 0 for definiteness, we obtain 

2=i 
1~o = - - - -  < F ] f o  (r) e~x'lI > A (x). ( 8 )  L~ 

I,~ = 2~ .. < Flo(r)e~O,i I > B ( i K ~ ) .  ( 9 )  
L~K I' 

where 

K --" (x, K "  ). O ---- ( i K " .  K '  ), x = Zo + i~, ~. = Ftc~~ 

tr = R e  K~, F/hc = l m  xo, % - -  [(u~'~)-" - -  ( K  t )-~]1/~. 

Introduction of the width F = FN + Fo + Fe is specified by the finite lifetime TN of the 
quantum system in the excited state (FN = fi/TN), the finite path length of the virtual photon 
s = ~c/s and the finite lifetime Te of the bombarding particle in a definite quantum 
state of transverse motion (Fe = fi/Te). 

As a rule, thewave functions [I> and IF> are determined in a coordinate system coupled 
to the center of gravity of the quantum system. We introduce the coordinate of the center 

of gravity of the system R = ~_.~m~i/ ~mi (ri are the position coordinates of individual 
i i 

particles of the system, and mi is the particle mass), and the relative coordinates ~i= r i -- R. 
We will consider that the motion of the quantum system as a whole does not influence the 

characteristics of its internal excitations. Then the wave functions of the quantum system 
are factorized, for instance II> = II: ~>.[~; ~ > (~ is the whole set of variables ~i). The 
function [~;R > characterizes the system motion as a whole, and ~ are quantum numbers charac- 
terizing the motion of the center of gravity. It is understood later that all the computa- 
tions are executed in the variables (~ and R). 

3. Using the known expansions of plane and transverse plane waves in multifields and 
the standard technique of angular moment algebra (see, e.g., [5]), after suraming over the 
magnetic quantum numbers we obtain for the differential probability of quantum system exci- 
tation per unit time: 

av/=2~ 1 < F. f l  H,.t [I. i > I ~ s 2 ~" (E, --  E! --  hc~I?', ) 

(zo) =-- dW~ t~ § d W<O: 

r.c ~ ( 2 J r  4- 1 ~2 I z ^ 
f-,~ U n ,  0 ~ 0  a~, O 

• I < ,.'; t~ I e 'K"l , , ;  R > l~'a~)'~ (E~ - E~ - hck-'o~ ( l X )  

dW(t  ) = 8~ 2 2.]1:@" 1 
h(-Ki')ZL~ 2 J 1 + 1  z .  I N t - v ( O ;  C L ) [ Z : I B ( i K ' ) ] 2 X  

• I < a'; R I e,~. l ~; R > I dxz ~ (E,  - -  B I - -  h c t ~ ) .  ( 1 2 )  

Here F7 = fiW 7, where W 7 is the probability of a 7-transition of the quantum system IF> 
II>; the presented matrix elements NI§ are defined in [5]; JI, JF are the total spins of 
the corresponding states; and ~( = K/K. 

As follows from (I0), the excitation probability of a quantum system dW is determined 
by two components, one of which (dW(t)) Can provisionally be considered long-acting while 
the other (dW(s is short-lived. The first component is due to exchange by real vector 
photons and the corresponding interaction damps out at distances on the order of fic/F. In- 
teraction in the second component is realized at distances ~(~0(~ -I In a real situation 
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it is possible to consider r << fic~0(~ Since the wave function of the particles and the 
quantum system we took in our model are localized in different domains of space the contribu- 
tion of the short-range term to the total probability can be considered negligible. Let us 
note that analogous deductions about the exponential smallness of dW(~) were made in the 
monograph [2]; however, the effects due to the exchange by real vector photons were not con- 
sidered in the work mentioned. 

We limit ourselves henceforth to consideration of dW(t). By using the vector A (x) it 
is possible to express dW(t) in terms of the probability per unit time d ~ , ~ ,  ~f) of the spon- 
taneous electromagnetic radiation of a charged particle bound in the potential V(x) (fi is 
the momentum of an emitted photon). Using wave functions in the form (2) and taking account 
of the requirement tim << Ei (m is the radiation frequency), we obtain 

d i~ "(tl - ~2 { 2Jr : I f F: (d= (~, x/) do,)g= K 

><1<~'; R l e ~ l ~ ;  R ~ > I ~ d W ~ . I < ~ ' ;  R[em~!=; R>r.  (13) 

which yields the excitation probability for an isolated quantum system. If there is an en- 
semble of N quantum systems and the excitation of a given quantum state is considered in at 
least one of them, where the final state of the motion of the system center of gravity is 
not fixed, then the appropriate probability can be found in the following manner: 

dlV't~= d ~ ) -  ~ [  < ='; RjIe~KRiI=; Rj>I'. (14) 

For definiteness, we will consider excitation of quantum systems located at the sites of a 
crystalline lattice with coordinates Rj(~ Using the approximation of completeness for 
execution of summation over =' and considering the mean deviation of the atoms from the equi- 
librium position to be considerably less than the interstitial distance, we obtain 

- I I - (15) 

Suraning over Rj(0) with the periodicity condition, taken into account, we find 

a~: . ,_  2~'rT (2J__F+ I )' e -~  (dw(#, ~:):'d~)~=x, (16) 
hK~xoa z \ 2 J r + l  1 ~ e  - ~  

where a is the lattice constant. 

As is seen from (16), the maximal value of the probability dW(t) will be reached when 
the condition 6d << i is satisfied. Then 

dW~t ) = ~ c  ( 2 J r +  1 )2F~ (dw (~, ~f)/d~)~=K. 
(~')~a 3 \ 2 J ~  1 r- (17) 

The expres s ion  ob ta ined  fo r  dW(t) has a s imple p h y s i c a l  meaning. I n t roduc ing  the  photon 
p a t h l e n g t h  s = cf i / r  = cT and the  resonance  abso rp t ion  s e c t i o n  ~r = 4w/ (~o(~  2, i t  i s  pos- 
s i b l e  to r e p r e s e n t  dW(t) in the  fo l lowing  form ( to  the  accuracy  of  a n o n e s s e n t i a l  f a c t o r ) :  

d W ~ ~  (18) 

where no = a -S is the density of the quantum systems per unit volume, and P~ = fi-ZF~(dw/ 
d~)K=K. Such a form of dW(t) permits treatment of the process under consideration in the 
form of the following sequence of elementary processes: The charged particle emits a photon 
with the probability Py in a spectrum band of width Fy which is then absorbed by the crystal 
in the pathlength s Let us note that the expression for dW(t) (16) remains valid even for 
gaseous, liquid, or amorphous media, except in this case a is the mean spacing between parti- 
cles of the medium (g << L0, understandably). 

4. Let us estimate the total probability w(t). As an illustration, we consider excita- 
tion of nuclei during passage of a beam of channeled positrons with 150 MeV energy through 
a monocrystal. We select the following values for the parameters ticK0(~ ~ i, F~ " 10 -3 MeV/ 
eV (these values are characteristic for the transitions 21 + ~ 0 § in even-even atomic nuclei 
with the mass number Zl00); d ~ ~ - 4-i0 -s cm, r - F~. Computation of (dw/d~)~=K performed 
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by formulas from [6] yields the value 5.10 -8. Finally, we obtain the value 2.5.106 sec -l 
for the probability E(t). We find the absolute excitation probability of at least one nu- 
cleus by a positron during planar channeling proceeding through a monocrystal of thickness 
L 0 = 1 n~m: p(t) , w(t)L0/c , 8.10-6 Using this value, we obtain for the magnitude of the 
effective section of quadrupole excitation of an atomic nucleus ~ = P(t)/n0L 0 " 5.10 -27 cm 2. 
Let us note that such a section exceeds the characteristic excitation sections of low-lying 
nuclear levels by free relativistic electrons by several orders [7]. We considered the ex- 
citation of an atomic nucleus. Estimation of the quantity W(t) in the case of atom excita- 
tion can be performed in an analogous manner [8]. 
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INVERSE SCATTERING PROBLEM IN THE RELATIVISTIC QUASICLASSICAL 

APPROXIMATION 

I. L. Solovtsov and Yu. D. Chernichenko UDC 539.12 

We apply the quasipotential approach of quantum field theory to solve the in- 
verse scattering problem in the relativistic quasiclassical approximation. We 
obtain expressions for reconstructing the quasipotential from the phase shifts 
and consider both nonrelativistic and Ultrarelativistic cases. 

Today there exists a number of approaches to the problem of determining the interaction 
potential of elementary particles. The phenomenological approach, wherein the potentials 
are chosen are to contain variational parameters and are then fit to experimental data, has 
gained wide acceptance (see, for example, review article [i]). Another method of reconstruc- 
ting the interaction potential is based on the solving the inverse problem (IP). The litera- 
ture on solving the various formulations of the IP is quite extensive, as are the applica- 
tions of the results (see, for example, [2-5]). 

A distinguishing feature of these and other solutions of the IP is that, notwithstand- 
ing the diversity of approaches, they are all based on the nonrelativistic Schrodinger equa- 
tion. At the same time our analysis indicates that relativistic effects could play a major 
role in a number of cases. 

The inverse problem was considered by Malyarov and coworkers [8] within the relativistic 
quasipotential approach [6] by using the differential quasipotential equation proposed by 
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