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Abstract. A general formalism is presented for the analysis of NMR spin imaging spectra 
obtained with magnetic field modulation during the free induction decay. We show that 
weighted integrals of the spin density distribution are measured by this technique and 
deduce a prescription for reconstructing this distribution from the recorded free induction 
decay signal. The formalism is applied to two-dimensional imaging with one static and one 
modulated gradient field. For square-wave and cosine-wave modulation the transfor- 
mations needed to calculate the image from the spectrum are given explicitly, and their 
effect is illustrated with computer-simulated pictures. We show how resolution and 
maximum allowable object size depend on the experimental parameters and argue that even 
two-dimensional imaging of a 32 cm x 32 cm specimen with a resolution of 1 cm in each 
direction will be difficult to attain in practice, mainly because of the required strength of the 
modulated magnetic field. 

PACS: 07.58, 76.60, 87.60 G 

In recent years a number of different methods for 
NMR spin imaging have been described which allow 
the formation of spin density and/or relaxation time 
images of two- or three-dimensional objects [1-11]. In 
1977 Brunner and Ernst [123 made a careful evalua- 
tion of the various techniques that were well estab- 
lished by that time. They pointed out that the meth- 
ods with better sensitivity have a common drawback, 
namely that the minimum time required for picture 
formation is rather long: at least several minutes for 
three-dimensional images and still several seconds for 
two-dimensional pictures. With reconstruction from 
projections, for example, many projections must be 
measured, each requiring about 0.2s, before a com- 
plete picture can be obtained. 
To overcome this difficulty Mansfield proposed a new 
method which he called echo planar imaging [7, 8]. It 
employs time-dependent magnetic field gradients dur- 
ing the measurement of the free induction decay (FID) 
signal. With this method it should be possible to 
obtain a complete picture in the time required for a 
single FID, which is otherwise needed for the measure- 
ment of a single projection. This speed is particularly 

important for the study of moving objects, as in 
medical imaging. At the same time the sensitivity of 
echo planar imaging is expected to be comparable with 
that of reconstruction from projections, as was noted 
briefly by Brunner and Ernst. They did not include the 
technique in their comparison, though, because it was 
too recent then, and therefore we decided to analyze it 
in some detail. 
The echo planar imaging method in its most simple 
form may be described as follows. Imaging the spin 
density distribution in a plane is achieved by the use of 
two orthogonal magnetic field gradients. One is static, 
while the gradient direction of the other one is reversed 
periodically in time. In the absence of these gradients 
the spectrum obtained from the FID signal would 
consist of a single line. Its intensity measures the total 
amount of proton spins in the specimen under study. 
The static gradient broadens this line into a band of 
width Av which is a projection profile of the spin 
density along the gradient direction. The other, peri- 
odically switched, gradient causes the appearance of 
sidebands, which are separated from the central band 
and from each other if the switching frequency exceeds 
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Av. The intensity originally contained in the central 
band is now distributed over these sidebands in a 
specific way that reflects the distribution of the spin 
density in the direction of the switched gradient. 
As already indicated by Mansfield, instead of switch- 
ing one could use other patterns of gradient modu- 
lation. What is required is that the gradients in dif- 
ferent directions should have a different time de- 
pendence so as to make it possible to distinguish the 
effect of each gradient separately in the measured 
frequency spectrum. Similar ideas had already been 
put forward by Hinshaw [13]. The problem is how to 
extract from the spectrum as much information as 
possible on the spatial distribution of the spins. 
In this paper we present a general formalism for the 
analysis of NMR spin imaging spectra obtained with 
magnetic field modulation. It is general to the extent 
that it can be applied to magnetic fields of arbitrary 
space and time dependence and thus encompasses the 
echo planar imaging method. The purpose is to pro- 
vide a tool both for actually calculating spin density 
images from such spectra and for assessing the useful- 
ness of various modulation patterns. By way of de- 
monstration we treat two examples with gradient fields 
in some detail. 
The general formalism is described in Sect. 1. We show 
that what are in fact measured by the present method 
are weighted integrals of the spin density distribution. 
Investigation of the weight functions leads to a pre- 
scription for reconstructing the image from the re- 
corded FID signal. In Sect. 2 we apply the formalism 
to two-dimensional imaging with one steady gradient 
and one time-dependent gradient for the cases of 
square-wave modulation (gradient switching) and 
cosine-wave modulation. For both cases explicit for- 
mulas are derived for calculating the picture from the 
spectrum, which take the form of filters to which the 
spectrum must be subjected. Their effect is demonstrat- 
ed in computer-simulated pictures, which show the 
difference between images that are obtained directly 
from the FID spectrum and images obtained with the 
reconstructing filter transformations. Section 3 gives 
the modifications to the formalism that are necessary if 
the FID signal is sampled instead of recorded con- 
tinuously. In Sect. 4 we discuss how resolution and 
maximum allowable object size depend on the experi- 
mental parameters. We then make some remarks on 
the possibilities for practical application by consider- 
ing a realistic example of two-dimensional imaging in 
Sect. 5. We summarize our results and conclusions in 
Sect. 6. Mathematical details have been omitted from 
the main text as much as possible a. 

For readers interested in proofs and more detailed discussions of 
various statements made in the text we have prepared three ma- 
thematical appendices which can be obtained on request from the 
first author. 

i .  General Formalism 

We shall discuss an idealized experiment in order to 
point out the significant features of the image recon- 
struction problem. For simplicity we shall restrict 
ourselves to two-dimensional imaging. The generaliza- 
tion to the three-dimensional case is straightforward. 
Furthermore, the two-dimensional imaging problem 
itself is of practical interest, e.g. in connection with 
selective excitation techniques [2, 6, 9, 14J. 
We thus consider a specimen of finite extension, char- 
acterized by a spin density distribution ~o(y, z) which 
takes on nonzero values in the region - Y < y < Y ,  
- Z < z < Z. The specimen is placed in a uniform static 
magnetic field B0, let us say in the x direction, i.e. 
B 0 = Boex,  where % is a unit vector. At time t = 0 a 90 ~ 
excitation pulse is applied which takes the magneti- 
zation M of the spins into the plane perpendicular to 
B o. The free induction decay signal is then observed 
from t =0  until t = T in the presence of two modulation 
fields B 1 =Bl(y, 0% and B2=B2(z , 0% parallel to the 
static field. 
By quadrature phase-sensitive detection both com- 
ponents of the r f  magnetization are measured. In the 
rotating reference frame these components are given 
by the real and imaginary part of 

+ (t) = ~ ~ Q(y, z) e i~~ ' (1.1) 

where 

t 
p(y, z, t) = ? ~ [Bl(Y , t') + B2(z , t ' ) ]d t '  

0 

~- e l ( Y ,  t) -~- q02(Z , t ) ,  (1.2) 

and 

~(t) = e - t /r2 . (1.3) 

In (1.1) Re{~+(t)} represents the component in the 
direction along which, throughout the specimen, the 
magnetization lies immediately after the excitation 
pulse. Further, 7 is the gyromagnetic ratio, (p(y, z, t) is 
the angle through which the magnetization vector has 
rotated until time t, and ,(t) describes transverse 
relaxation with relaxation time T 2. 
It will turn out to be convenient to extend the various 
functions into the negative time domain. We can 
assume without loss of generality that the B i are even 
functions of time and hence that (p is odd with respect 
to t. If we furthermore define the relaxation function 

for t < 0 by ,(t)ae=f ~(_ t), we must extend the function 
e~ + (t) according to ~e § (t) = ~z + ( - t)* if we want (1.1) to 
remain valid for all t. We may suppose that in our 
idealized experiment the aforementioned direction cor- 
responding to Re{~+(0)} is known (i.e. we have no 
phase error) and that the construction of ~+(t) for t 
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between - T  and 0 from the observed behaviour 
between 0 and T can be performed accurately. 
The moduiation field B t is periodic with circular 
frequency c9 r We require that B~ does not have a time- 
independent part in order that the phase angle q0z 
returns to zero at the beginning of each period. 
Further, the effective measuring time 2T should be an 
integral number of periods of Ba. Defining a quantity 
(2 through ( 2 - ~ / T  we may express this condition as 
co~ =Mr2, where M is an integer. 
As regards to modulation field B 2 we assume at 
present that it does not exhibit any genuine periodicity. 
This allows a time-independent B 2 as a special case. 
We shall demonstrate later (Sect, 4) that the present 
treatment can easily be extended to the case where the 
field B 2 is periodic. 
Under the stated conditions we can make the following 
expansions in Fourier series, valid for - T < t < _  T: 

e i q ~ l ( y , 0  _ - ~ , , (y)  e i " ~ t  , ( 1 . 4 a )  
n = - - c o  

ei~~ t) e-i"c~ , (1.4b) 
~,,tY) = ~ _ rm 

e~ ~,~ = ~ tim(z) e ~'~', (1.5a) 
m - - - - c o  

T 

fi~(z)= ~1 ~ ei~(~,t)e ~m~dt. (1.5b) 
- T  

The quantities ~,(y) and fi~(z) are real functions and 
satisfy certain sum rules (Appendix A) 2. For the mo- 
ment we neglect relaxation by putting T2= 0% i.e. 
~(t)= 1. Substitution of these series in (1.1) and use of 
o31 =Mr2 then yields 

,,~+(t)=~e(y,::) ~ ~ %(Y)fik-,M(z)e~k~"dydz 
k=--oo n~-cO 

oo 

= /N e (1.6) 
k - - o o  

with 
1 T 

~dk= 2T "It ~ + (t)e-i~~rdt 

= ~O(Y, z)~&, z)dydz, (1.7) 

�9 (1.s) 
n = -co 

We see from (1.7) that the spectrum of ~+(t) yields 
weighted integrals =~k of ~(y, Z) with respect to the set 
of weight functions {ebk(y,z)}. The information on the 
spin density distribution that is contained in these 
integrals depends upon the weight functions. It is 
important to note that the latter are completely de- 
termined by the modulation fields B~ and B 2, which 

2 See footnote on p. 258. 

therefore determine ultimately what kind of infor- 
mation about Q(y, z) we obtain. Naturally, in practice 
the choice of the modulation fields will be a compro- 
mise between demands of simple realization of the B~ 
and of useful information in the ~d{ k. We remark that 
only for some very special {r i.e. for very special 
choices of the modulation fields, will it occur that each 
weighted integral J[k corresponds to a separate area 
element in the specimen. 
it is most convenient if {ebk(y, z)} is an orthonormal set 
of functions, 

S  k(y, z)aydz = (1.9) 

for in that case we can immediately represent our 
information on the spin density by 

Q(y,z)~ ~ /r ). (1.10) 
k =  - o c  

The "approximately equal" sign is used here because 
the set {q~k(Y, z)} will in general not be complete, and 
indicates that the right-hand side of (1.10) represents 
Q(y, z) only to the extent that it correctly reproduces the 
weighted integrals JC/k" The equality sign would require 

~k(Y, Z)~k(Y; - ~') = O(y~ -- y')c~(Z -- Z'), (1.11) 
k -  - o o  

and the better this completeness relation is approxi- 
mately fulfilled by the q)k(y,z), the better ~(y,z) is 
represented by (1.10). 
In general, the weight functions ~bk(y,z) are neither 
orthogonal nor complete. However, nonorthogonality 
poses no serious additional problems, since it is always 
possible, at least in principle, to construct an orthonor- 
mal set {~)k(Y, Z)} from the ebk(y, z) by Schmidt's ortho- 
gonalization [15], 

(1.12) 
l 

J" 5 ~ k(Y, z)~ ~(y, z)d ydz = c~k~. (1.13) 

The spin density is then_ expanded in terms of these 
functions as 

~(y, z) ~ 2 ~kC~k(Y, Z), (1.14) 
k 

where 

~k  = f ~ ojy, Z)~k(y, z)dydz = 2 SkSZI, (1.15) 

in order that the weighted integrals produced by the 
right-hand side of (1.14) are in agreement with (1.7). 
The representation of the spin density by (1.14) is then 
accurate to the same degree as {~k(Y, Z)} comes close to 
being a complete set, and this in turn depends on what 
the ebk(y,z ) are and therefore on the modulation 
fields. 
An alternative to Schmidt's orthogonalization, which 
turns out to be easier in the cases to be studied in the 
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next section, is to construct a biorthonormal system 
from the ebk(y,z ). It amounts to the following pre- 
scription for reconstructing the spin density distri- 
bution from the Jd k. 
Construct two sets of functions { ~j(y, z)} and { Xj(y, z)} 
which satisfy 

(i) Xj(y,z)= ~ Sjkebk(y,e), (1.16) 
k 

which states that the Xj are linear combinations of the 
(/5 k , 

(ii) ~ ~ 7Jk(y, z) Xi(y, z)dydz =,Ski, (1.17) 

SO that the two sets form a biorthonormal system, and 

(iii) ~ j ( y , z ) X j ( y ' , z ' ) = A ( y ' - y , z ' - z ) ,  (1.18) 
J 

where the function A(y",z") is strongly peaked near 
(0, 0), so that the two sets approximate a complete 
function system [for exact completeness A(y",z") 
should be a two-dimensional Dirac delta function as in 
the right-hand side of (1.11)]. Then transform the 
spectrum according to 

r = Z Sjk'A~k' (1.19) 
k 

and the optimal representation of the spin density 
distribution is given by 

O'(Y, z) = ~ ~ ~(y, z). (1.20) 
J 

Since the reconstructed density O'(Y, z) obtained by this 
procedure is related to the true density ~(y, z) by 

o~'(y,z) :.[.[~(y + y",z+ z")A(y",z")dy"dz", (1.21) 

variations in O(Y, z) on a scale smaller than the width of 
A(y", z") will appear smoothed in O'(Y, z) but the more 
gradual variations in spin density are represented 
faithfully by the reconstruction. In the next section we 
shall demonstrate that the required construction of the 
sets {7~j} and {Xj} can actually be carried through for 
a wide class of modulation fields. 
We now briefly consider the consequences of re- 
laxation, i.e. T z finite. The relaxation function can be 
expanded in the interval [ -  T, T], 

,~(t)= ~ .~l(T/Tz)e it~t, (1.22a) 
l = - - o o  

1 r 
, ~ t ( T / T z ) = ~  ~ e-ltl/r2e -imt& 

- T  

T 1 - ( - 1 )  le-r/r~ 
= T2 iz~2+(T/Zz)Z , (1.22b) 

and one finds that Jdk is replaced in (1.6) by 

M[~= ~ J~k_~(T/T2).  (1.23) 
l = - - o o  

So the relaxational broadening of the spectrum in- 
termixes the weighted integrals in a Lorentz-like pat- 
tern. This effect is minimized if TIT 2 is as small as 
possible. 

2. Gradient Modulation 

We shall treat two specific examples by the formalism 
just developed. The first one is gradient switching, 
which was discussed by Mansfield [7, 8] in some detail. 
The second one is cosine-wave gradient modulation, 
which he mentioned briefly. 
We thus take modulation fields that are linear gradient 
fields. Moreover we assume that B 2 is actually not 
modulated at all but is steady. It is then convenient to 
write 

Bt(Y , t) -- G,yfl(t ) , (2.1) 

Bz(z, t ) :  G~z, (2.2) 

so as to separate the dependence on time from the 
dependence on position in B 1. We choose the function 
fl(t) to have maximum modulus equal to 1. Then Gy 
and G~ characterize the strength of the gradient fields, 
and we introduce Y0 = c~ and z 0 = f2/TG z as funda- 
mental units of length in the y and z direction, 
respectively. 
For definiteness we shall assume from now on that M 
is odd, and write M = 2 M ' +  1. An even value of M 
would make some equations slightly more complicated 
but all results would be essentially just the same as in 
the case of odd M described below. 
For the field given by (2.2) the functions introduced in 
(1.5b) are 

sin [rc(z - mzo)/Zo] 
tim(Z) = ~(Z-- mZo)/Z o = wm(z/Zo). (2.3) 

One may verify that for these functions there exists the 
relation 

tim(- z) = fl- re(z), (2.4) 

and that they satisfy the addition theorem 

fl,~- k(Z)flk(z') = tim( z + Z'). (2.5) 
k =  - c o  

These properties derive directly from the gradient form 
of the modulation field (Appendix A) 3. Consequently, 
equations quite analogous to (2.4) and (2.5) hold for 
the functions %(y) introduced in (1.4b). Actually, for 
the %(y) (2.4) can be extended to 

c~,( - y) = c~_,(y) = ( - 1)"%(y), (2.6) 

3 See footnote on p. 258. 
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because of the particular symmetry 

f l ( t  + Tc/o91)= - fl(t) (2.7) 

that is implied both by switching and by cosine-wave 
modulation. 

2.1. Square Wave Modulation (Gradient Switching) 

The modulation pattern proposed by Mansfield is 
obtained by reversing the y gradient at times that are 
an odd multiple of a time interval z: 

[ + 1  if - ~ + 1 4 ~ < t < z + 1 4 z  
sft( t)  = 

- 1 if  z + I4-c < t < 3 z  + I4r 

(1 integer), (2.8) 

the left subscript S standing for square-wave modu- 
lation. Note that z is a quarter period of f~(t), 
4r =2re/co 1. We now find 

_1 [sin_ [7~(y- nyo)/2yo] 
s%(Y) = 2 [ 7z(y- nYo/2Yo) 

,, sin [~(y + nyo)/2yo] 
+ ( - 1 )  ) ( y T n ~  ] =v,(y/2yo). (2.9) 

In the present case one can derive a closed expression 
for the functions S~k(y, z) but the resulting formula is 
rather formidable, and we shall therefore try to ap- 
preciate the essential features of these functions with- 
out actually calculating them. To this end consider a 
function s~k(y, z) with a particular value of k which we 
write as k = nM + m with m uniquely determined by the 
requirement - M' < m < M'. Then 

S~nM+m(Y,Z) = ~, SO:l(Y)flm+(n-l)M(z) 
t= - -oo  

. . . .  + s~ . -1  (y)flm + ~,(z) + s~~ 

+s%+ l(Y)fim-U(z) + .... (2.10) 

We now use the fact that the specimen has finite size : if 
half its length Z is sufficiently smaller than M'zo, out of 
the various tip(z) appearing in (2.10) only tim(z) will 
differ appreciably from zero within the extension of the 
specimen. As regards the value of SSg, M+m we may 
therefore say that we have effectively 

scb,M + r~(Y, Z) ~ SCZ,(y)flm(Z) = vn(y/2yo)Wm(Z/Zo), 

m = - M ' ,  .... M' ,  n = - o o  .... ,oo. (2.11) 

In this approximation functions with opposite values 
of n are identical in view of (2.6). 
The first observation we can make from (2.3), (2.9), and 
(2.11) is, that nuclear spins in an area element of 
approximate size 2y o x z o and centered at (nyo, mZo) 
contribute mainly to SJ/L,M+m and s Jet ,M+m, or con- 
versely, that SJf/,,U+, acquires its predominant contri- 

butions both from spins in the neighbourhood of 
(nyo, mZo) and from spins near ( -nyo,  mZo). We may 
understand this as follows. In these two area elements 
the spins experience a y gradient field which makes 
them precess with a circular frequency that alternates 
between nyoTGy=ncol=nM~2 and -no)l .  This pre- 
cession always has opposite phase in the two regions. 
In addition all these spins experience the same z 
gradient field, which increases their circular precession 
frequency by mzoTG z =mE2. Therefore, the spins in both 
area elements, although with different phase, alter- 
nately process with circular frequencies (riM + re)f2 and 
( - nM + re)f2. 
The implication is that s~k as a function of k (i.e. of 
frequency) does not directly provide a line-by-line scan 
of the spin density distribution as was suggested by 
Mansfield. That assumption in fact leads to spurious 
reflections in the picture which render it impossible to 
distinguish between regions with opposite y coor- 
dinate. This is illustrated by the results of a computer 
simulation shown in Figs. la and b. Simulated is the 
situation where there is a single spot of spin density at 
position (4y0, 4Zo). The Fourier transform of the result- 
ing FID signal is shown in Fig. la. If this spectrum is 
converted into a line-by-line intensity plot on the 
(erroneous) assumption that Lo(nYo, mzo)OCs,//gnu+,,, 
Fig. lb is obtained, in which z increases from left to 
right, y from top to bottom. In addition to the bright 
spot at the correct position in the lower half of the 
picture, there is a bright feature in the upper half 
around the position ( -4yo,  4Zo). 
Our second observation is that it is actually possible'to 
obtain a representation where each coefficient may be 
identified with the spin density in a single small area 
and that this can be achieved by a simple and exactly 
calculable transformation of the spectrum. To see this 
we should realize that {WIn(X)} is a set of orthogonal 
functions in the variable x. According to (2.11) the 
z-dependent factor in SqJnM+m(y,z) is already such a 
function, the width z o of any individual function being 
equal to the separation between the maxima of suc- 
cessive functions. On the other hand the two terms in 
sC~(y) [see (2.9)] that make up the y-dependent part in 
SCP,,M+m(y,z) have an individual width equal to 2y o 
while corresponding terms in successive s~n(y) have 
their maxima only Yo apart, which is too close for such 
terms to be independent. Therefore the terms with 
their maximum at an odd multiple of Y0 can be 
expressed in those with their maximum at a n  even 
multiple of Yo and vice versa. By doing so we can 
construct a set of independent functions with a single 
maximum at either a positive or a negative multiple of 
2yo. 
We proceed to the precise mathematical formulation 
of the above. We choose the following functions as the 
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Fig. la-d. Computer simulation of image formation with one static and one square-wave modulated magnetic gradient field. Expressed in the 
time unit for which the sample rate is equal to 1 the example shown has T= 256, 4r = 32, and T 2 = 128, so N = M = 16, Simulated is the presence 
of a single spot of spin density at position (4yo, 4zo) : (a) spectral coefficients s ~  2L) as a function of k (frequency), (b) line-by-line intensity plot of 
~s,~ r +,,, - ~ - < n <  15; -8<m__<7}, (c) transformed coefficients sa~(2L~ versus nM+m, (d) intensity plot of {s~2,L)=2yoZos~(n2yo, mz~,l[ 
- 8  < n < 7; -8-< m-< 7}. In (b) and (d) m increases from left to right, corresponding to the z direction, n from top to bottom, corresponding 
to the y direction, and the arrows indicate the origin 

set to e x p a n d  the spin  dens i ty  in  

s ~n,,(Y, z) = wn(y/2y o + (z/z o - m)/2M)w~M)(Z/Zo), 

m= - M ' ,  . . . ,M', n =  - oo, ..,, oo, (2.12) 

where  the func t ion  wi th  superscr ip t  (M) is def ined as 

l = - - o o  

sin [ re (z -  mzo)/Zo] 
(2.13) 

M sin ET~(z- mZo)/Mzo] 

The  func t ions  StP,,m(y,z) are  re la ted  to the func t ions  
s~k(y, z) [as g iven  by  (2.10), no t  a p p r o x i m a t e d  accord-  
ing  to (2.11)] by  

S ~ffnm(y, Z) =St~)ZnM+m(y, Z) 

+ ~ S,,s~b(2,, ~)~+,,(y,z), (2.14a) 
t t '=  - c ~  

_ ( - - 1 )  n - " ~  

S,,, (n -n '  + �89 =w~ + �89 (2.14b) 

Therefore  
def  

=sJ/d2,M+m+ ~ S , , , s~ (2 , , _ l )~ t+m,  (2.15) 

a n d  this t r a n s f o r m a t i o n  is called a f i l tering of  the 
spec t rum.  Since the s~,m(y, z) are  o r t h o g o n a l  func t ions  
on  the s tr ip - oo < y < oo, - Mzo/2 <_ z <_ Mzo/2, the 
spin  dens i ty  d i s t r i b u t i o n  is then  rep resen ted  by  

sdY, z ) =  1 
M' 

- -  ~ Sg~nmStIJnm(Y,Z), (2.16) 
2YoZo ,,= - ~ ,,= -M'  

which  is u n a m b i g u o u s  if the spec imen  d i m e n s i o n s  are 

such tha t  Z < Mzo/2. 
The  func t ions  used in  this  e x p a n s i o n  have  some  nice 
p roper t i es  which  are  reflected in  s0(Y, z). Besides be ing  
o r t h o g o n a l  the  set {ST",,m(y,z)} is wha t  we call semi-  
comple t e :  it is comple te  on  the discrete lat t ice wi th  
spac ing  2y o in  the y d i rec t ion  a n d  z o in  the z di rect ion.  
I t  is therefore  capab le  of r ep resen t ing  fai thful ly any  
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smooth function on the afore mentioned strip, apart 
from details smaller than 2y 0 x z 0. On the lattice the set 
is also orthonormal with respect to a discrete inner 
product and its members are the natural basis vectors, 
i.e. at the lattice point (n2yo, mz  o) the function with 
corresponding indices has the value one while all other 
functions are zero there. 
The semicompleteness implies 

1 ~ + ,, 
s0(y, z) = j j  0(y y -" + z') 

�9 wo(y' /2y o + z ' /2Mzo)W~m(z' /zo)dy'dz ' , (2.17) 

which shows sO(Y,Z) to be a smoothed 0(Y,Z). The 
smoothing roughly has the effect of removing from 
O(y,z) all (spatial) frequencies higher than 1/2y o and 
1/z o in the reciprocal y direction and z direction, 
respectively, but the resulting sO(Y,Z) still contains 
complete information on the more gradual variations 
in the spin density (Appendix B) 4. The values assumed 
by s0(Y, z) at the lattice points (n2y 0, mzo) are precisely 
the expansion coefficients in (2.16) and therefore char- 
acterize the function completely. 
The effect of the transformation is further illustrated by 
the computer simulation results in Figs. lc and d. The 
filter given by (2.15) was applied to the spectrum of 
Fig. la and the result is shown in Fig. lc. Conversion 
into an intensity plot according to s~(n2yo, mzo)CCs~,, m 
gives Fig. ld. The spurious feature in the upper half of 
the picture has now disappeared: there is only a bright 
spot at the correct position (4y 0, 4zo). We remark that 
only the independent data points are shown here. For a 
good visual impression of the image it will be necessary 
to include a number of intermediate points. 
We have seen that square-wave modulation of the 
gradient fields yields a signal that admits a rather 
straightforward interpretation�9 After a simple transfor- 
mation necessary to remove spurious reflections the 
filtered spectrum {s~,~} represents the spin density at 
successive points of an equidistant lattice, and de- 
termines the low-(spatial)-frequency part of the density 
in between as well. The dominant contributions to a 
particular s~,,, come from only a few S/~,,M+r~. in the 
original spectrum, viz. those with m ' =  m, n ' ~  2n. 
It is now easy to interpret the effect of relaxation�9 The 
contamination of each coefficient S./Cf, M+m with its 
neighbours, described by (1.23), produces smoothing of 
s0(Y, z) over successive lattice points and therefore loss 
of resolution in the z direction. This has curious con- 
sequences near the edges. If m is slightly smaller than 
M' the coefficient S~2,M +,,,, which would mainly con- 
tribute to s~,,~, contaminates coefficients s//g(2, + 1)M + m' 
within m' slightly larger than - M'  and these contribute 

predominantly to s~@,,,, and s~,,+ 1,m,, that is at the other 
edge of the image. 
One may say that the use of the filter doubles the 
amount of information that is extracted from the 
signal. This may be appreciated from the following 
argument. Without the transformation we would only 
obtain a well defined image from the SJ~,M+m if we 
took care that ~o(y, z) were zero for negative y so that 
reflections could not give rise to any ambiguity. 
Seemingly the ensuing loss in allowable specimen size 
would be compensated for by the finer resolution in 
the y direction: without the transformation Yo as 
compared to 2y o with the transformation. However, if 
0(y ,z)=0 for y < 0  the SJt,,,M.,, with odd n do not 
contain any information that is independent of the 
information in the S~,M+,,, with even n, and the 
resolution is still effectively 2y 0. Therefore the effect of 
the filter is, so to speak, to make the region y < 0  
available for the specimen without any loss in 
resolution. 
Single-phase detection of the signal produces an ar- 
tefact in the form of an inversion of the image (includ- 
ing spurious reflections if present) through the origin. 
This cannot be remedied by mathematical means and 
an unambiguous image is obtained only if Q(y, z) = 0 in 
a halfspace, say for z<0. Hence there is a loss in the 
possible specimen size by a factor of two (four if the 
transformation is also omitted) which is consistent 
with the number of data being halved compared with 
quadrature detection. 
It appears from (2.14a) that the set {sT,~,} contains in a 
way only half as many functions as the set {s~bk}, since 
there is a one-to-one correspondence between the 
functions S@,M+,, with even n only and the functions 
belonging to the set {sT,,,}. One might thus wonder 
whether an independent second set can be constructed 
fi'om {s~b~}. Actually this is possible by replacement of 
the plus sign by a minus sign in (2,14a) from which an 

f 1 orthogonal set ~sT,m} results. The functions from this 
set are not dependent on the functions sT,,, obtained 
with the plus sign, but they are also not orthogonal to 
them. It may be shown (Appendix C) 5 that if both 
{sT,m} and {sTy,,} are used, the spin density can in 
principle be reconstructed on a strip that is twice as 
broad in the z direction as is possible with {sT,,,} 
alone, with the same resolution 2y o x z 0 as in that case. 

{sT,,,} (or the For that purpose the sets {sT,,,} and 1 
weighted integrals corresponding to them) must be 
disentangled because of their non-orthogonality. This 
necessarily involves a procedure equivalent to solving 
linear equations with a matrix that is very ill- 
conditioned. This is connected with the fact that the set 
{s~k} contains pairs of functions that are approximate- 

4 See footnote on p. 258. 5 See footnote on p. 258. 
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Fig. 2a-d. Computer  simulation of image formation with one static and one cosine-wave modulated magnetic gradient field. Expressed in the 
time unit for which the sample rate is equal to l the example shown has T = 512, 2~z/oo 1 = 64, and T 2 = 256 so N = 32, M = 16. Simulated is the 
presence of a single spot of spin density at position (5roy 0, 2Zo) : (a) spectral coefficients C ~  2L) as a function of k (frequency), (b) line-by-line 
intensity plot of {c~tL)+,,I - 32 -< n_< 31 ; - 8 -< m _< 7}, (c) transformed values cO(n~Y0, mzo) versus nM + m, (d) intensity plot of {c~(n~Y0, mz0) I 
- 10 _< n < 9 ; - 8 < m < 7}. In (b) and (d) m increases from left to right, corresponding to the z direction, n from top to bottom, corresponding to 
the y direction, and the arrows indicate the origin 

ly dependent, as we noticed after (2.11). The problem 
can only be circumvented if resolution in the y direc- 
tion is given up to a considerable extent. So in practice 
the penalty for an increase of the allowable specimen 
size in one direction is loss of resolution in the other 
direction. 

2.2. Cosine Wave Modulation 

Since switching a gradient field at high frequency may 
pose serious practical difficulties it is of particular 
interest to consider the replacement of the square wave 
form by a cosine-wave modulation pattern for the y 
gradient, 

cfl  (t) = cos (co 1 t). (2.18) 

In this case one finds 

cCt,(Y) = J,(Y/Yo). (2.19) 

where J,(-) is a Bessel function [16]. 
For  a discussion we again content ourselves with 
establishing by the same reasoning as before that one 

has to a good approximation 

cq),M + re(Y, z) ,~ co:,(y)flm(z) = J,(y/yo)Wm(Z/Zo), 

r n = - M ' , . . . , M ' ,  n = - o o ,  .... oo. 

(2.20) 

Again functions with opposite n are identical in this 
approximation, because the Bessel functions satisfy 
(2.6). 
Our first observation is that, by the very nature of the 
Bessel functions, spins in the neighbourhood of 
(nyo, mz0) contribute predominantly to all coefficients 
cJCZ~,M+m with In'l<lnl, or conversely that cJg,~t+,, 
acquires significant contributions from spins in the two 
half strips along (y, mzo) with lYl > Inlyo. This is under- 
standable if one considers that spins close to (ny o, mzo) 
experience a y gradient field which makes them precess 
with a circular frequency that is gradually modulated 
between nyoTGy=nco 1 =nM~2 and - n o )  1. It is clear 
that no simple relation exists between well delimited 
area elements in the specimen and particular coef- 
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Fig. 3. The functions Fo(x) for n = 0 ,  !~ 2, 3, 5, 9 

ficients in the spectrum. Certainly c J k  as a function of 
k can not even resemble a line-by-line scan of the spin 
density distribution. 
This is demonstrated in Figs. 2a and b where results of 
computer simulation are shown, analogous to those 
for the square-wave case. Figure 2a shows the Fourier 
transform of the FID signal that is produced by a 
single spot of spin density at position (5~y0, 2%). When 
converted into an intensity plot as if 
o~(nyo, mzo)OCc.//C,M+,,, it yields Fig. 2b. From the bright 
spot at the correct position in the lower half of the 
picture a complicated spurious feature emerges, which 
extends roughly to the opposite point in the upper half 
of the picture. 
The second observation we make is that the structure 
of the functions c45k(y, z) is very similar to that of the 
s@k(y, z). This enables us to reconstruct the spin density 
by proceeding in close analogy with what we did in the 
square-wave case. 
For  that purpose we must introduce two sets of 
functions 

cX,r~(Y,Z) = ~ K,+u2(Y/yO)W,,-IM(Z/Zo) 

_ ( M )  

- K , ,  (Z/Zo_m)/2M(y/yo)Wm (Z/ZO) , 

~-- - M ' ,  . . . .  M ' ,  n = - oo . . . .  , oo, ( 2 . 2 1 )  

and 

c%My.z)= ~ F.+,/2(y/yo)Wm_MZ/Zo) 
[ = - s o  

= F ,  (M) ~ Z -(.-/~o ,,),'2v(Y/Yo)W,, (~-/ o), 

m = - M', .... M',  n = - oo .. . . .  oo. (2.22) 

The functions K,(.)  and F~(.) that appear here are 
defined by an integral representation for arbitrary real 
values of the order v (Appendix B) 6, but for half-integer 
order they can be expressed as a series of Bessel 
functions : 

K,/z(x)=J,,(x)+ L ( - 1 ) '  j,+z,+~(x) ' (2.23) 
,: ~ 0 + � 8 9  

1 
%e(x) = ~ [Jo_ l(x) + J.+ l(x)] 

( -  1)' 
#-, =~ ~ ( 1 - - ~ z  J" +2,(x). (2.24) 

Equations (2.23) and (2.24) are useful for numerical 
calculation of these functions since the series converge 
rapidly and fast numerical procedures for calculating 
Bessel functions are available. In Fig. 3 we show some 

See footnote on p. 258. 
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Fu(x) of integer order. The 
related to the functions C~k(y, Z) by 

cXnm(y, z) = C qh 2nM +m(y, Z) 

+ ~ S.., cqS(z,,,_l)M+~(y,z) (2.25) 

with the same coefficients S.., given by (3.14b) as we 
had in the square-wave case. Thus 

def 

= C-~d/'2nM + m A7 ~ Snn ,  C U ~ f ( Z n , _ l ) M + m  (2.26) 

and since the sets [c~n,,,} and {cXnm } form a biorthogonal 
system on the strip - ~ < y < z~, - Mzo/2 G z <_ Mzo/2, 
the spin density distribution is represented by 

1 ~ M' 
ce(y,z)= - -  ~ c~.m c~P.~(y, z), (2.27) 

Y o Z o  n =  ~o m =  - M '  

which is unambiguous if the size of the specimen is 
such that Z < Mzo/2. 
Similar to the former case, the biorthogonal system 
made up by {c~.~} and {cX..,} is semicomplete too, 
namely with respect to the discrete lattice with spacing 
~Yo in the y direction and z o in the z direction. The 
system is also biorthogonal with respect to a discrete 
inner product on that lattice, but the cT',,,(y, z) are not 
the natural basis vectors. 
It follows from the semicompleteness that 

1 
= Q(y + / ,  z + z') 

YoZo 

.F_ ,/2M~o(y'/yo)W~oM)(z'/zo)dy'dz ' . (2.28) 

This implies that c~O(y, z) is a smoothed ~(y, z), in such a 
way that roughly all (spatial) frequencies are removed 
that are higher than 1/~y o and 1/z o in the reciprocal y 
direction and z direction, respectively, but complete 
information on the more gradual variations in the spin 
density is still present in cg(Y, z) (Appendix B) 7. 
In the present case the expansion coefficients in (2.27) 
do not coincide with the values which c~(Y, z) assumes 
at the lattice points, although these values characterize 
the function completely. They must therefore be calcu- 
lated from 

M' 

Y E 
n ' : - ~  m ' = - M '  

c ~'m'(n~Yo, mZo) 
c~.,m , , (2.29) 

YoZo 

which can be regarded as a filtering of {c~.m}. The 
computer simulation results in Figs. 2c and d demon- 

functions cX.,n(y,z) are 

7 See footnote  on p. 258. 

strate the combined effect of the transformations given 
by (2.26) and (2.29) on the spectrum of Fig. 2a. In 
Fig. 2c c~(nrcy0, mzo) is shown as a function of nM + m 
and this is converted into an intensity plot in Fig. 2d. 
The spurious feature has fully disappeared and only a 
bright spot at the correct position (5rcy0,2Zo) has 
remained. 
We have found that cosine-wave modulation of the 
gradient fields also yields a signal that contains the 
desired information on the spin density, but that a 
rather complex transformation is needed to get this 
information in a convenient form. In particular, all 
spectral coefficients c~//g~,M+~ with ln'l<[n[ make im- 
portant contributions to the spin density at the lattice 
point (nrcYo, mzo). It will further be clear that the filter 
operation cannot be avoided in the case of cosine-wave 
modulation, not even at the expense of specimen size. 
Again, relaxation causes broadening in the z direction. 
Near the edges z ~ +_ M'z  o we have transfer of intensity 
to the opposite side of the picture as in the square wave 
case, but the ensuing redistribution in the y direction of 
the transferred intensity is not so easy to describe due 
to the complexity of the transformation involved. 

3. Signal Sampling 

We shall describe what has to be changed in the 
treatment above if the FID signal is sampled and not 
recorded continuously as we have assumed until now. 
As is well known [-17], by introducing a shortest time 
interval At and thus a largest frequency difference 1~At 
sampling causes aliasing in the spectrum: any fre- 
quency higher than 1~2At is folded back to a frequency 
lower than 1~2At so that these become indistinguish- 
able. Since NMR frequency corresponds to distance in 
the specimen through the gradient fields, it is to be 
expected that sampling will set an upper limit to the 
allowable specimen size. 
We consider the situation where ~+(t) is sampled at 
the instants between 0 and Tthat  are integral multiples 
of T/L, where L = N M  and N is an integer, which we 
assume to be odd and write as N = 2N'+ 1. Discrete 
Fourier transformation now yields 

l L - 1  
~(kZL)-- ~ e~+(]T/L)e] ikJ~'L 

2L j= -L 

= ~ ~(y, z)qS(k2L)(y , z)dydz, 

k = - L , . . . , L - 1 ,  (3.1) 

where 

l = --co 

N - 1  
= ~ ~ ( 2 N ) ( , , ~ ( 2 L ) [ , ~  (3 .2)  

~ n  \ Y ] k ' k  -- n M k ~ !  
n = - -N  
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~2~) and with analogous definitions of the functions :~, 
flc2~) as infinite sums of their non-superscripted coun- 
terparts. So again we obtain weighted integrals of the 
spin density distribution, this time with respect to a set 
of modified weight functions {(~}2L)(y, Z)}, which more- 
over is finite�9 With (3.1) and (3.2) replacing (1.7) and 
(1.8) the entire further analysis now proceeds in exactly 
the same way as discussed in the previous sections. 
Therefore we shall only state the main results and 
comment on them briefly. 

3.1. Square Wave Modula t ion  

For the expansion of the spin density the following 
functions are used: 

~(2c)(,; z)= (N) m)/2M)w~M>(Z/Zo), s - , , ,  ,-', w,  (y /2y  o + (z /z  o - 

m =  - M ' ,  . . . ,  M ' ,  n =  - N ' , . . . ,  N ' .  (3.3) 

The filtering of the spectrum is given by 

N' 
Oj0(2L)__ ////(2L) 4- Z ~'{N) ,~(2L)  (3.4a) 

S~'nm - - S ~ 2 n M + m  ~ ~'nn' S ( 2 n ' - l ) M + m ~  
n ' - - N '  

= ' n +g),  (3.4b) N sin ~ ( n -  n' + �89 = w~~ ' 1_ 

and the desired representation of the spin density 
distribution takes the form 

1 N" M' 
-- Z Z d'p(2L) ~ TJ(2L)(" Z). (3.5) 

s~(Y, z) 2yoZ ~ . . . .  N,,,=_~rs~',m s .., ~y, 

7 jl2LI~ z) Because of the periodicities in the functions s ,,, tY, 
this representation is only unambiguous if the size of 
the specimen is such that y < N y  o and Z < Mzo/2 .  

,-(2LIt z) are orthogonal on the rec- The functions s~v,,, ~y, 
tangle - N y  o <=y <= NYo,  - M z o / 2  <_ z <_ M z o / 2  , they 
form a semicomplete set with spacings 2y o and Zo, and 
they are orthonormal with respect to a discrete inner 
product on the corresponding enclosed lattice. The 
semicompleteness implies 

sO(y, z) = l ~ 5 5 0 ( y + y ' , z + z ' )  
2YoZ0 

�9 w~'~)(y'/2Yo + z ' / 2 M z o ) w ~ m ( f / z o ) d y ' d z ' ,  (3.6) 

which demonstrates once more the necessity of limits 
on the specimen size. The expansion coefficients s ~a~(2~),,., 
are directly proportional to the values of s~(Y, z) at the 
lattice points (n 2yo, mZo). 
We remark that the computer simulation results 
shown in Fig. 1 were of course obtained with the 
transformations just described, involving only a finite 
number of weighted integrals, expansion coefficients, 
and so on. 
The doubling of the available amount of information 
by the filter may now be formulated as follows. 

Sampling of the FID signal at L instants between 0 and 
T provides us with L complex numbers Y~+(jT/L),  

which are converted into 2 L  real weighted integrals 
sJr 2L), With the transformation given by (3.4) we 
extract from them L independent values of the spin 
density at L lattice points in the rectangle 
- N y  o < y < N y  o, - M z o / 2  < z <_ Mzo /2 .  (As we do not 
use the possibility to construct a second set of func- 

(2L) tions from the s~k (y, z) because of numerical difficul- 
ties, the number of independent data is reduced by a 
factor of 2 here.) Without the transformation we would 
have to require that 0(Y, z) be zero for y < 0. Since only 
half of the remaining ////(2L) would then be inde- S ~u~'tlM + m 
pendent, we would end up with �89 independent values 
of the spin density at �89 lattice points in the rect- 
angular area 0 < y < N y  o, - M z o / 2  <- z <_ Mzo /2 .  

3.2. Cosine Wave Modula t ion  

The functions involved in the expansion of the spin 
density are 

N-1  
(2L) cXh," (y, _)= y, (N) (2L) Z K,+,/2(y/yo)Wm_zM( /~o) 

l= - N  

(N) ~ (M) Z Z =I(.-~/~o-.,)/~.~O/yo)w~ ( / o), 
m = - M ' , . . . ,  M ' ,  n = - N ' ,  . . . .  N ' ,  (3,7) 

and 

N-1 
C~'I~ 2 L ) ( y ' Z ) =  Z F (N)  [ " / ~  ~'w(2L) [ Z / 7  ~ n+II2~,YlYO! m - l M  ~, l~O,t 

I =  - N  

- -  (N) , (M) 
- F . _  ~./zo_ m)/2M(y/yo)W~ (Z/Zo), 

(3.8) 
m= - M ' ,  .... M' ,  n=  - N ' ,  . . . .  N'. 

The spectrum must be subjected to the same filter as in 
the square-wave case, 

N' 
~(2L)__ ffff(2L) ~_ y~ V~U) _M<2L) (3.9) 

C a  nrn - - C ~ f ' ~ 2 n M + m  ~ ~ C- (2n'-l)M+m~ 
n -  - N' 

and the spin density distribution is represented as 

1 N" M" 
C ~(y '  Z) ~'~- - Z Z C ~ 2 L )  c~'I~2nL>(Y ' Z ) '  (3.10) 

Y0Z0 n = - N '  m - - M '  

which is unambiguous if the specimen dimensions 
satisfy Y < N y  o and Z < M z o / 2 .  
There is a mathematical complication here. Although 

f v(ZL)/e and * W(2L)'~ contain only a finite the sets (C.~nm , tC--nn, J 
number of functions they do not form an exactly 
biorthogonal system on any finite area, essentially 
because they are not periodic in the y variable 
(Appendix B) 8. Yet for practical purposes it is sufficient 
that the system built up from iCeXnm/y(2L)'~) and {CTjm(ZL)} is  

approx imate l y  biorthogonal on the rectangle 

See footnote on p. 258. 
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- N y  o < y < N y  o, - Mzo/2  <_ z <_ Mzo/2,  and is also ap- 
proximately semicomplete with spacings ~Yo and z 0. 
The representation defined by (3.10) in fact satisfies 

1 
~(Y' ~)= yozo S~e(y+ y',~ + s) 

�9 F(N_~,/ZMzo(y'/yo)W(oM)(z'/zo)dy'dz', (3.11) 

from which it may be appreciated, in view of the shape 
of the functions F~m(. ) and W(oM)(. ), that c~(Y, z) images 
the more gradual variations in the spin density accu- 
rately if the specimen size falls well within the limits 
given above. 

4. Resolution and Allowable Specimen Size 

We are now in a position to discuss how important 
characteristics of the method, such as attainable reso- 
lution and maximum allowable specimen size, are 
connected with the various experimental parameters. 
We only consider gradient modulation as described in 
Sect. 2. 
The resolutions Ay and Az in the directions of the 
orthogonal gradients, when identified with the lattice 
spacings associated with semicompleteness, turned out 
to be of the order of Yo=C~ and z o=f2/7G z, 
respectively. Thus the resolution is largely determined 
by the quotient of modulation frequency and gradient 
strength, and the precise form of the modulation 
pattern has only a minor effect on it. For the z 
direction, where the gradient is steady, it is useful to 
write A z = z o = n / y G ~ T ,  which shows the size of the 
smallest resolvable detail to be inversely proportional 
both to gradient strength and to measuring time. In the 
y direction, corresponding to the gradient that is 
actually modulated, we have A y = 2 y  o for a square- 
wave modulation pattern and A y = n y  o for cosine- 
wave modulation. We point out that when expressed in 
terms of an effective gradient strength 

2n/oJ1 
- ( J ) l  Gy-- 2~ ! G,lf~(t)ldt (4.1) 

by which s(~y=G~ and cGy=2G/~z, the resolution is 
equal to 2o~1/7Gy for both modulation patterns�9 This is 
worse by a factor of 2 compared to the resolution 
obtained with a steady gradient. Finally, it will be clear 
that if one gradually smoothes the square wave form 
until it has changed into a cosine wave form the 
resolution will change monotonously from 2y o to 
TCyo. 
The size of the specimen in the z direction, 2Z, is not 
allowed to exceed M z  o = col/7G z. Thus, when measured 
in units of resolution it is limited by the ratio M = col/(~ 
=col T/~z, i.e. twice the number of modulation periods 
of the y gradient during the measuring time. Therefore, 
if T is fixed, the allowable specimen size can be 
increased in the z direction at constant resolution Az 
by an increase of o)1, which, however, causes the 
resolution in the y direction to deteriorate propor- 
tionally, unless the strength of the y gradient is also 
increased. Of course, it is always possible to relax the 
limit on 2Z at the expense of resolution in the z 
direction by a reduction of the gradient strength G~. 
The size of the specimen in the y direction, 2Y, is in 
principle not limited by the method but only by the 
size of the measuring apparatus. However, if the FID 
signal is sampled, the sampling rate N M / T  sets an 
upper limit 2 N y o = ( N M / T ) 2 ~ / T G y  to 2Y. That is N 
units of resolution in the square-wave case, 2N/Tz units 
in the cosine-wave case. 
We have collected these results in Table 1. It is now 
easy to compare the performance of square-wave 
modulation with that of cosine-wave modulation in 
the situation where all experimental parameters are the 
same. We have seen that both modulation patterns 
allow the same specimen size but that the resolution is 
better by a factor of re/2 with square-wave modulation, 
and accordingly the number of independent data 
points is larger by that factor (compare Figs. ld and 
2d, noting that N is twice as large in Fig. 2). Expressed 
in units involving the effective gradient strength it is 
the specimen size that is larger by a factor of 7z/2 in the 
square-wave case, while the resolution is the same for 
both modulation patterns. 

Table 1. Dependence of resolution and a11owable specimen size on experimental parameters. 
Here Gy and G~ are the gradient strengths, (2 = 7z/T where Tis the measuring time, (~1 = MQ is 
the modulation circular frequency, and N M / T  is the sampling rate 

z direction y direction y direction 
(static gradient) (with square-wave (with cosine-wave 

modulation) modulation) 

Resolution ~ / ,:G : 2 cO l /TG y no~ t /?'G ~ 

Maximum specimen M~?/TG = N 2coI/'7Gy N 2r 
dimension 

Number of M N 2 N / z  
points resolved 
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Finally, we show how the present treatment can be 
extended to the situation where B 2 is periodic. Let co 2 
be the circular frequency of the B 2 modulation. First, 
we consider the case where co a is an integral multiple of 
co 2. Now notice that in the foregoing formalism the 
quantity f2 has acted in many respects as a circular 
frequency associated with B2, because 2~/f2 = 2T is the 
time during which B 2 is effective. We might as well 
view this time interval as the first single period of a 
field that is continued periodically. Therefore the case 
co~ =Me%, where M is an integer, is already covered by 
the formulation above if only g2 is replaced by co 2 
everywhere and the appropriate time dependence of B z 
is inserted in (1.2) and used in the evaluation of flm(z ). 
Second, we demonstrate that a rational frequency ratio 
is not fundamentally different from an integral fre- 
quency ratio, so that our assumption above caused no 
loss of generality. Let us suppose that M2c.o 1 = M l ~ 2 ,  

with M~ > M  2 (in this notation we had M 1 = M  and 
M 2 = 1 up to now). The effective measuring time 2T 
must then be 2T=M22~/coz=Mx2~/co ~ in order that 
the measurement effectively lasts an integral number of 
full periods of each modulation field. Since more than 
one period of the field B 2 is nOW necessarily involved 
we must exclude the presence of any time-independent 
part in B 2 in order that (P2 is zero at the beginning of 
each period. 
For the sake of the argument assume square-wave 
modulation for both gradient fields. Analogous to our 
previous derivation one readily finds that the weight 
functions ~k(Y, z) appearing in the weighted integrals of 
O(Y, z) are in this case given by 

ao  

~ . ~  +mM~(y,z)= ')~ v.+m~(y/2yo)V,._m~(z/2zo) , (4.2) 
l =  - -o~  

where k is uniquely decomposed as k = nM~ + mM z by 
the requirement that O<_m<_M~-l. From (4.2) we 
appreciate that after a double filter transformation so 
as to remove spurious reflections in both directions we 
are left with resolutions Ay=2cOl/yGy and 
Az = 2c%/7G z = 2M27c/~/TG ~ and maximum allowable 
specimen dimension 2Z = Mlcoz/TG ~ = MtMz:z/~TG=. 
Comparison with Table 1 shows that for fixed T 
almost nothing is gained by having both gradient fields 
modulated instead of one. The allowable specimen 
dimension 2Z can be increased by an increase of 0 2, 
but Az increases proportionally so that the number of 
independent data points in the z direction does not 
change with 0) 2 but is still determined by c0~. The 
additional flexibility that 2Z and Az can be varied not 
only through G~ but also through 0 2 is paid for by the 
disadvantageous factor 2 in the expression for Az. This 
factor stems from B z being actually modulated instead 
of being kept steady. 

5. Practical Considerations 

Anticipating conclusions presented later in this sec- 
tion, we can say that an approximately square-wave 
modulation meets insurmountable practical difficul- 
ties. It is the high rate of magnetic field variation which 
we expect to cause trouble, in particular for such 
applications as human-body spin imaging. We limit 
ourselves, therefore, to cosine-wave modulation. 
As a further limitation we shall consider only two- 
dimensional imaging, since we can state, anticipating 
again, that the three-dimensional version of the meth- 
od is realistic only for a very limited resolution, e.g. 8 
independent data points in each direction. As noted 
before, the application of the two-dimensional version 
is not limited to two-dimensional objects. It can well be 
applied in a three-dimensional specimen, namely if the 
method is combined with selective excitation or selec- 
tive saturation [2, 6, 9, 14]. 
For a description of practical aspects we adopt the 
following starting point. We take 2Z, 2Y, Az, Ay, and T 
as five given quantities. In other words: we have a 
given specimen of dimensions 2Z and 2Y, and we want 
resolutions Az and Ay in the z and y direction, 
respectively. In practice, the measuring time T is in so 
far a given quantity as a good choice of its value is 
dictated by the remaining inhomogeneity AB of the 
background field, this latter field being the strong 
static field B o that remains if the currents through all 
gradients coils are zero. In order to avoid appreciable 
distortions (of order Az) in the image the measuring 
time T should not much exceed ~/yAB. The value of T 
is of course also limited by the relaxation times T 2 that 
occur in the specimen. The part of the sample having 
relaxation times shorter than the chosen value for T 
should be negligible, say 5 % or less. 
In Table 2 we have summarized how various experi- 
mental parameters are expressed in terms of 2Z, 2Y, 
Az, Ay, and T. These expressions are readily derived 
from Table 1 in Sect. 4. 

Table 2. Dependence of the gradient parameters and of the sam- 
pling frequency on the specimen dimensions (2Z and 2Y), the 
required resolutions (Az and Ay), and the chosen measuring time 77, 
The y gradient is assumed to vary sinusoidally 

7C 

z gradient: G z = - -  
"/TAz 
I 2Z 

y gradient modulation frequency: c~ = 2T Az 

7r 2 2Z 
Amplitude ofy  gradient: Gy 7TAy Az 

(dB I n 3 2Y (2Zt2 
Maximum rate of field variation: . - - - .  - , -  -~ - -  ~-t/m.x = ~ - ~  - \ ~ /  

n 2Y 2Z 
Sampling frequency: Vsampling 2T Ay Az 
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As an example we assume an inhomogeneity 
AB=0.5 gT (5mG) so that T =  16ms is a reasonable 
choice. Further we assume a sample of 32 cmx 32 cm 
and we require a resolution of Az= Ay--1.0 cm. Using 
Table 2 one derives for this example 

G~ = 73 gT/m (7.3 mG/cm), 

col/2~ = 1.00 kHz, 

G~ = 7.3 mT/m (0.73 G/cm), 

(~Bt)ma = 7"4 T/s (74 kG/s) , 

and 

Vsampling : 100 k H z .  

(In this example we have M = 32 and N = 50.) 
The required homogeneity is not easy to attain in a 
32 cmx  32 cm layer and the realization of 7.3 mT/m for 
Gy is also difficult if a good linearity of the gradient is 
required. 
The rate of magnetic field variation, 7.4 T/s, is already 
larger than what Budinger [18] judges to be harmless 
for the human body. For an improved resolution 
Az=Ay=O.5cm, the values for Z, Y, and T remaining 
the same, dB/dt has to be eight times larger, 59 T/s. 
The sampling frequency need not to be a great prob- 
lem, not even at dz=Ay=O.5cm, since 400kHz 
sampling rate is within the reach of modern 
minicomputers. 
The following remark can be made about the required 
linearity of the y gradient. Since the two gradient fields 
affect the spectrum differently because of their different 
time dependence, it is only the resolution in the y 
direction and not that in the z direction which de- 
termines to what extent the y gradient field may 
deviate from its ideal form. Thus, time-dependent 
deviations of order 0.5 Gydycoso~lt are allowed, be- 
cause such a deviation corresponds to a displacement 
of a data point by 0.5 Ay in the y direction. Only static 
deviations could disturb the resolution in the z direc- 
tion and should be smaller than 0.5 G~Az. 
Mansfield [8] has remarked that one may take the 
strong gradient as the fixed one and vary the small 
gradient periodically, provided that one applies 180 ~ 
time-reversing pulses. In a two-dimensional sample 
this might be realistic but for imaging a selected layer 
of a three-dimensional specimen it is not yet clear how 
one should do this. Good selective 180 ~ pulses are for 
instance not yet known [14]. Therefore the required 
strength Gy of the modulated gradient seems to be the 
major technical limiting factor. 
In conclusion we think that the example above is 
certainly difficult to realize but would still be just 
attainable. The echo planar imaging method has thus a 

limited resolution, but 32 x 32 independent image 
points may yet contain enough information in certain 
applications. 

6. Summary and Conclusions 

We have derived a general formalism for the analysis 
of NMR spin imaging spectra obtained with magnetic 
field modulation during the free induction decay. We 
have shown that this technique yields weighted in- 
tegrals of the spin density distribution. The infor- 
mation contained in these integrals depends upon the 
weight functions, which in turn are determined com- 
pletely by the spatial dependence and the modulation 
pattern of the modulated magnetic fields. This insight 
led to a prescription for reconstructing the spin density 
distribution from the measured FID signal. 
We have applied the formalism to two-dimensional 
imaging with one static and one modulated magnetic 
gradient field. The solution to the image reconstruc- 
tion problem then consists in the application of a filter 
to the FID spectrum. For the cases of square-wave and 
cosine-wave modulation we have given explicit ex- 
pressions for these reconstructing filters and demon- 
strated their effect in computer-simulated pictures. In 
the case of square-wave modulation one could try to 
avoid use of the filter but this would be at the expense 
of half of the ~space available for the specimen. With 
cosine-wave modulation the filter transformation is 
indispensable for getting an unambiguous image at 
all. 
An analysis of the attainable resolution and allowable 
specimen size gave the following results. For gradient 
strengths G~ (static) and Gy (modulated), modulation 
frequency o~l/2~z, measuring time T=MTc/oJ1, and 
sampling rate v=NM/T the resolution Az in the 
direction of the static gradient is equal to re/7 TG: the 
resolution Ay in the direction of the modulated gra- 
dient is 2o~1/7Gy for square-wave modulation or 
~co,/TGy for cosine-wave modulation, and the maxi- 
mum allowable specimen dimensions are Mzc/yTGz 
and 2Nco ffTG: We then argued that three-dimensional 
imaging by the present method is realistic only for a 
very limited resolution. However the method can be 
quite useful for two-dimensional imaging of a selected 
layer in a three-dimensional object. A resolution of 
1 cm x 1 cm in a 32 cm x 32 cm specimen would be 
attainable, although it will be difficult to achieve this in 
practice. In particular a rather high value for Gy is 
required. For medical applications the high rate of 
magnetic field variation may be a limiting factor. 
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