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Abstract. We present here a model for the tidal evolution of an isolated two-body system. Equations 
are derived, including the dissipation in the planet as in the satellite, in a frequency dependent lag 
model. The set of differential equations obtained is still valid for large eccentricity, as well as for all 
inclinations. The reference plane chosen enables us to study the evolution for both the orbital plane 
and the equatorial plane. 

The results obtained show the Moon, after having approached the Earth with small variations for 
the inclination and the eccentricity, exhibits strong increase for the two parameters in the vicinity of 
the closest approach. In every case the eccentricity tends towards the value 1, whereas the variations 
of the inclinations are dependent on the magnitude of the dissipation in the satellite. 

Some qualitative results are also investigated for the final behaviour of satellites such as Triton and 
the Galilean satellites. 

O. Introduction 

This paper is the second of  a set of  three which deal with the evolution of  a p l a n e t -  

satellite system, with a particular emphasis on the E a r th -M oon  system. In the first paper, 

henceforth refered to as paper one, we studied the evolution of  the Moon's orbit  under 

the influence o f  the tides, by  using simplifying hypotheses.  First we neglected the eccen- 

tricity o f  the Moon, which made the validity of  our results questionable, because o f  the 

enlargement o f  the Moon's eccentricity in the future (MacDonald, 1964) as well as in the 

distant past. Second, no allowance was made for the tides raised on the satellite by the 

planet and we show in this paper their impor tant  effect on both  the evolution of  the in- 

clination and the eccentricity.  Third, in paper one we kept  only the second harmonic in 

the expansion o f  the tidal potential  though integration was carried to less than 5 Earth 

radius. In this investigation the method  used allow the different harmonics to be taken in- 

to consideration, but  even with a closest approach less than 3 Earth radius no important  

modif icat ion appears. 

The gravitational interaction between Sun and Moon, as well as slowing down of  the 

Earth 's  rotat ion caused by  the solar tides, are no t  covered in this paper because they lead 

to a quite different formulation, in particular during the averaging process. Therefore, 

these problems will be the subject o f  the third paper. 

We present here a new calculation of  the orbital evolution o f  an isolate two-body sys- 

tem with  a frequency dependant  lag. The reasons for such a choice are explained in paper 

one. 

A recent paper (Lambeck, 1979) has clearly shown the difficulty which occurs in the 

case o f  large eccentricity,  when the expansion o f  the potential  is performed as in the paper 

by  Kaula (1964). Consequently, in this paper we perform the calculation in such a way 
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that we avoid this problem, and keep the equations in a finite form in eccentricity. A 
similar treatment was achieved by Kopal (1978) in the study of close binary stars. This 

method makes the equations valid for large eccentricity and facilitates the qualitative 
discussion of the solutions of the equations. 

In the case of a system of two bodies, in which the angular momentum borne by the 
orbital motion and that contained in the rotation of the primary are of the same magni- 
tude, a complex evolution takes place. As the satellite is receding, or approaching, its 
orbital plane is moving and the spin axis of the primary is changing its orientation because 
of the constancy of the total angular momentum. In this condition the equatorial plane 
does not remain an inertial plane and is by no means well suited as a reference plane. So, 
throughout this paper we will use the Laplacian plane of the system which in invariable 
as long as the total anular momentum does not vary. 

The present paper is divided into four sections. In the first section the forces and the 
torques are computed, whereas the equations of evolution are derived in the second sec- 

tion. A discussion of the outstanding features of their solution follows during the third 
section, and numerical results are given for the Moon and Triton in the last section. 

1. Forces 

1.1. POTENTIAL 

In view to get equations of evolution in the Gaussian form (Brouwer and Clemence, 1961) 
we are only concerned with the expression of the different forces which act upon the 

Moon and the Earth. So we investigate the forces which arise between two bodies, when 
the first one is distorted by its tidal interaction with the other one. 

For the sake of simplicity we shall call the first body the Earth and the second the 

Moon, because there will be no difficulty in changing the respective situation of these 
two bodies in order to take account for the deformation of the Earth due to the Sun or 
the Moon's deformation clue to the Earth. 

As explained in Section 2 of paper one the instantaneous distortion of the Earth 
gives rise to an additional potential at point r written with the help of the Legendre poly- 
nomials as follows: 

Gm*R~ 2z+1 (rr*) 
U(r)  = E kl r t+lr , t+  1 Pt ~r* " (1) 

t 

In this equation m*, r* are the mass and the vector position of the Moon, R,  the Earth's 
radius, k t the Love number of order l and Pt(x) is the Legendre polynomial. For an in- 
elastic response of  the Earth we introduce the time delay &t between the stress of the 
Earth due to the Moon and the moment when the Earth gets its equilibrium figure. 

In order to relate U(r, r*) given by Equation (1) to the expression V(r, r*) of the ad- 
ditional potential in the case of a dissipative medium, the following process is to be done. 
First assume the Earth free of rotation; during the delay At the Moon orbits around the 
Earth and the magnitude of the distortion at time t is due to the act of the Moon at time 



THE EVOLUTION OF THE LUNAR ORBIT REVISITED, II 

@ ) 

187 

t= t t-- t+tR 

Fig. 1. The tidal bulge due to the time delay At and the orbital motion of the Moon. 

t - -  At (Figure 1). Second, the Earth rotates with the angular velocity co and the Moon is 
stopped. The tidalbulge produced by the Moon is carried out on the Earth- Moonline by the 

Earth rotation (Figure 2). Thus the additional potential is given by expression (1 )by  
twisting the vector r* of an angle coat x r* because of the new symmetry of the tidal 
bulge. 

This discussion allows us to achieve the change of variable to compute V(r, r*) from 
U(r, r*): 

V(r, r*) = U(rl ,  r*),  

with 

r I ---- r, 

J rl* = r* ( t - -A t )  + coat x r*. (2) 

Current value of At for the Earth should be about 10 min if the whole effect on the 
evolution in the Moon's orbit was caused by dissipation within the Earth, which is not the 
case, since the most important part occurred inside the Oceans (Cazenave and Dalllet, 

1977). For the Moon, Mars and Neptune At remains largly unknown but can be estimated 
after determination of Q for these bodies (Goldreich and Soter, 1966). However, in sub- 
sequent computations we shall assume the value of At to be small with respect to the 
orbital period and we shall expand the additional potential to the first order in At. 
Furthermore, in this paper we are only concerned with the secular effects in the evo- 

lution of the Earth-Moon system, so only the terms in At are retained in the additional 
potential. That part of the potential due to the time delay is easily computed by writing 
Equation (1) as follows: 

U ( r t , r l * )  = ~ U / ( r l , r ~ * ) ,  
! 

Ul(rl,  rl* ) = ktGm* Re 2l+1 ~ol(rl, rl*)Pl(x); (3) 
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Fig. 2. The tidal bulge due to the time delay At and the rotation of the Earth. 

with 

Then 

rz r i *  1 
r = Irl, x = ~rlrt*' ~ol(ri,rl*) - rll+ 1 rl.t+l. 

V(r,r*) = U~ Ut(r,r*), 

where U ~ is the part of V which is not dependent on At and U 1 is of the first order in 
At. 

Ui ( r , r  *) = Vr* [U(r,r*)l [ w x r * - V * ]  a t  (4) 

In these equations V* means the velocity of the Moon. The secular terms only proceed 
from UI (r, r*) and we shall call U1 the potential. By using Equation (3) we get an ex- 
pression for Vr*U 

Vr, Ut= k~Gm*R~ § [Pl(x) ar r* 

at* ~- + 

d P , ( r  (rr*)r*~] 

1.2. FORCES AND TORQUES 

The forces F acting upon the Moon is obtained by taking the gradient of U1 with respect 
to r. We study the case of a tidal rising object which is also the body of which the motion 
is investigated: namely, after differentiation r* = r and a dramatic simplification occurs in 
the formula. All algebraical calculations have been performed, yielding 

F = ~  Fz, 
l 

Ft = _kzGm. AtRe2l+z [ ( rv) (  32r ~ot~(1)] 
r r2 \brOr*-- r 2 J + 
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By differentiating ~z by using P~(1) = l(l + 1)/2, and taking account of the fact that the 

Moon's mass is m, we obtain for the force and the torque 

1 
F r = - -Gm2kzAtRe  2z+1 r2(t+3) 

+ l(t + 1.).r 2 (v + r • cot 
2 

T! = --Gm2kzAtRe 2z+l r2(1+2 ) 

(l + 1)(l + 
2 2) (rv)r + 

1 r2 +rxv t 

(6) 

(7) 

For l = 2, Equations (6) and (7) change into Equations (5) and (6) of paper 1. In order 

to consider the act of the Sun on the Earth's rotation we shall use Equation (7) with the 
changes M~ for m 2 and (r . ,  %)  for (r, v). The effect of tide on the Moon may lead to 
important variations of the eccentricity of the Moon's orbit (MacDonald, 1964) which 
will play a dominant role in the evolution of the lunar orbit and will not be neglected. In 
this case, Equation (6) is to be used with the changes of M for m (Earth's mass) k; f6r 

k z (Love number for the Moon), and RM for Re (the Moon's radius). 

1.3. COMPONENTS OF THE FORCES 

We intend to use perturbation equations in the Gaussian form in which the three mutually 

perpendicular components of the disturbing acceleration are used: R in the direction of 

the radius vector, S in the osculate plane directed as the increasing longitude, and W nor- 

mal to the osculating plane. R, S, W form a right-handed frame. 

Let us put H M = r x V and HM = na2~/( 1 -- e2) where n is the Moon's mean motion, 
and e and a are the eccentricity and the semi-major axis of the orbit respectively. 

Then, the three components are 

Fr F(Hrz x r) FHM 
R = - - ,  S = , W = (8) 

pr PHM r PHM 

In these equations, # = mM[(m + M)  is the so-called reduced mass of the system. By 
using the Earth's equator as a reference plane for the orbit and the inclination I, the 

following expressions are obtained: 

V(H x r) = n2a4(1 --e2),  

(HM x r)(r • co) = r2na2(1 --e2)l /2w cosI  

HM(r • co) = rna2(1 -- e2)lnr cos (~ + v) sinL (9) 

In these equations v means the true anomaly of the satellite whereas ~ designates the 
longitude of the perihelion measured from the ascending node. 
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Gathering together Equations (7), (8) and (9), a straightforward computation leads to 
the three components expressed in terms of elliptical elements as 

rn 2 n e /a~ 2(I+2) 
R~ = - - a - - k , l ~  A t ( l +  1)2a2 ,+3( l_e2) , /2  17 J sinv (lO) 

CO COS I/a_12/+31 

a 2t+3 ~r] J' 

m 2 l ( l + 1 )  co ( a )  
W 1 = --G ~ k~Re 2t+1 A t  

la 2 a 2t+3 

21+3 

(11) 

cos (~ + v) sin I. (12) 

1.4. COMMENTS 

The torque, given by Equation (7), rules the evolution of the planet's rotation. In par- 
ticular, the component along the spin axis makes the day longer or shorter, according to 
its sign. That component is easily calculated. Omitting a constant part and considering 
only l = 2, we obtain 

Tw cc r l [(rw)2-r2co2 + (r x v)co].  

By averaging this equation on one orbital and apsidal period and equalling the result to 
zero, one obtains an equation providing the locus of points where dco/dt = O. 

This equation is of the form 

co 1 A8 2 cosI 
n (1 --e2) a/2 A 6 1 + cosZ/ ' 

where A n is a polymonial of the eccentricity (computed later in the paper), and I re- 
presents the inclination of the orbit on the planet's equator. 

The curve is plotted in the Figure 3. In this diagram, the upper curve represents the 
solution of the equation da/dt = 0, computed from Equation (S1) which will be achieved 
in the next section. 

The point A,  with e = 0 and cosI  = 1, is the syncronous point and the classical laws 

d c o x 0  and d a ~ 0  for --~-W<>l 
dt dt n 

are seen. With different conditions for e and I, generalized laws are to be used. In par- 
ticular, it is possible to have a direct approaching satellite and a slowing down planet, 
depending on the value of the eccentricity and inclination. 

For an equatorial orbit, but highly eccentric, da/dt will be negative, even with coin > 1. 
Such a case was that of Phobos in the past, for I~--0, e " 0 . 6  and a/Re ~ 14 (Mignard, 
1980). 
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Fig. 3. to/n is plotted vs. cos (/). 1, 1' show the points where dto/dt = 0 with e = 0 and e = 0.4.2, 2' 
show the points where da/dt = 0 with e = 0 and e = 0.4. dw/dt is positive under the curve I and 1 w. 

da/dt is positive above the curve 2 and 2 t. 

Equation (12) shows that  the tidal bulge being dragged by  the planet's rotation out o f  

the orbital plane is a normal component  of  the force generated, and is always negative. 

This means the orbital plane and equator of  the planet undergo an evolution which tends 

to unite them into one. Close satellites o f  giant planets provide evidence for such a 

phenomena.  

2. Equations of Evolution 

2.1. PROBLEM 

As explained in the introduction, two steps are required to study the evolution of  a satel- 
lite orbit. In the solar system, some satellites do not strongly feel the solar disturbance 
and show quite a regular orbit. Other satellites have a mot ion very influenced by the 

gravitational act of  the Sun. Phobos, Triton, and Galilean satellites are examples of  the 

first group, whereas the Moon belongs to the second group. 
More precisely, the knowledge of  the distance, where both  oblateness and solar dis- 

turbances are equal, provides a quantitative limit; in the Moon's case, this distance is 

equal to about ten Earth's radius. 
Both situations are likely to have successively occurred in the Moon's history depen- 

ding on the Ea r th -Moon  distance which underwent significant variations in the past. 
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So, the first step of our study consists in the calculation of  the evolution of an isolate 
two-body system which keeps a constant angular momentum. For the second step, we 
shall not be allowed to neglect the Sun's existence. 

Unfortunately, the system of differential equations is quite different according to the 
first or the second case taking place. 

2.2. EQUATIONS OF EVOLUTION 

By means of Equations (10), (11) and (12), incorporated in the Gaussian equations of 
perturbation, we are able to write the differential system which rules the evolution of the 
two-body system. In this paper we are only concerned with the secular solutions of the 
equations and we have to average the second part of the differential system: all time- 
dependent terms are of the pattern of (a/r) s, (a/r) j cos v, (a/r) j cos 2v, ] > 2 where v 
is the true anomaly. We shall keep the constant terms in their Fourier expansions. It is 
well knownin the theory of the Hansen coefficients that the constant part can be obtained 
in a finite form in eccentricity. Let us put the following notations: 

((a/r) j) = H(j, 0), ((a/r) s cos v) = H(j, 1), 

((a/r) i) cos 2v = H(j ,  2). (13) 

The properties of the Hansen coefficients (Tisserand, 1888) lead to the two recurrence 
relations 

1 [ H ( n - - l , O ) + e H ( n - - 1  1)] (14) H(n, O) = 1_e2  , , 

H ( n ' l )  - n - - 2  1- -e  2 [ e H ( n - - l , O ) + H ( n - - l , 1 ) ]  ", (15) 

while H(n, 2) is obtained with the aid of the following equation: 

H ( n , 2 ) -  e ( n - 1 )  ( 1 - - e 2 ) H ( n + l , 1 ) + H ( n , 0 )  . 

The solution of  Equations (14) and (15) can be expressed as 

An Bn 
I I ( n , O ) -  ( l_e2)n_a/2,  H(n,  1 ) -  (1 - -e2 )  n-a/~' (16) 

where A n and B n are polymonials in eccentricity which satisfy the next relations: 

A n  = A n -  1 q - e B n -  1 , (17) 

n [e ] B n = - -  An- 1 +Bn_ 1 , (18) 
n- -1  

withA2 = 1 andB2 = 0. 
This form is useful in the numerical integration of the differential system. The poly- 

nomials of significance in our problem are given in Table I. The analytical form of the 
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n A n B n 

6 1 +3e z +~e* 2 e + } e  3 
7 l + 5 e  =+*@e 4 } e + ~ e  3 + ~ e  5 
8 l + ~ e 2  + ~ e 4  + ~ e "  3 e + ~ e 3 + ~ e  s 

35 35 7 9 1 + ~e2 + '~--ASe* + ~e6 ~e+~e3+J~-~eS+me 
35 $ 35 eT 10 1 + 14e 2 + 2~18~ + ~e  e + i~e  4e + 21e 3 + ~ e  s + rr 

equations can be now derived by expressing the different terms of  the Gauss equation. 

For example 

dt n ( 1 - e 2 ) l / 2  e s i n v + ( 1 - - e  2) S . 

By using Equations (10) and (13), we get 

~ m 2 - - 2 , + 1 -  ( l + 1 )  2 _e2)U2 e n 
a--~-~H(2l 5, 1), (Rle sin v) = - ~ - - I q ~ e  /x t ~ (1 + 

m z I(I+ 1) n 
((a/r)S~) = - G---:klRe 2~+1 At  x /a 2 a 2z+3 

With l = 2, it becomes 

x [(1--e2)l/2H(2l + 6' O)--W---c~ 4' O)] 

(R 2 e sin v) = -- ~ m2 " ne2 
- - -  X G 12 k=Re AtaT(1 _ e 2 )  ~ 

x [l + ~e2 + ~-e4 + ~e6],  

[ ((a/r)Sa) = - - 3 G - - k 2 R S e A t  n 1 g ~7 (1 --e2)  8 (1 + 14e 2 + 

co c o s /  + ~ e  2 ~ e  4 ] 
+ ~ e "  + M e '  + ~ e  s) + n(l_e=)la/=(1 + + ~ e  6) . 

J 

If  we restrict now to the second harmonic in the potential, namely l = 2, the evolution 

equations are written, by putting X = air  z, as 

F 

2 m m A t  1 [  --=dX 6 • 47r ks 
p2 X 7 / dt // 

1 
(I - -e2)  ls/2 (1 + -~e2 + z~e4 + 

+ ~ e 6  + ~ e S )  + co c o s /  _~e2 ~ e  4 ] 
n ( 1 - : e i )  6 (1 + + + ~ e  6) 

J 
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de m m • t  1 [ 
d---t = 3 x 4nZkz - - -  p--s X-- ~ Mta  [ 

1 
(1 - -  eZ) 1s/2 (9e + !-~eS + 

+ ~ e  s + ~ e 7  ) + ~  cosI  _~eS ] 
n (1 --e2) s ( ~ e  + + {~e s) , 

di _ 3 m m At 1 p 1 Ts in i  
dt  2 x 4 1 r 2 k 2 ~ p  p2 a M X l S / 2 ( l _ e 2 ) s ( l + 3 e + ~ e 4 ) .  (S1) 

The constancy of the total angular momentum allow us to express (~  cos I/n) in 
terms of X, e, i and 

H =  H M + H E ,  

where H, HM and HE are the total angular momentum and the Moon's and the Earth's 
angular momentum, respectively. Then, by using the coordinate system shown in Figure 
4, we obtain the following two relationships 

HE cos J + H M cos i = H, H cos i -- HE cos I = H M ,  

HE sin J -- H M sin i = 0, H sin i -- HE sin I = 0. 

If particular units are used, such as the unit of  angular momentum is that of  a satellite 
orbiting the Earth at 1 R~ (grazing satellite), then the period of this is 

e 

In this case we put 

2n R(~M ) 1/2 

T = H  
(GMmZRe)V2 �9 

Finally the expected relation is obtained: 

co p 1 
- cos I - 
n M a  

-- - -  - -  [ T X  3/2 cos i - -X2(1- -e2)1 /2 ]  . 

In the set ($1), a = C/MR z ,  where C is the moment of inertia of the Earth with re- 
spect to its spin axis. 

6. Discussion o f  the Solut ion  

Some remarks may be made concerning these equations and the outstanding features of 
their solutions. 

For null eccentricity and inclination, the equation for X reduces to the classical one 
for an equatorial secular orbit with a frequency dependent lag and we do not need to make 
assumption for the sign according to the value of w -- n. 
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In the case of zero eccentricity dX/dt and di/dt are the only two relevant equations 

and are reduced to equations (17) in paper 1. 
In this system, we have only included the distortion of the planet caused by the satel- 

lite. As the satellite raises a tide on the planet, so does the planet raise a tide on the satel- 

lite and this new dissipation contributes to the orbital evolution. 

If we consider a synchronous satellite, as seems to be the most frequent case, in the 
solar system then, because of the shortness of the time scale of evolution into this state 
(Peale, 1976), the factor win cos / tu rns  into cos / an d  generally/is a small angle. Then, 

the equation for X becomes: 

dX 6•  '~ 1 { 1 +~e  2 
d--i = m /~ p,2 R~  X ~ (1 -- e2) ls/2 (1 + 

+ z } % 4 + ~ e 6 + ~ e ~ ) + ( 1  - ( l + ~ e 2 + ~ e 4 + i } e  6) . 

The prime parameters refer to the satellite properties and (R '/Re) ~ comes from the fact 
that X is still measured in unit of planet radius. In the Moon's case, the ratio of the effects 
of the tide in the Moon and in the Earth is 

k;At 'P~(__~)3(R']  8 k2At'(~----~)2(R-~e)S 
A - ks At p,2 \Re]  - k s At 

The last ratio is unknown today, especially because of the lack of information of At'  in 
the Moon. We shall use different value for A from 0.0 to 20.0 corresponding to the dif- 

ferent determinations of Q. 
The equations for the evolution of i and e show interesting characteristics. For a small 

inner satellite, m/M ~ 1, the Moon in the solar system excepted, the angular momentum 
of the system is principally borne by the spin axis of the planet which will be very little 

changed in its orientation by tidal evolution. 
Therefore, the equatorial plane can be taken as an inertial plane with the spin axis 

along the total angular momentum. In this case i = I and later on the orbital plane and 

the equator will tend to merge in one plane because dI]dt < 0. Different results were 

given by Kaula and Burns (Kaula, 1964; Bums, 1976) by considering constant phase lag. 
Another interesting feature is related to the evolution of the eccentricity. 
Let us write the equation de/dt for a small eccentricity as 

--~x - 9 ( l + A ) +  c o s I + A  ~ e.  (19) 

If we neglect the tide in the satellite body, ,4 = 0, then tide generally causes increasing 
eccentricities, as pointed out by Jeffreys (Jeffreys, 1961), which disagree with observ- 
ational evidence. A qualitative explanation of this discordance was given by Goldreich 
(1963) by introducing the tidal distortion of the satellite. 

If the value of A is sufficiently large, the tidal lock of the satellite causes Equation (19) 
to become 
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and energy loss in the satellite tends to decrease the eccentricity. 
In the solar system, the Galilean satellite of Jupiter, Mars's satellites, the inner Saturn's 

satellites, and Triton follow this kind of evolution and probably the newly discovered 

Pluto's satellite Charon. 
It must be noted that the effect of the satellite distortion mainly appears in the evo- 

lution of the eccentricity. In fact, the synchronous lock of the rotation causes this effect 
to be negligible in the equation dX/dt as far as e is a small quantity. 

4. Numerical Integration 

The qualitative features described in the previous section do not answer to the most im- 
portant questions: How much did the eccentricity vary? Did the inclination drastically 
change? A numerical integration of the equations (S1) provides us with some information 
related to these problems. For this we used the routine AMC 1 prepared by Borderies and 

Castet (1975). 
The dependance on X -8 in the differential equations leads to a very large variation in 

the value of the derivative, making the integration rather difficult if the time is taken as 

the independent parameter. 
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Variation o f  the  inclination o f  the  Moon on the  absolute plane vs. the  semi-major axis. The 
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Variation of the inclination of the Moon on the equator of the Earth vs. the semi-major axis. 
The unity is one Earth-radius. A = 0.0.3, 1,3. 
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Fig. 8. Duration of the day vs. the semi-major axis. The unity is one Earth-radius. A = 0, 0.5, 1, 5. 

Then we carried out the integration of  the equations dX/di and de/di, the time scale 

being computed step by step with the help of  di/dt. Runs have been made for various 

hypotheses concerning the dissipation in the satellite, with A = 0, 0.3, 1, 3, 10, 20. Dis- 
plays o f  the results are given in Figures 5, 6, 7 and 8. 

Of course, the most striking fact is the possibility for Moon to reach (in the past) a 

very large eccentricity whatever the Moon's dissipation may be. A careful examination of  
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the set (S1) provides an asymptotic solution for large e. For this purpose, we use the new 
variable X = 1 - e  and we estimate the value of the various polymonials with e = 1. 

Fortunately, the value of the two polynomials in the equation dX/dt are respectively the 
same as in the equation for de/dt (indeed, that property depends more on the structure 
of the Gaussian equations than on the structure of the force where only the decrease of 
the tangential component with the distance is needed). The equations become 

dX X 

d• X 

whose solution is X(1 - - e ) =  constant; implying that, in case of large eccentricity, the 

perigee distance is constant. Such a result seems amazing, But the tidal effect on the 
orbital evolutions is highly dependent on the distance between the two bodies. So far as 
the eccentric orbit is considered, the whole effect only occurs during the motion through 
the perigee and acts upon the satellite as an impulse. After one period, the satellite re- 

turns at the same perigee. This analytical solution for large e allows us to stop the num- 
erical integration for e = 0.8. 

Let us now insert the above results in the equation governing the evolution of the 
inclination and perform the integration of dX/di. There is no difficulty in Finding the 

following solution, valid for large e. 

dX 1 X 2 

di X sin i '  

tan ( i ~ / 2 ) =  tan (i/2) exp (-~-o) 

with (io, Xo) initial condition for e = 0.8 and X is constant. So far X ~ ~, the inclination 
on the absolute plane tends to a limit value. 

Several runs were made with different assumptions concerning the Love numbers k2, 
k3, and k4. As we have noted in the introduction, the trajectories in the phase space are 
fairly unchanged if allowance is made for k3 and k4. Only the time scale in the vicinity 
of  the closest approach is slightly shorter but the value of the closest approach remains 
about 3Re and the eccentricity remains very small. 

As in paper 1, a variation in the initial condition, in particular for the inclination on 
the absolute plane, leads to a closest approach outside the Roche limit. But this question 
seems less important since the discovery of a new satellite around Jupiter, which orbits 
only 57 000 km above the surface. Its existence asks for computation of the time scale 
to break up a satellite within the Roche limit. 

The lack of knowledge of the current dissipation in the solid Earth prevented us 
from giving a precise time scale;we have represented in Table II the variation of the semi- 
major axis with respect to time. We have chosen an arbitrary unit of time such that it 
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TABLE 2 

Variation of the semi-major axis with the time. Only a relative scale is considered 

a 

RE 
t t 

RE 

60 0 10 1.000 
55 0.51 20 1.000 
50 0.77 30 1.001 
45 0.92 40 1.003 
40 0.96 50 1.011 
20 0.999 60 1.029 
10 1.000 70 1.065 
3 1.000 100 1.4 

took 1.0 unit to come from the closest approach to the present state. We see that 95% 

of the time scale is needed to go through 40R e to 60R e and in the distant past the time 

scale was very short in comparison with the time required today to move the Moon by 

i R e. The numerical values in Table II are computed with A = 0. For another value no 

important change takes place (we always keep the same time-unit) except in the distant 

past where the scale strongly decreases as the dissipation in the Moon increases. 
The integration in the case of Triton does not lead to surprising results. In fact the 

eccentricity of Triton is very small and badly determined. However, for our purpose a 
null eccentricity is very different from a small one and e = 0.0001 have been taken with 

a / R =  14.3 for the present state. 
As could have been anticipated, in the future Triton moves towards Neptune in a 

quasi-circular orbit, the inclination on the equator changing from 160 ~ to 155 ~ for 

aiR = 5. In the past we stopped the integration at aiR = 30 because of the impossibility 

of estimating the time scale. The eccentricity tends to 0.001 for aiR = + 30. In both 
cases, past and future, the rotation of Neptune is slightly changed within the range of 

one hour. 

5. Conclusion 

With the model of evolution computed in this paper, an origin of the Moon by capture 

would be possible. The difficulty pointed out by Kaula (Kaula and Harris, 1975) is 

avoided. 
For orbits with large eccentricity, the velocity close to the perigee is nearly the escape 

velocity and, as can be seen in Fig. 5, such a state can occur with a large semi-major axis 
and the perigee distance is significant. Then, a very small brake is needed to capture the 

satellite and no strong dynamical constraints are required at the moment of the capture. 

The time scale problem remains unsolved and it will remain so for as long as the past 
dissipation in the oceans are unknown. The most recent determination of the oceanic 
tides parameters (Felsentreger et  al., 1979) indicates that the major part of the Moon's 
acceleration is caused by tides in the oceans. Thus the time lag At should be much smaller 
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than 10 mn  and the  t ime scale larger than one bil l ion years to come f rom IOR e to the 

present  state.  

In conclusion,  we shall say the Sun's  act will change the scenario for distances com- 

prised be tween  20R e to 60Re whereas the behaviour  o f  the eccentr ic i ty  and the in- 

cl inat ion will remain qual i ta t ively unmodi f i ed  closer to the Earth.  
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