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Disjunctive Kriging Revisited: Part 11 

M. Armstrong 2 and G. Matheron 2 

Difficulties in applying disjunctive kriging (D. K.) with an anamorphosis to a normal distribution 
have led to an interest in D.K. based on other distributions. After reviewing Gaussian D.K.,  this 
paper reviews other types o f  D. K. based on other infinitely divisible distributions (gamma, Poisson, 
and negative binomial). 
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INTRODUCTION:  THE NEED FOR N E W  MODELS 

One of the main axes of research in geostatistics today is development of meth- 
ods for estimating recoverable reserves. (For a comprehensive review of the 
state of the art, see Marrchal, 1984). Two of the better known estimation meth- 
ods, disjunctive kriging in its present form and multigaussian kriging, require 
data to be transformed to normality. This transformation, which is usually called 
an anamorphosis, poses some insoluble problems when large numbers of iden- 
tical values are involved, as often happens with zero grades in uranium or gold 
deposits. A clear description of the problem is given by Verly (1984) who pre- 
sents an example with 30% zero values. In his case, a criterion had to be found 
for ranking 150 zeros (out of a total of  500 values). As this determines the 
distribution of normal scores and hence influences final estimates, this choice 
is critical. Verly proposes one method for ranking the zeros. But one can ask 
whether a better solution would not be to look for models based on probability 
density functions (p.d.f.) other than the normal, which could handle a spike at 
the origin in a more satisfactory way, rather than patch up the existing methods 
based on the normal distribution. 

Data sets with a large spike at the origin are not the only cases where 
existing methods fail. They also are inappropriate for handling discrete varia- 
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bles such as stone count in diamonds or grouped data that arise when size and 
density distributions are being measured. The standard sampling procedure for 
the latter is to weigh material which passes through a particular size sieve or 
which floats in a liquid of a specified density. Although variables are continuous 
in this case, the available sample data are grouped into a relatively small number 
of classes. They therefore present similar problems to those encountered han- 
dling discrete variables, namely that a normal transformation is inappropriate. 
Consequently, a better solution is to avoid methods based on the normal distri- 
bution. One might be tempted to try distribution-free methods such as indicator 
kriging or probability kriging. However, as Joumel (1984) pointed out in his 
article on these methods, "Data-support geostatistics is the absolute frontier of 
distribution-free geostatistics"; that is, whereas these methods possibly may be 
useful for estimating variables with the same support as the data, they definitely 
ought not be used for estimating variables with a different support such as grade 
of selective mining units or blocks. We would question the advisability of using 
these methods even for variables with the same support because of the "de- 
structuration" effect seen at richer grades. Matheron (1982) has demonstrated 
that shape of the variogram changes with cut-off grade. In the bivariate normal 
model, the variogram tends toward a pure nugget effect model. (One exception 
to this is the mosaic model in which the shape of the variogram is the same). 
In addition to these theoretical difficulties with indicator variograms at large 
cut-off grades, practical problems also exist. As the cut-off for an indicator 
increases, the indicator functions for the data contain more and more zeros and, 
consequently, the corresponding variograms which depend entirely on location 
of the few remaining values become unstable. The underlying structure of the 
data seems to disappear. 

Consequently, we conclude that several types of variables (those with a 
spike at the origin, discrete variables, grouped data) are inappropriate for ex- 
isting recovery estimation methods. A real need is apparent for models based 
on a distribution other than the normal distribution. Moreover, these must have 
a mathematically consistent procedure for change of support. 

One possible approach is to find additional types of disjunctive kriging 
based on other distributions. By this, we mean that if a suitable decomposition 
of the bivariate distribution into orthogonal factors (which need not be poly- 
nomials) can be found, an estimate of recoverable reserves could be obtained 
by kriging each of these factors separately in the same way as is done in ordi- 
nary disjunctive kriging with Hermite polynomials. At present, the standard 
decomposition of the bivariate normal g(x, y) into Hermite polynomials 

g(x, y) = ~ C,, Hn(x) Hn(y) g(x) g(y) (1) 

is the basis for ordinary disjunctive kriging. The idea is therefore to find similar 
representations (which Matheron, 1976, has called isofactorial representations) 
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for other distributions. Orthogonal factors, being uncorrelated, could be kriged 
independently to give estimated recovery. The literature on orthogonal poly- 
nomials (see, e.g., Szego, 1939) and on orthogonal polynomials to approxi- 
mate/estimation densities (see Wertz, 1979 for a bibliography) gives many ex- 
amples of families of orthogonal polynomials associated with different 
distributions which possibly could be used for the marginal distribution. How- 
ever, the crucial problem is to find bivariate distributions which can be ex- 
pressed in terms of these orthogonal factors. One always could construct likely 
looking "bivariate distributions" from orthogonal polynomials. But no guar- 
antee exists that these functions would have properties required for a p.d.f. This 
is why models presented in this paper have been constructed from random func- 
tions. A second important reason for working with random functions is that this 
makes it possible to develop meaningful models for change of support. 

Our objective in the long term is to present a range of models (both discrete 
and continuous) with these properties. Some work has 'been published recently. 
An overview of the problem and a solution for the case of the negative binomial 
distribution were given in Matheron (1984). A general method for constructing 
isofactorial distributions to suit an arbitrary marginal distribution is presented 
in Matheron (1985a). 

Unfortunately, much early work on this subject (Matheron, 1973, 1975a, 
1975b) has only been available in the Center's internal reports in French. The 
objective of this paper, and a following Part If, is to present a revised translation 
of this work. We have chosen to present an updated translation rather than just 
summarizing the main results because this makes it possible to follow the ev- 
olution of the development of the models and hence to see why certain tech- 
niques (infinitesimal generators and Markov semigroups) are used in the later 
work. 

Readers may be curious why this work, which has been floating around 
for more than a decade, had not been published earlier. The reason is that the 
original paper on the subject (Matheron, 1976) gave an overview of disjunctive 
kriging, in general, and the normal version with Hermite polynomials, in par- 
ticular. At that time, the need for other models had not yet been recognized. 
However, practical experience has indicated that it is needed. Several case stud- 
ies using disjunctive kriging based on the gamma distribution and the negative 
binomial have been completed and are currently in press (Lantudjoul, Lajaunie, 
1986; Nelson and Guibal, 1986). So it is now vital to publish the isofactorial 
models in their general form. 

The earliest work on di~unctive kriging appears in internal report N-360 
(Matheron, 1973). Although the first four sections were published in English 
at the first N.A.T.O. Workshop, the rest has remained unpublished. In order to 
make these easier to understand, we review the essential results on disjunctive 
kriging using Hermite polynomials and the normal distribution before going on 
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to discuss disjunctive kriging with Laguerre Polynomials and a gamma (3') dis- 
tribution. 

DISJUNCTIVE KR I GI N G W I T H  HERMITE POLYNOMIAL 
MODELS 

First, some properties of Hermite polynomials are reviewed. (Proofs can 
be found in any text with a chapter on orthogonal polynomials. See, for ex- 
ample, Szego, 1939.) These polynomials are defined by the equation 

d n 
e-X2/2Hn(x) = - ~  e -x2/2 rt = O, 1, 2, . . . 

They form a set of orthogonal polynomials with respect to the normal dis- 
tribution. That is 

f e-X2~2 
G(x) t4m(X) ~ & = G. n! 

The normed polynomials ~,(x) = H ~ ( x ) / ~ n  v. form an orthonormal basis for 
the Hilbert space LZ(R, e-X2/2/x/~). The next step is to prove that the bivariate 
normal p.d.f, g(x, y), can be expressed in terms of marginal distributions g(.) 
and Hermite polynomials 

g(x, y) = g(x) g(y) ~,, pUn!(x) H,(y)  (2) 

This result is well-known in statistical literature (see Anderson, 1958). 
Matheron (1976) has proved that, provided a bivariate p.d.f, can be expressed 
in an isofactorial form, estimates of recovery functions [or any function in L2(R, 
g)] can be obtained by kriging Hermite polynomials separately. 

What is important in the present context is that the bivariate normal prob- 
ability density function has an isofactorial representation with Hermite poly- 
nomials as the system or orthogonal polynomials and with p", n = 0, 1 . . . .  
as the corresponding eigenvalues. (Eigenvalues appear naturally when the the- 
ory is developed in terms of projections.) We now go on to develop a similar 
representation for a type of bivariate 3' distribution. Unlike the bivariate normal 
where the standard canonical form is well-known, several bivariate distributions 
exist with the 3' as their marginal distribution. Because these are less well- 
known, details of the development will be given. Readers can also consult 
Lukacs (1977) for the multivariate 3' distribution. 

DISJUNCTIVE K R I G I N G  W I T H  L A G U E R R E  P O L Y N O M I A L  
MODELS  

The correlation between two regionalized variables Z(x) and Z(x + h), 
each with a 3' distribution, must be determined. 
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Consider a random measure/x on kt n, which is stationary and orthogonal, 

and has a 3, distribution; that is, for all Borel sets B C ~n with volume V 

E[e-X~(m] = e-~(x) 

where ~(X) = 0 V log (1 + X). More information on random measures and 
Borel sets can be found in Yaglom (1962). 

Let Z(x) denote regularization of  ~t corresponding to a specified compact 
set B; i.e. 

Z(x) = f Ix(d~) 1B(X + ~) 

where 1,(.) is the indicator function for set B. The transitive covariogram of  B 
is defined as 

K(h) = f 1B(x) ls(x + h) dx 

For more information on transitive covariograms, see Matheron (1965) or Serra 
(1982). One may show that 

E [¢-XZ(x)-vZ(x+h)] = exp { - 0  K(h) ~(X + v) 

- O[K(o) - K(h)][~(X) + ~/(v)]} (3) 

This is done by splitting Z(x) and Z(x + h) into disjoint components 

Z(x) = ~(Bx n Bx+h) + ~(Bx \Bx  n Bx+h) 

Z(x + h) = #(Bx f3 B,+h) + #(Bx+h \ B x  CI Bx+h) 

Components are three independent G/ variables with parameter values of  
O[K(o) - K(h)] for two of  the variables, and of  0 K(h) for the one common to 
Z(x) and Z(x + h). Equation (3) follows from this. 

So, Z(x) and Z(x + h) are correlated 3' variables with parameter o~ = 
0 K(o) = 0 V(B), where V(B) is the volume of  the ball. The correlation coeffi- 
cient p between Z(x) and Z(x + h) is K(h)/K(o).  For simplicity, the scale pa- 
rameter has been set to 1. 

Laguerre Polynomials  

The system of  orthogonal polynomials relative to the 7 distribution is de- 
fined by 

(dn/d,rn) x n + o~ - 1 e -x  = (__  1)" n! x ~ - 1 e-X Ln(x) c~ > 0 

These polynomials form an orthogonal basis for the Hilbert space L ~ (R+, 
( l /y (o0x  ~ - 1 e-X). 

The bivariate p.d.f,  o f X  = Z(x) and Y = Z(x + h) can be shown to have 
the following isofactorial representation 
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Ln(x) L,,(y) x ,+,  ~ lyn+,~-i e x -y  f ( x ,  y) = ~ Un ][L,,[12 where 

r(;c~ + n ) r ( c 0  
u~ = (See Appendix A) and (4) 

P(Oc0 r(c~ + n) 

llLnll 2 _ r(o  + '0 
F(~) nr 

In contrast to the normal distribution where Un = o n, we have 

Un = E [T~I (5) 

where T is a/3 random variable ~ [pa, (1 - p)c~], with mean p. So although 
a gaussian anamorphosis would transform the marginal distribution to a nor- 
mal one if it were applied to this case, the bivariate distribution would not be 
gaussian (normal)--but this should have been obvious from the outset. 

This raises the question whether a bivariate 3' distribution exists with the 
p.d.f. 

Ln(x) Ln(Y)xn+~- l  y~+~ 1 e x -y  (6) f (x, y) = p n IIL,,]]2 

This is shown to be true in Appendix B. This second bivariate 2/distribu- 
tion represents a diffusion-type process. It is the basis for some recent work on 
change of support models (Matheron, 1985b). 

The following section is devoted to the search for other models with 
polynomial factors. 

LOOKING FOR OTHER MODELS WITH POLYNOMIAL 
FACTORS 

The method used for finding bivafiate distributions with an isofactorial 
representation suitable for disjunctive kriging is the same for both normal and 
3' distributions. In summary, it consists of finding random functions with the 
following properties 

(a) Z(x) must be stationary. For a given x, a complete countable set of ortho- 
normal functions Xn associated with the distribution w(dz) of Z(x) must ex- 
ist. The xn form the basis for Hilbert space L2(!P~, w). 

(b) For any two points x and y, the joint p.d.f, of Z(x) and Z(y) must be of the 
form 

rb(Z, z') w(dz) w(dz') where 

• (z, z') = ~ Un(X, y) Xn(Z) Xn(Z') 
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Several problems arise when one is looking for random functions satisfying 
these conditions. Because the bivariate p.d.f ,  f~¢(Z, Z')  plays the same role in 
disjunctive kriging as covariance does in ordinary kriging, some sort of  gen- 
eralization of Bochner 's  theorem is required to characterize families of  bivariate 
distributions which can be associated with random functions. To be more pre- 
cise, for a given family F(&,  dz ' ;  x~, x2) of  bivariate distributions with xl, x2 

~E!n, what is the condition that guarantees the existence of  a R.F.  Z(x) on ~ "  
having F(dz, dz ' ;  x~, x2) as the bivariate distribution of  Z(xl), Z(x2).9 Clearly for 
all x ~ Pa n, the marginal probability w(. ) = F( . ,  R, x ,  x ' )  must be independent 
o fx .  

By analogy with the covariance, which must be positive definite, we could 
postulate a similar condition. That is, for any Xl, • • . , xk e 9~ n a n d f  ~ L2(R ', 
w i) (i = 1 . . . . .  k), we could require that 

_> 0 (7) 

But although this condition is necessary, it is hardly sufficient. To see this 
we consider a partition Bk of  R. The all or nothing R.F.s  l~k[Z(x)] associated 
with a random partition Ak of ~ n 

A~ = {x : Z(x) ~ Bk} and 

P(x ~ Ak, x '  ~ Ak') = F(BK, Bk,; x, x ')  (8) 

Condition (7) means that covariances Ck~,(x, x ' )  = F(B k, Bk,; x, x ' )  form 
the covariance matrix of  a vectorial R.F.  (Yl(x) . . . .  , Y~(x)] but no reason 
exists to think that this vectorial R.F.  need necessarily be the indicator function 
of a random partition. 

However ,  this suggests that the following condition should be necessary 
and sufficient: that for every countable partition Bk, a random partition A~ sat- 
isfying Eq. 8 exists. 

This draws our attention to the following problem. Under what conditions 
is a family Ckg,(x, x ' )  the covariance matrix of  a random partition? One partic- 
ular, simpler case of  this is: under what conditions is the function C(x, x ' )  the 
covariance of  a random set? 

This problem is by no means trivial. For example,  covariances of  the form 
exp { -  [x - X'I 2} cannot be associated with any random set. (As they have a 
second derivative, they have to represent a mean square differentiable R.F.) .  

Because these problems are difficult, we go on to attack the question from 
a different point of  view. When dealing with ordinary variograms and covari- 
ances, the difficulty of  testing whether a given function is positive definite and 
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hence could be used as a covariance, meant that new covariance models usually 
are developed by construction from a known regionalized variable. Similarly 
the easiest way to produce bivariate distributions with the required properties 
is by regularizing a stationary orthogonal measure/x e.g. 

Z(x) = I k(x + ~) tt(d~) 

where k is given. 
Suppose that the (infinitely divisible) distribution associated with # is de- 

fined by 

E [e -x"(v)] = e v~(×) 

then, using the same reasoning as for the 3' distribution, E [e -xz(x) -~Z(x + h)] can 
be shown to be equal to exp {[K(o) - K(h)] [~b(X) + ~b(v)] + K(h) ~(X + v)} 
where K(h) is the transitive covariogram. Substituting ~(X) = exp {K(o) ~b(X)} 
and p = K(h)/K(o) gives 

qs(X, v) = as(X) 1 -o ~(v) l -p  ~(X + v) ° (9) 

Models with Polynomial Factors 

The next step is to find distributions satisfying eq. 9 and having polyno- 
mial factors Xn. Insistence on having polynomial factors is because they are 
easy to compute. A more general method (Matheron, 1985a) now has been 
developed. In the preceding sections, the normal distribution and the 3, distri- 
bution were shown to have these properties. We now go on to show that the 
same is true of the Poisson distribution and the negative binomial. Moreover, 
these are the only nontrivial distributions which satisfy eq. 9. 

I f  a distribution w(dx) has a set of polynomials Xn which form a basis for 
Hilbert space L2(~ n, w), the following properties can be shown to be equivalent 
to ensure that the bivariate distribution of X and Yhas a symmetric p.d.f, of the 
form 

gP(x, y) w(dx) w(dy) 

1. ,I,(x, y) is of the form E Un Xn(x) Xn(Y) 
2. For all n >_ O, E[X n] Y] is a polynomial of degree n in y 

Proof is given in Appendix C. This can be used to show that the Laplace 
transform 0(X, v) of a bivariate distribution with an isofactorial representation 
satisfies 

On n O~ 
0()k)l--0 ~ [0()k)]0 = ~0 An'k - ~  O()k) for all n 

Proof is given in Appendix D. 
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For  n = 1, this is o f  the form 

pO' = alO + blO' 

This  a lways can be satisfied by  put t ing al  = 0 and bl = p. For  n = 2, put 
0 = 2e ¢(x) to obta in  a differential  equat ion  of  the form 

~ "  = al/~ '2 q- b~, '  + c 

I f  a = b = 0, ff is a second-degree  po lynomia l ,  which  leads to the normal  

distr ibution.  I f  a = 0 bu t  b ~ O, if(X) = Ae bx + B; this corresponds to the 

Poisson dis t r ibut ion.  
I f  a ~ O, the quadrat ic  ax 2 + bx + c can have O, 1, or  2 real roots. I f  one 

real root c¢ exists 

~b" = a(ff '  - ce) 2 

The solut ion is ~b = ceX - ( l / a )  log (1 + cX), which  corresponds to a 3' 

d is t r ibut ion (possibly t ranslated and t ransposed) .  
I f  the quadrat ic  has no real roots 

~b" = a [ (~ '  + 002 + b 2] and 

~b(X) = ( l / a ) l o g  cos (ab)~ + c) - c~X - c '  

No dis t r ibut ion has this as its Laplace t ransform.  Last  is the case where two 
(different) real roots exist 

This  gives 

if" = a(ff '  - a ) ( f f '  - ~) 

l • t  q oL 
- b e a ( B - a ) x  ~ ' - ~  o r  

~'(x)  = c~ - /~b e a(¢-~)x 

1 -- b e aO3-c0x 

Suppos ing  that a(B - c~) > O, which  is permiss ib le  because c~ and 
always can be reversed,  the solut ion is 

_b - e - a ° 3  - c~)x~ 
4(x) = ~ x - a_1 log z; -- ~ -/ 

This corresponds to a nega t ive  b inomia l  (at least up to a l inear  transfor-  
mat ion) ,  if Ibl > 1. 

So we see that in addi t ion to the 3' and normal  dis t r ibut ions,  two others 
(Poisson and negat ive  b inomia l )  also have propert ies  needed for d is junct ive  
kriging,  at least for n = 2. 
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Poisson Distribution 

The next step is to check that these properties hold for n > 2 for the 
Poisson distribution. Because this is a discrete distribution, the generating func- 
tion G(s)  will be used instead of  Laplace transforms. For  the Poisson distri- 
bution with parameter  0 

G (s) = e °(s - 1) 

The bivariate distribution associated with eq. 9 is defined by 

G(s ,  t) = ~ Pnnsnt m 

Hence 

= G ( s ) l - p  G(t)t o G(st)P 

log G(s ,  t) = (1 - p) [log G(s)  + log G(t)] + P log G(st)  

Substituting for G(s)  etc. gives 

l o g G ( s ,  t) = (1 - O) 0 ( s -  1 + t -  1) + O 0 ( s t -  1) 

= O ( t -  1) + 0(1 + O t -  p ) ( s -  1) 

Consequently for a fixed value of  n 

0 n 
~] Pnmtm = e-OeO(t- 1)~1-o~ _ (1 + pt - O) n 
n gl! 

So, the generating function Q ( t )  of  Y for a fixed value of  X = n is 

Gn(t) = (1 + pt - O)" e °(1-°~('-  1) 

Condit ional  moments  can be found by differentiating k + 1 times and put- 
ting t = 0. 

E [ Y ( Y -  1 ) , . . .  , ( Y -  k)ln] = 0 ~+1 + • • • + pk n(n -- 1)(n -- k) 

Thus, E[YnlX]  is indeed a polynomial  of  degree n in x. The eigenvalue U n 
associated with polynomial  Xn is Un = p n, as was the cage for the normal. 

Last, the expression for the orthogonal polynomials  associated with the 
Poisson distribution is 

(2)x x Pn(x) = 1 -- -~ + 

and normed polynomials  are 

1) 

w n ( x )  = 

. . . .  + ( - 1 )  n 
x . . . . .  ( x - n +  1) 

On 

O~ Pn(x) 
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N e g a t i v e  B i n o m i a l  D i s t r i b u t i o n  

As with the Poisson distribution, we must show that the conditions are 
satisfied for n > 2. The negative binomial has the following generating function 

G ( s )  = \ 1  - c~s/  

o.,"£(/3 + n)s n 0 < c~ < 1 
= (1 - o~) ~ 

n!r(/3) 0 < /3 

The corresponding bivariate distribution is defined by 

G(s,  t) = E(sXt Y) 

= G(s)  j -p  G ( t ) l - p  G(st)P 

To obtain the conditional distribution of  Y for a fixed value of  X, random 
variables are split into three independent components 

X = X I  + Z  

such that 

Y = Y ~ + Z  

G(s) l -p  = E(s x') = E(s Y~) 

G(s)  p = E(s z) 

X1, Y~, and Z have negative binomial distributions and 

(1 - c~) ~ o~ ~+p P(/3p + p) £[(1 - p) /3  + k] 
P(Xj = k , Z  = p )  = 

p! r ( p ~ ) k !  r [ (1  - p)/3l 

The distribution of  Z for a fixed value o f X  = X~ + Z c a n  be deduced from 

P(Z = p , X ~  = n - p )  
P ( z  = e l x  = n)  = 

P ( X  = n) 

I '( /3p) r [ ( ]  - p)/3] r ( /3  + n) 

f o r O _ < p _ <  n 

This can be shown to be a binomial distribution with parameters n and p 
where the value o f p  is chosen at random from a/3 distribution. 

(To see this, let p be a binomial variable with parameters n and x and let 
X be a r.v. with a/3 distribution with parameters 013 and (1 - 0)/3. The p.d.f. 
of  the/3 distribution is 
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f ( x )  = r(/3) xO¢- 1 (1 - x) O p)~- 1 
r ( o ~ )  r [ o  - o)t~] 

S' 
P ( K  = k) = P ( K  = k l x )  f ( x )  d x  

0 

Substituting expressions for P ( K  = klx) and f ( x )  into this equation and 
integrating gives the required relation). 

The generating function of Z given X can be deduced from this 

( 1  - x) O o)¢-1 dx where 

r(¢~) 
c - -  

r(pfl) r[(] - o)/31 

Reversing the order of integration and summation and noting that 

~] ( ; )  (sx)P (l  - x )n-P  = ( 1 - - X  + SX) n 

leads to 

f 
| 

E ( s Z I X  = n)  = C (1 - x + sx)  n x °¢ (1 - x) ( | -°)~-I  dx 
0 

Consequently the generating function of Y = Z + Y1 is 

E [ s Y , X  n] ( ( 1 -  C~s))(| = = E [sZln] 

Differentiating the conditional generating function for Z, p times and put- 
ting s = 1, gives 

E [Z (Z  - 1) - ' '  (Z - p  + 1)IX = nl 

= n(n  - 1) - - "  (n - p  + 1) t" xPfB(x) dx 
,) O 

wheref~(x) is the p.d.f, of a/3 distribution. This shows that E[ZPlX = n]  is a 
polynomial of degree p in n and hence so is E [ Y P l X  = n]. 

Therefore, the negative binomial satisfies the requirements stated earlier. 
The explicit expression for the otthogonal polynomials will not be given here. 
However, we note that their eigenvalues are given by 
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Up = o xp f~(x)  clx = 
I'(pfl + p) r(fl) 
r(pfl) p(~ + p) 

723 

CONCLUSION 

The objective of this paper is to show that disjunctive kriging can be used 
with distributions other than the Gaussian (normal) distribution. In this paper, 
three particular examples (Poisson distribution, negative binomial, and 7) have 
been presented. Although these methods were developed as early as 1973, the 
need for them has only been recognized recently. Several case studies using 
these methods have been completed now and others are under way. Results of 
some studies are confidential (which is often the case when dealing with pre- 
cious substances). However, a series of comparative case studies on a uranium 
deposit are currently in press. Sans (1986) carried out a detailed comparison of 
the actual production figures with the estimated grade/tonnage curves obtained 
using the discretized Gaussian model. As is often the case with uranium de- 
posits, a significant spike of zero values at the origin occurs. This suggested 
that it may be worthwhile trying other types of models. Lantudjoul and Lajaunie 
(1986) used new isofactorial models based on the 3/distribution and the negative 
binomial to estimate global recoverable reserves. Their paper describes prob- 
lems encountered when putting these methods into practice--for example, how 
to do the anamorphosis. 

The fact that several case studies have been carried out using isofactorial 
models other than the usual Hermite polynomial/normal distribution highlights 
the need for a paper detailing the underlying theory. 

In two other papers from the mid-1970s, Matheron (1975a and b) showed 
that other distributions can be described with polynomial factors, but unlike the 
four considered here, the others are not infinitely divisible and hence do not 
satisfy (9). This work, which will be presented in a separate paper, was devel- 
oped using a different approach--that of infinitesimal generators. 

A P P E N D I X  A 

We show that the bivariate 7 distribution defined by regularizing a random 
measure with a 7 distribution has an isofactorial representation. 

The regionalized variable Z(x) was defined as 

Z(x) = f /zd(~) 18(x + 4) 

where/z is a stationary orthogonal random measure with a 3' distribution, and 
B is a ball. The expansion of e - ~  in terms of Laguerre polynomials is 
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k n 

e -xx = ~ ( - 1 ) "  (1 + X) n + ~ L,,(x) 

Using this, we see that if the bivariate distribution has an isofactorial rep- 
resentation 

X" v" £(o~ + n) 
E [e - x x -  ~Y] = ~ Un (A1) 

(1 + X) "+~ (1 + v) ~+n n! F(cz) 

A second expression for E [e -xx-"r l  can be obtained by calculating the 
Laplace transform directly from the decomposition of  Z(x) = X and Z(x + h) 
= Y into three disjoint components 

(1 + X) ~(1 + v) = (1 + k)(1 + v 

The last term can be expanded as a negative binomial; viz 

I _ = ~ r(p,~ + n) Xv 

1 (1 + X)(1 + v n ! F ( p c O  " 1 + X)(1 + v 

Hence 

E [e xx e-,Y] = ~ F(po~ + n) X'v" 
n ! F ( p ~ )  (1 + k ) ' + ~ ( 1  + v) n+~ 

Comparing these two expressions for the Laplace transform shows that 
factorial representation (A1) is valid and that eigenvalues are 

F(poz + n) F(oO u . , -  
F(pc~) F(c~ + n) 

So we obtain 

f ( x ,  y) = ~ U,,L,~(x) L, , (y)x  "+~-I  yn+~-I e-X-y 

is 

A P P E N D I X  B 

We wish to show that, in fact, a bivariate 3' distribution exists whose p.d.f. 

f ( x ,  y) = ~ p" L,,(x) L,,(y) x "+"-1 y , ,+ , - I  e-X-y  (B1) 

From (A1), the Laplace transform o f f ( x ,  y) is 

,:I,(X, v) = ~ p" £(n + oO X"." 
nt F(a)  (1 + X) "+~ (1 + v)'+'~ 

Remembering the form for the negative binomial expansion, we see that 
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1 I -  1 ,I,(X,v) = [ (1  +X)(1 + v)] ~ 1 (1 +X)(1 + v) 

= [1 + X + v + (1 - p)Xv] -~ 

We now have to check that this Laplace transform does correspond to some 
distribution (an infinitely divisible one, at that). To do this we consider the 
following expansion 

(1 - p ) ~  
+(X, v) = 

[1 + X(l - p)]= [1 + /z(1 - p)]a 

I 1 _ 0 
• l [1 + X(1 - p ) ]  [1 + v(1 - p ) ]  

_ (1 - p)~ ~ r(c~ + n) p" 
P(c¢) n! [1 + X(1 - p)]~+" [1 + v(1 - p)]~+" 

This is the Laplace transform of  a mixture of  two 3' distributions with 
parameters c¢ + n where the parameter n of  the 3' distributions varies according 
to a negative binomial distribution with p.d.f.  

r(n + o0 
P(N = n) - p" (1  - p)~ 

n! P(cY) 

After an easy calculation we obtain 
o o  

f ( x ,  y) = ~ P(n + c~) (xy)~ +~-1 
o n! P(c¢~ p" (1 - p)2~+~ e-(X+Y)/(1-P) (6) 

The Laplace transform given earlier can be seen to correspond to this p.d.f. 

A P P E N D I X  C 

Theorem: If  a distribution w(dx) has a set of  polynomials Xn which form 
a basis for Hilbert space L2(kt n, W), the following properties are equivalent to 
insure that the bivariate distribution of  X and Y has a symmetric p.d.f, of  the 
form 

• (x, y) w(dx) w(dy) 

1. g;(x, y) is of  the form E Un X,,(x) X,,(Y) 

2. For all n => 0, E [X~I Y] is a polynomial of  degree n in y 

Proof  If  (1) holds, then 

E [x"F r] = S, up x~(y) f x~(x) x ~ w(&) 
P 
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Because I Xp(X) x" w(dx) = 0 for all p > n 

E [X"IY= y] = ~, Up (x " ,xp> Xp(Y) 
p<_n 

where (x ~, Xp> denotes ~ Xp(x) x n w(dx). 
This expression is a polynomial  of  degree _< n. In fact, it is precisely of  

degree n, because (x n, Xp) cannot be zero because 

n 

x" = Z <x '~, Xl~> xp(x) 
p = O  

Conversely,  suppose (2) holds. We have to show that orthogonal polyno- 
mials X,,(x) satisfy 

E [X~(x)ly] = U~ Xn(Y) 

The space (P~ + ~ of  dimension n + 1 made up of  polynomials of  degree 
_< n is invariant under the operator E[X] Y]. Moreover  this operator maps (P~ + 1 
onto itself, because the degree of  the polynomials is conserved. Consequently, 
this symmetric operator has n + 1 orthogonal eigenvectors in (P~ + 1, which are 
just Xk, k = 0, 1 . . . . .  n. So (1) follows. 

The next step is to look for conditions under which distributions of  form 
(9) have polynomial  factors. From the discussion given above, it is clear that 
(2) must hold. 

A P P E N D I X  D 

To show that Laplace transform 0(X, ~) of  a bivariate distribution with a 
symmetric p.d.f ,  of  the form cb(x, y) w(dx) w(dy) satisfies 

0 ~ O k 
O(X)'-P ~-~ [O(X)] ° : ~o A"'k ~ O(X) 

First we remind readers that the Laplace transform of  a distribution is an- 
other name for the moment  generating function and that the expectation E(X ~) 
can be obtained from the Laplace transform for the distribution of X as follows 

0 n 
E(X n) = 0-~ 0x(X)]x=o ( - 1 )  ~ 

Similarly, the conditional expectation E(XV'[ Y = y) satisfies the relation 

f e -xy E[XnlY = y] w(dy) = ( - 1 ) "  (O"/Ov n) 0(X, v)[,=o 
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If we now apply the preceding theorem, we see that the Laplace transform 
0 must  sat isfy 

0n n 0h 
0(X) 1 -P  ~-~  [0(X)l p = ° Z A,,,k ~ 0(X) 

for  all  n. 
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