
. 

9. 
i0. 
ii. 
12 
13 
14 
15 
16 
17 
18 
19. 
20. 
21. 
22. 

Yu. P. Goncharov, Phys. Lett., 91A, 153 (1982). 
G. Denardo and E. Spallucci, Nucl. Phys., B169, 514 (1980). 
A. Dold, Lectures on Algebraic Topology, Springer-Verlag (1972). 
L. H. Ford, Phys. Rev., D21, 933 (1980). 
Yu. P. Goncharov, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 9, 27 (1982). 
S. G. Mamaev and N. N. Trunov, Teor. Mat. Fiz., 38, 345 (1979). 
I. J. Zucker, J. Phys., A8, 1734 (1975). 
J. S. Dowker and R. Critchley, Phys. Rev., DI3, 3224 (1976). 
S. W. Hawking, Commun. Math. Phys., 55, 133 (1977). 
H. Bateman and A. Erdelyi, Higher Transcendental Functions, Vols. 1-3, McGraw-Hill. 
C. J. Isham, Proc. R. S.c. Lond., A364, 591 (1978). 
A. B. Venkov, Usp. Mat. Nauk, 34, 69 (1979). 
J. S. Dowker and R. Banach, J. Phys., AI2, 2527 (1979). 
R. Banach and J. S. Dowker, J. Phys., AI2, 2545 (1979). 
R. Banach, J. Phys., AI3, 2179 (1980). 

FLAT-SYMMETRICAL SOLUTIONS IN A SO(4)-INVARIANT 

SELF-GRAVITATING o-MODEL 

S. V. Chernov UDC 530.12:531.51 

Exact solutions of four-dimensional self-gravitating compact and noncompact o- 
models with an internal S0(4) invariance, in spaces of flat symmetry, are ob- 
tained. It is shown that the compactness of the chiral field may not influence 
the spacetime metric. 

The theory of two-dimensional chiral models (o-models), born as a nonlinear theory of 
strong interactions [i], has by now developed as a nonlinear field-theoretical model in which 
the interaction is introduced geometrically [2]. Such an approach is used in some unified 
models of electromagnetic and weak interactions [3], or when studying metastable states of a 
two-dimensional is.tropic ferromagnetic [4]. Besides, two-dimensional chiral models have 
properties similar to those of four-dimensional non-Abelian gauge theories, which at the moment 
are thought to be most promising candidates for the description of strong interactions [2]. 
The transition to four-dimensional o-models involves some difficulties on both classical and 
quantum levels [5]. On the classical level, a four-dimensional generalization of the nonlin- 
ear chiral model with 0(4) invariance, interacting with the metric tensor field satisfying the 
Einstein equations, was suggested and developed in [5, 6]. The case of arbitrary internal 
symmetry for self-gravitating o-models, and the connection between spacetime and chiral field 
symmetries, was studied by Ivanov [7]. In the same paper examples are given of exact solu- 
tions for a o-model with an internal S0(3) invariance, in spaces with flat symmetry. In the 
present paper the self-gravitating compact and noncompact o-models with a S0(4) internal in- 
variance are considered in spaces with flat symmetry. Exact solutions are found. 

The Lagrangian of a self-gravitating four-dimensional o-model, whose chiral (scalar) 
fields ~C are defined on the Riemannian spacetime M(V4, gij) and take values in the Riemannian 
space (chiral field) #(VN, gAB), has the form [7]: 

A =]f----g(R~-l+ kgA~iA~g~)/2. (i) 

Here g = det gik' gik is the metric of M; k is the interaction constant of the gravitational 

and chiral fields; gAB is the metric of ~;%A~ai~ ; A = i, 2, ..., N. From the Lagrangian 

(I) we can obtain the system of Einstein equations 
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Rt~ = xkgas~a?~ ~ (2) 

with the energy-momentum tensor (EMT) of the multiplet of N scalar fields 

Ti ~ = k g A B ~ A ~ B  -- k g i u g a ~ n a ~ m ~ g m n / 2  (3) 

and the equations for chiral or scalar fields: 

0, ( | / ~  g c ~ g ~ ) / l  f ~  g - -  g ~ ?  A ~ BOga~/20?C" (4) 

We search for solutions of the equations of the self-gravitating ~-model (2) and (4) in 
the class of metrics with flat symmetry 

( ~ -- d S ' =  A ( d x  ~ + dg ~) -- 4e~d~d~ = A (dx  ~ + dy ~) -- e F d ~ dt2), (5) 

where 2~ = z + t, 2n = z -- t, A = A(~, n), F = F(~, n). 

The linear element of the Riemannian space ~(Va, gAB) 
of the group S0(4) has the following forms: 

a) for the compact model: 

d~  : dX ~ + sin~X (dO 2 + sin~Od~2), (6a) 

where X= ~, O == ~, ~I ~== ?~; 

b) f o r  t he  noncompact  model :  

d:  ~ = dX = + sh2X (dO ~ + sin~OdW2). 

invariant under the transformations 

By virtue of the Einstein equations (2) A~ 
tions, we come to the two possibilities: 

(6b) 

= 0, and using admissible coordinate transforma- 

A = z, (A) 

A = t. (B) 

The system of equations (2) and (4) for the metrics (5) and (6a) takes the form: 

(2A2) - '  + F~.A  -~ = kz  [X~ + sin2X (05 -~ sin~O.IY~-')]; (7 .1 )  

(2A2)--~ + eF n. A -~ = kx  [X~ + sin'X (0~ + sin2Oqf~)l; (7 .2 )  

-- F~ n + e (2A2) -1 = kz [X~X~ + sin2X (O~O~ + sln20.~:.~~ (7 .3 )  

X~ ~ eX~ -p 2AX~ -- A sin 2X (0r + sin~O .q{:~Fn) = 0; (7 .4)  

O~ + e@: + 2AO~(+ 2A ctgX (X~O~ + X~Or _ A sin 2(9. ~tz~q~',~ = 0; (7.5) 

T~ + e~'~ +2AW~ + 2A ctg X (X:~F~ + X~T~) + 2A ctg 0 (O~q2"~ + O~F~) = 0. (7 .6 )  

Here X, 0, and ~F a re  f u n c t i o n s  of  t he  advanced and r e t a r d e d  t imes  ~ and n; t he  lower  i n d e x  de -  
notes the derivative with respect to the corresponding argument. 

In the case (A), A = z < 0, e = i; in the case (B), A = t < 0, e = --i. For the noncom- 
pact model (6b), one has to replace sin X by sinh X and cot X by coth X in Eqs. (7). The equa- 
tions of scalar fields (7.4)-(7.6) have to be substituted by the integrability conditions for 
the Einstein equations (7.1)-(7.3). Equations (7.1)-(7.6) are invariant with respect to the 

substitution ~A_>__ ~a and ~ -+ ~. 

SOLUTION OF THE COMPACT MODEL 

Without going into all the details of the computation, let us give examples of exact so- 
lutions. 

IA. In the case of stationary scalar fields we have the static solution: 

d S  ~ = z ( d x  ~ + dy  ~-) - -  D O ( - -  z) -~l~ .4d~d~, (8) 
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where Ba is the integration constant, and Do is a positive constant. 

The scalar field X(z) has the solutions: 

X =  •  ~ _ = . . . .  ; [~-a ]/=a q- ~esin ( +  ~a)] . 2~m, m 0; + 1; • 2; 
1 

Here u = In(--z); 

X -= • arccos [~-I l/[3a __ ~-~sip, ( •  ~u)] "r 2r, m, 8 ~ > ~e. 
2 

~ is the integration constant. A particular solution 

(9.1) 

(9.2) 

for the fields @ and 
(for each Xa, where a = I, 2 numbers the solutions) has the form: 

= • arccos (1/I  -- b -2 cos b :-. B -~) -'v- 2?4n, b ~ > 1; 
a a b_ a r 

'F = B arctg (b tg b~B -~) +. tl: 0 (no summation); 
a a a a  a 

=. B (2~) -~ In I ( ~ -  ' tg ~tt + ] )/(~}-~ tg ~u - -  1) I; 
1 

= B ~-~ arctg ( ~ - ~  tg ~u). 
2 

Here b, B, ~o are integration constants. 
a 

The n0nvanishing components of the EMT (3) are 

(I0) 

T~, = ~2 = --  (2Do) -1 (--z)-Ii~--kO'; Ta~ = T~4 = kO ~ ( - - z ) - 2 1 2 .  (11)  

In the case when the scalar fields depend only on time t, we obtain the stationary 2A. 

metric: 

dS  2 = z ( d x  ~ + dy 2) - -  Do (-- .z)  -I/2 exp {~z~ze/2}  .4d~d~. (12)  

The s c a l a r  f i e l d s  a r e  d e f i n e d  by  t h e  e x p r e s s i o n s  ( 9 . 1 ) ,  ( 9 . 2 ) ,  and (10)  a f t e r  a f o r m a l  s u b s t i -  
t u t i o n  u ~ t. The nonvanishing components of the EMT (3) are: 

_ .  o '~ q ' ~ ,  T22 = k~ 2 (2D0) --I (-- z)  ~1~ exp {-- kxi,-zV2}; Taa = T4.~ = ~ / 2 .  (13) 

3A. The wave s o l u t i o n s ,  when X = X ( r  n ) ,  0 = @(r  ~ = ~ ( ; )  a r e :  

dS  z = z (dx  2 + dy  ~) --  Do(z  ~ - -  t2) k~i4" ( - -  z) k~l~-~i~" In f (%).(dz ~ - -  dt*), (14)  

w h e r e  l n f ( ~ ) = k z y ~ ( O ~ + s i n 2 O . W ~ ) d ; ,  

X = ( - - 1 ) m a r c s i n ( i  V ; ~ z - ~ ) + = m ,  m = 0 ;  • 1; •  ..... (15)  

The following components of the EMT do not vanish: 

Tl l  = T ~  = k ~ .  2Oo (z ~ - -  t2) -~ t4  �9 (z)-k~~*~.f-~; Y~a = T4~ = k~2/2. (16)  

4A. The wave solution similar to 3A: By virtue of the invariance of the system (7) un- 
der the substitution ~ + ~, one has to make this substitution in Eqs. (14)-(16). 

lB. In the case of fields depending only on the time t, we obtain an analog of the solu- 
tions IA with the substitution of z by t in the expressions (9)-(11). 

2B. In the case of fields depending only on z, substitute z by t in the solutions of the 
case 2A. 

3B. Substitute z by t in the expressions of the case 3A. 

4B. Substitute z by t in the expressions of the case 4A. 

THE SOLUTIONS OF THE NONCOMPACT MODEL 

For the noncompact model we can obtain the analogs of all of the above solutions, the 
gravitational fields having the same form, while the key expressions for determining the sca- 
lar fields (similar to Eqs. (9) and (i0)) are: 

758 



X = Arch [}-~ ]/or ~ § }2r ( •  }u) l ;  
t 

[ A r c h  [}-1.  I , /~  -- ~ sh (# gu)],  ~7 .~ ~2; 
X = / Arch exp  ( ~  3u), == = 8~; 

t, Arch [}-~ I/~,' - -  =2 ch ( :! }u)] ,  }= .> a"-; 

6) = -Z arccos ( ] / 1  - -  b -~ cos b ~_ B -e) _~_ 2~m, O 2 > 1; 
g2g a (1 a II  

~F = B.  arctg (b tg  b~B- ~) ~- ~Fo; 
a a o a  a 

= B a - '  a rc tg  [~.,8-1 cth ( 2  ~u)]; 
1 

o 2 ,  [ B = - ! A r t h  [=~-*th (:!: ,Su)], & ' >  e ,  

; = IB,3-" [ln l / e x p  ( •  2},0 - -  i --  (:j: [3u)], ~ -- ~-" 
iB~ - I A r t h  [~}-~cth ( •  ~u)l ,  =2 < ~ .  e , 

(17) 

(18) 

DISCUSSION OF THE RESULTS 

The above examples of exact solutions follow from the immediate integration of the equa- 
tions of the self-gravitating o-model, and cannot be obtained by the harmonic-maps method [5], 
because all the solutions are measurelike (with an infinite action integral). None of the so- 
lutions are totally geodesic [5], this condition imposing strict limitations on the function 
F:F = F(n), which are not satisfied in our case. Comparing the results of the compact and 
noncompact models, we can see that the compactness of the chiral field ~ may not affect the 
metric of spacetime. 

Note that the wave solutions 3A and 4A (3B and 4B) can be generalized to the case of 
SO(N) symmetry, if we assume that all fields ~C(c ~ 2) are totally dependent on r (on ~).). 
The spacetime metric will have the form (14), the function f(r being of the form 

sin 2"'N-I [~: ]~)...) d=. (19) 

The field X can be determined from Eq. (15), and the components of the EMT -- from Eq. (16), 
taking into account Eq. (19). 

The author thanks G. G. Ivanov for the formulation of the problem and for his interest 
in this work. 
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