
F e 

+ 0 (u'o -- .o) ~ g (x, x' ,  ~) d~. 
l'c+l'~ 

The contours Fs and F4 are displayed in Fig. i, respectively, for u ~ > u '~ and 

(23) 

(24) 

t t  ~ ~ l t  ~~ a 3 ~ a~  ~ - -  I ~  - - -  [ ~  �9 ] 2 A3(u 

In  t h e  p a r t i c u l a r  c a s e  as  A~(u ~ § c o n s t  we o b t a i n  r e p r e s e n t a t i o n s  f o r  S, ~ c  and S i n  a 
c o n s t a n t  e l e c t r i c a l  f i e l d  and in  a p l a n e  wave f i e l d  f rom ( 2 2 ) ,  ( 2 3 ) , a n d  ( 2 4 ) ,  and which  a g r e e  
with those found earlier in [3, 6]. 
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GREEN'S ELECTRON FUNCTION IN A QUANTIZED PLANE WAVE FIELD 

I. A. Khokhlov UDC 539.12:530,145 

It is shown that the Green's function of an electron that interacts with a quantized 
plane wave can be expressed in terms of the corresponding Green's function of a sca- 
lar particle. By using the known expression for the Green's function of a scalar 
particle, an integral representation is found with respect to the intrinsic time for 
the Green's electron function in a quantized plane wave of arbitrary form. 

i. The problem of electron motion in the field of a free quantized monochromatic elec- 
tromagnetic wave with which the interaction is taken into account exactly, was first solved 
in [i]. The solutions found in that paper were then extended to more complex cases by differ- 
ent authors [2-6]. The limits of applicability of such a model were then established in [7] 
within the framework of exact quantum electrodynamics. 

The Green's function of a scalar particle interacting with a quantized plane electromag- 
netic wave field was found in [8], where no constraints were imposed on the wave. A relation 
between the electron and the scalar particle Green's function in a quantized electromagnetic 
field of arbitrary form is established in this paper and the Green's electron function is cal- 
culated. Exactly as in [8], the Green's function is represented in the form of a contour in- 
tegral over the intrinsic time. 

2. We select the x 3 axis along the direction of plane wave propagation. The 4-potential 
of the wave will then depend on the space--time variables in the combination x~ 3. It is con- 
venient to introduce the new coordinates 

t i o . ~ _ x O  x 3  ' u l ~ _ _ _ x l  ' u 2 _ _ ~ x  2, u 3 _ _ ~ x O _ l _ x  ~. (1) 
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We shall denote the components of any vector A relative to the new coordinate system by A~ in 
contrast to the Cartesian A ~. 

The Green's function of an electron interacting with a quantized plane wave field will 
satisfy the equation 

( ~ P , ; - m )  O(x, x'; ~, ~ . ' ) = - - ~ ( 4 ) ( x - x l ) ~ ( ! - ~ ' ) ,  (2) 

where 

i ,k  

{ 2 " ~  1/2~ -ix.,,,) + ix.uo, 

i,~, 

is the operator-potential of the quantized wave field, V is the normalizing volume of the 
field 

?i  

(3) 

are photon generation and annihilation operators in a coordinate representation with the fre- 

quency xl and polarization ~ = i, 2, ~i% is the field variable, and e~ = (0, e I ~2 
the 4-vector of linear photon polarization. ~ ~, ~, 0) is 

The solution of (2) can be found by the inverse operator method [9] 

O (x ,  x ' ;  ~, ~') = - -  _ _~P~  + m ~o) ( x  - x ' )  ~ (~ - ~)' = 

( ~ P ~ ) ~  - -  m ~ + i~ 

(~%P~ = + m) i j dsei~[Q~PT)~-m'+i'l& (4) (x -- x')  ~ (~---~'). (4)  
0 

However, by starting from (2) it is simpler to express G in terms of the scalar particle 
Green's function, and then to determine G by using the known expression for it. 

To this end, We introduce the projection operators p(_) and p(+) 

p ( _ ) = l / 4  7:~ ~ p(+) = 1/47~ 3, p < _ ) +  p(+) = 1, (5)  

p(•177177 p(~)p(~)=O. 

By using p(_) and p(+) we write G in the form 

O = O ( + ) i O ( _ ) ,  O~•177 (6)  

M u l t i p l y i n g  (2)  on t h e  l e f t  by  t h e  m a t r i c e s  ~o and ~3 ,  we o b t a i n  a s y s t e m  o f  e q u a t i o n s  i n  t h e  
f u n c t i o n s  G(+)  and G ( _ ) :  

4iOoO(_) (x, x'; ~, ~') = -- ~3 [(TJPi-- m) O(+) (x , x'; ~, ~') + ~ ( 4 ) ( x - - x ' ) ~ ( ~ - - ~ ' ) ] ,  (7)  

4i03G(+)(x, x ;  ~, ~') = - - ~ ~  G(-)(x,  x ,  ~') + ~ ( 4 ) ( x - x ' ) ~ ( ~  $')], 

] : f ,  2. 

( 8 )  

The last equation can be solved formally for G(+): 

. . . . .  = ~,) + ~(4) ( x  - x ' )  ~ (~ ~')], Gt+ ) (x, x , ~, F) : - -  ~0 (4i0a)-1 [(~]pj _ m) O( - ) (x ,  x , -., (9) 

where (i33)-* is the inverse operator to i3s. To determine the operator (i3a) -x, we note that 
the expansion of the scalar particle Green's function D in the field (3) in a Fourier integral 
in the variable u s has the form 
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~-oo 

S '. ~') e - * , ~ D '  (u ~ u', u-, u, x ,  ~, D ( x ,  x ,  ~, = o '. ~ Y)dtc, 
- - o o  

(io) 

where the prime on the integration symbol means that the integral of the function D' that has 
the singular point r = 0 is understood to be improper (D' is the Fourier transform of D in the 
variable uS). This is easy to see if the integral representation is used for the function D 
that is found in [8]. It is natural to assume that an analogous expansion holds for the func- 
tion G also. Taking this assumption into account, we find the explicit form of the operator 
(i3~) -i 

Substituting (9) into 

( i O ~ ) - ~ f ( x )  = t - - e - ~ ' ~ f ' ( u  ~ u' ,  u ~, tc) da'. 
.J tr 

- - o o  

(7), we find the equation in G(_) 

(Ii) 

~jpj ~ ~ In deriving (12) it was taken into account that ( )~ = P.PJ. In the following it is conve- 

nient to convert the right side of (12) to a form such that the operator acting on the product 
of 6 functions would commutate with the operators in the left side of (12). To do this we 
note that 

Taking  (13) i n t o  a c c o u n t ,  we have  

(13) 

[(7~Py § m) ( i03)- '  p(_) ~- 7::] ~14)(x.- x ')~ (} -- ~') : [(~JP) + m)p(_)  + ~3ia3]. (id3) -~ ~(4) ( x  - x ' )  ~ ( ~ -  ~'), (14) 

where P! : i3. -- eA.(--x', $'). Taking account of (14) and the representation for the inverse 

operator in the form (4), we write the solution of (12) in the form 

where 

= x ,  ~, ~.'), (15) 

-~oo 

D ( x ,  x'; ~, ~ ' ) =  i S dsei*(P~P~-m'+i~)gI~)(x- x ' ) a ( ~ - - ( )  
0 

is the scalar particle Green's function in the field (3) that satisfies the equation 

(P~P~ -- m 2) D ( x ,  x'; ~, ~') = --  gr --  x ' ) g  (~ - -  ~_'). (16) 

Substituting (9) and (15) into (6) and taking account of (16), we obtain the following expres- 
sion for G: 

~ ( x ,  x'; ~, ~ ' ) =  [1 + 1 /4"r~  ~ ) - - A j ( - - x ' ,  ~ ' ) ) ( i O 3 ) - ~ l D ( x ,  x ';  ~., ~'). (17) 

The relationship (17) permits determination of the function G by means of the known function 
D. Let us note that a relationship between the electron and the scalar particle Green's 
functions can be established in an analogous manner in a nonquantized plane wave field. If 
the c-numerical potentials of the nonquantized field are denoted by a~(x), then this relation 
is obtained from (17) by formal replacement of A~(x, $) by a~(x) and A~(-x', $') by a~(x'). 
The latter replacement of the potentials follows from comparing the transformation (13) for 
AD with the analogous transformation 

a~ (x) ~(4) (x -- x') = a~ (x') ~(4) (x -- X') (18) 
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for a~. 

Let us transform (17) to a more convenient form. To do this, we write D in the form 

-~oo 

+ k . . . .  D ( x ,  .~'; ~_, ~ " ) . - - - U ( x , ~ ) U ( x ' ,  ~ , d s  x ,  x ,  ~., ~;  s ) ,  (19) 
0 

where 

U ( x ,  ~) ---- e x p  (iu ~ ~ ~,c~.ctx). 
1 ,k 

As already noted, the funct ion  f is  determined in [8 ] .  Because of the tedium in w r i t i n g  the 
e x p l i c i t  form of the funct ion  f ,  we do not present i t .  Subs t i tu t ing  (19) in to  (17) and tak ing 
into account that f depends on u a in terms of the factor 

as well as the relationships 

e x p  [ - -  i /4  s (t t  ~ - -  u "~ ( u  a -  u ' : : ) ] ,  

we finally obtain 

+ 
u(~, ~)A~(x, ~)U(x, ~)=A,.(O, ~); 

+ 

u (x', ~') A~ (--  x', ~'1 U (x', ~') = . ~  CO, ~.'), 

'. ~, -:') u (x ,  ~) l )  (x ' ,  ~') ( z ,O ~  + m) ~ (x,  x ,  - ~'), O (x+ x , + = +, 

( x ,  x "  - :.') ' d s  1 + e ' ;~  j u ~ _ u '~ ~, 

0 

(20) 

where 

In conclusion, we note that if electron interaction with all photons except one is ne- 
glected in (20) (the monochromatic linearly polarized wave approximation), then we obtain an 
expression for the Green's electron function in a one photon field. This expression agrees 
with that found earlier in [I0]. 
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