
note that the value of X(Z) is independent of 9, so that the estimates of X(Z) presented be- 
low are valid for arbitrary neutrino mixing angle. Numerical estimates of X(Z) are presented 
in Fig. 3 for the values ~ = 0.i MeV and m = 0.5 MeV. At the value z = 4 (~m~ = i0 -= eV 2, 
L = 400 m) the lowest value of X(Z) ~-0.6 occurs for m = 0.i MeV, above which there is a slow 
increase until a maximum is reached at z = 15 (L = 1500 m). With further increase in z the 
quantity X(Z) approaches a constant value of ~0.5. From the analysis performed it is evident 
that neutrino oscillation has a marked effect on the energy spectrum of photons produced by 
the process of Eq. (i). 
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HAMILTON FORMULATION OF A THEORY WITH HIGH DERIVATIVES 

D. M. Gitman, S. L. Lyakhovich, and I. V. Tyutin UDC 539.12.01 

A method of "Hamiltonization" of a singular theory with high derivatives is de- 
scribed. In the nonsingular case the result agrees with the known Ostrogradskii 
formulation. It is shown that the Lagrange equations of motion reduce to normal 
form in the nonsingular theory. 

I. It is known that the addition of terms containing high derivatives to the standard 
Lagrange field theory improves the convergence of the appropriate Feynmann diagrams in a num- 
ber of cases [i]. Here, gravitation with the Lagrangian R 2 and the Yang--Mills theory with 
high derivatives can be mentioned.* At this time, gauge field theories naturally attract the 
greatest attention, which also indicates an interest in gauge theories with high derivatives. 

In this connection, the problem of quantization of such theories arises, particularly ca- 
nonical quantization. As is known, canonical quantization actually reduces to the problem of 
"Hamiltonization" of the appropriate classical theory. 

For a theory with high derivatives, Ostrogradskii [2] first considered "Hamiltonization." 
However, his method is not directly applicable to singular theories among which are gauge the- 
ories in particular. This was noted even in the original paper [2]. Nevertheless, in a num- 
ber of particular cases of singular theories with high derivatives, different modifications of 
the Ostrogradskii method afforded an opportunity to construct a Hamilton formalism [3-5]. 

A generalization of the Ostrogradskii method is proposed in this paper which will permit 
an arbitrary theory with high derivatives to be reduced to a form allowing application of the 
Dirac method [6], i.e., actually to "Hamiltonize" it. 

The examination is made in an example of a theory with a finite number of degrees of 
freedom. Transformation of the results to field theory is trivial and not presented in the text. 

*It must be noted that the introduction of high derivatives creates definite difficulties, 
for instance, with the appearance of the indefinite metric. 
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II. Let us consider the classical system with N degrees of freedom in the case when the 

Lagrange function L depends on the generalized coordinates qi l, i = s, ..., N and their deriv- 
atives above the first order. 

The action S is expressed in terms of the Lagrange function in the usual way: 

= i ... . .  qi , c~ , f~") = d i  ~ 

I h e  L a g r a n g e  e q u a t i o n s  a r e  o b t a i n e d  f r o m  t h e  a p p r o p r i a t e  a c t i o n  p r i n c i p l e :  

(1) 

-~ , ~  ( _ 1) l (0 =_ O. (2 )  

In the following it is convenient to go over to the problem on the conditional extremum of the 
action: 

S ' =  fL(q} ,  qy . . . . .  ql q, v ; ) d t  (3) 

under the additional conditions 

q~ i = ~;si-1 cl~i ' )  , (4) 

This problem is equivalent to the problem for an absolute extremum of the functional S* [7] 

~'~' - S ip?  -~ ( q ~  - ~?) + p ?  ( $ ?  - r + L (q, ~)] de, 

w h e r e  a l l  t h e  q ,  p ,  v a r e  i n d e p e n d e n t  f u n c t i o n s  o f  t h e  t i m e  s u b j e c t  t o  v a r i a t i o n .  
p r i a t e  e q u a t i o n s  o f  m o t i o n  h a v e  t h e  f o r m  

(5) 

The appro- 

�9 oL 1 pl Oq~ 

OL p~-l, %=2 . . . .  , n~,t h?-  OqT~ 
(6) 

~i-li =q,,~i ~]7,==%, (7) 

p~, OL _ O. (8 )  
dvl 

The action S* in (5) and the equations (6)-(8) are called an expanded Lagrange system. 

If qi si' pri' vi, ri = i, ..., n.1 are eliminated in the expanded system (as is always possible), 

we return to the action (i) and the Lagrange equations (2). Only v i must be eliminated to go 
over to the Hamilton formulation. 

III. I) Let the following condition be satisfied 

. 1 1( nl)-, 02L Lqi...q~ J 
det  v~ 0 (9 )  

O~l<n#O~,l(n i) tti "lj  

02L 
(the matrix aq~ini' c)q)n j ) 

and  pn f r o m  (8)  

vl = vz (q, P").  

Let us substitute vi(q, pn) into (6) and (7) in place of v i. 
(7) can afterwards be written in the canonical form: 

is called the Hessian). In this case v i can be expressed in terms of q 

(i0) 

The equations of motion (6) and 
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b? = {p?, m ,  q;, = m 

where the Hamilton function H(q, p) has the form 

(11) 

N ni 

{ ~  si--1 s i n~g) I J -  ~ , t P i  q, q-Pi z(q, P"))'--L(q, v(q,P")); (12) 
i=I  si=2 

!{OA OB OA ___O-U-71'q' is the Poisson bracket. In this case (9) ,  we say that the and {A, B} = ~ Z \Oq~ Op~i Op~i Oq/] 
i=1 ri=l 

theory is nonsingular. Ostrogradskii [2] first obtained such a formulation of a nonsingular 
theory. 

2) If the Hessian is degenerate 

rank 02L (q' v) _ R ,  N - - R = m > 0 ,  (13) 
OviOvj 

then the relationship (8) in the form (I0) cannot be solved. In this case we call the theory 
singular. It can be considered that the minor of maximal rank in the Hessian is in the upper 
left corner.* We shall sometimes use the following notation 

(14) 
P nR+a ~ -  ~a, a = ] > . . ,  m .  R+a '~a, ~ R + a  

From the  f i r s t  R e q u a t i o n s  in (8) we express  V in terms of  q, P, t 

V~= V~(q, P, ~). (15) 

We substitute V in the form (15) into (6) and (7) and the remaining m equations in (8). Then 
it turns out that these latter have the following structure 

where 

(D~) = ~a - - f a  (q, P) = 0, (16) 

f~(q, p ) _  OL(q, v) v=v(q,P, 
Ok a ~) 

( , ) ( q  pn) w i l l  be c a l l e d  the  pr imary c o u p l i n g s .  The f u n c t i o n s  ~a 
function H 

Let us introduce the 

H = pq-lqq -- i ~ +P~V~(q, P, k ) + ~ J a ( q ,  P) - -L (q '  ..... q", V(q, P, k)~). 

It is easy to see that H is independent of ~: 

(17) 

OH__= paV +/(q,  p) OL OV 
Ok & O V 0}. 

Let us a l s o  i n t r o d u c e  the  f u n c t i o n  H(1) (q ,  p,  ~): 

OL - 0 .  ( 1 8 )  

He)  (q, p, X) "h -1 h --Pi qi q-P,V~(q, P, }.)-p%).~--L(q, V, ~.). (19) 

It is evident that 

/-/(') = H + ~.atPa . (20) 

By using H (*) the equations of motion can be rewritten as follows: 

*This does not limit the generality since the minor of the maximal rank can always be relo- 
cated in the upper left corner in a symmetric matrix by the simultaneous renumbering of the 
rows and columns. 

732 



(21) 

(q, 0, 

which have  the  form of  t he  e q u a t i o n s  of  mo t ion  of  H a m i l t o n i a n  mechan i c s  w i t h  c o u p l i n g s  [ 6 ] ,  
which p e r m i t s  a p p l i c a t i o n  o f  t he  D i r a c  method and a s s u r e s  the  p o s s i b i l i t y  of  c a n o n i c a l  quan-  
t i z a t i o n .  

Let  us c l a r i f y  t he  meaning of  t he  f u n c t i o n  H(q, p ) .  As a l r e a d y  n o t e d ,  the  momenta p ~ i ,  
r i = 1 . . . . .  n i and v i can a lways  be e l i m i n a t e d  f rom the  expanded Lag range  sy s t em ( 6 ) - ( 8 ) .  
The f o l l o w i n g  e x p r e s s i o n s  a r e  o b t a i n e d  f o r  t he  momenta 

' OL \(:-q) q (22) 

Z=ri \oqi / 
r i I f  t he  momenta P i  a r e  r e p l a c e d  by t h e i r  e x p r e s s i o n s  (22) in  H(q, p ) ,  t hen  i t  t u r n s  ou t  t h a t  

H agrees with the energy* 

N n i ni 
s = ~.%" ~.%" ql/q) ~. (__ 1),__ri/[~)OL '\(,-q/ __ L. (23) 

i = 1  r i = l  l = r  i , 

IV. Let  us examine the  q u e s t i o n  o f  t he  p o s s i b i l i t y  of  r e d u c i n g  t he  sy s t em of  Lagrange  
e q u a t i o n s  (3) t o  normal  f o r m . r  For  s i m p l i c i t y  we l i m i t  o u r s e l v e s  t o  t he  c a s e  

L ( x ,  x(1) ..... x ~), y, y(~) ..... y(=~), x = (xl...xa 0, y =  (y~.,.y.~l). (24) 

I t  i s  c o n s i d e r e d  h e r e  t h a t  n and m a r e  t he  r e a l  o r d e r  to  which t he  d e r i v a t i v e s  o f  x and y ( r e -  
s p e c t i v e l y )  e n t e r  i n t o  L, i . e . ,  t h a t  

OL OL 
- - : ~  0, - - v : 0 .  
OX(n)' Oy(m) 

1) I f  m = n,  t hen  e v i d e n t l y  t h e  n o n d e g e n e r a c y  of  the  Hes s i an  i s  s u f f i c i e n t  f o r  t he  La-  
g r a n g e  e q u a t i o n  to  be r e d u c e d  to  t he  form 

x(2~) = X (x...x(2n-1), y...y/2~-I))/ (25) 
y(2,,) __ y(y...y(2n-1), X.. .x(2n-1)) l"  

If the Hessian is degenerate, then the Lagrange equations in the variables x, y are not re- 
duced to the form (25). 

2) Let n < m. The Lagrange equations have the following structure 

8S ),,[ O~'L c)~L 
- -  - ( I I xr + 
~x Oxt")Ox~") Oy(m)Ox r 

+ F ( x  ..... x(2.-~l, y ..... yC.+m-I)); 

y(n+m)) q_ (26) 

~S ( 02 L ~ . . 02 L ) 
~3' ~: ( ._ l )m Ox(mdY I"') xln+.z) OY(")dY (m) y(2m) -+, O ( x  ..... x("~m--1), 5', .... y(2m-1)). (27) 

Let  us n o t e  t h a t  t he  h i g h - o r d e r  d e r i v a t i v e s  x (n+m) and y(am) can e n t e r  o n l y  i n t o  ( 2 7 ) .  T h e r e -  
(n+m) 

fore, it is impossible to solve the Lagrange equations (26) and (27) for x , y(am) simul- 
taneously. Nevertheless, when the Hessian is nondegenerate: 

*The expression (23) for the energy is the derivative of the action (2) with respect to ta at 
the extremals. Expressions (22) for the momenta p~i are the derivatives of the action (2) with 

1 (ri-l) 
respect to qi (ta). 

(d i) (dj-l)) is called normal. The tThat form of the differential equations qi = Qi(qj ' "''' qj 

Cauchy problem has a unique solution for normal equations. 
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a2 L O~L ) 
Oxr Oy(,,,)Ox Ci~) r 

det  02 L O'-' L 

Ox(n)Oy(m) Oy(m)dy(m) 

t h e  L a g r a n g e  e q u a t i o n s  a r e  r e d u c e d  t o  n o r m a l  f o r m .  

L e t  g d e n o t e  t h e  m i n o r  o f  m a x i m a l  r a n k  N i n  t h e  m a t r i x  

(28) 

O2L O"L ) . 

Ox~)ax (,~) OxU')Oy~") 

We partition the coordinates x, y as follows 

x i = =  Xt, if the column 

x i = xi, if the column 

Y i ~ Yj, if the column 

Y/ = //1, if the column 

O"L 
Ox(n)Ox~,I C g; 

02L 

O~L 
a x ( . ~ a s , }  m~. - -  

O2L  
a x ~ a y } , .  ~ c g. 

form: 

CONCLUSION 

The Lagrange equations in the nonsingular theory (28) reduce to the following normal 

X r = F ( X . . . X  (2n-1), x . . . x  (2n), Y... y(n+m-1), U...U(n+m)); 

yr = O ( X . . . X  (2n-l), x . . . x  (2n), Y... y(n+m-1), U..,U(n+m)); 

(29) 
x(n+m) = ~ ( X . . . X  (2n-1), x. . .x(n+m-1)y.. .~n+ m-l), U...u(2m--])); 

u(Zm ) = ~ ( X . . . X ( 2 n - 1 )  ' X...x(n+m--1), y . . .y ( .+~- l ) ,  u...u(2~-I)). 

I n  t h e  s i n g u l a r  t h e o r y  t h e  L a g r a n g e  e q u a t i o n s  do n o t  r e d u c e  t o  t h e  f o r m  (29 )  i n  t h e  x ,  y 
variables. An analogous assertion is valid even for an arbitrary quantity of different n i. 
The nondegeneracy of the Hessian (9) is the condition assuring the possibility of reducing the 
Lagrange equations (2) to a normal form of the type (29) even in this case. 
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