
Equation (9) gives us the average value of the jump in the energy density, which gives 
rise to separation of the region Do. 

From (9), we obtain the following estimates: 

i) o ~ 1020 cm 2 (sun), < 6p > = < 6e >/C = ~ 107 g/cmS: 

2) ~ ~ i0:2 cm 2 (neutron star), < 6p > % i0 ~s g/cm3; 

3) ~ ~ 10 -66 cm2(singularity), < ~0 > ~ 1093 g/cm 3. 

Thus separation of small regions is inhibited by a strong potential barrier. Motion in- 
duced in space by a change in the topology of the space itself will require enormous expendi- 
tures of energy. The parameters of superdense configurations are close to those for separa- 
tion from space. This confirms our conclusions, obtained in [i] for a closed model of the 
universe. Breakdown of connectedness is to be expected in ~ravitational collapse of massive 
stars because in this case singularities arise (based on Penrose's theorems [4], p. 242), 
which entail a singularity of the curvature. It is easy to see that the above picture of the 
breakdown of connectedness is in many ways similar to the process of gravitational self-closure 
accompanied by gravitational collapse of homogeneous spherically symmetrical configurations, 
analyzed in detail in [5] (p. 52). For this reason, it may be expected that singularities 
form due to breakdown of the connectedness of 3-space. 
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THEORY OF SPATIALLY PERIODIC STRUCTURES. 

BOSE EXCITATION GREEN'S FUNCTIONS 

A. I. Olemskoi UDC 539.2:530.145 

We discuss Green's function techniques in the description of spatial ordering 
viewed as a Bose-Einstein condensation of the density wave of the ordering units. 

i. Two approaches can be used in treating spatial ordering in quantum statistics [i, 2]. 
The first is based on the exclusion principle, according to which units forming the spatially 
periodic structure (the atoms of a crystallizing liquid or solid solution or the phase separa- 
tions in a quasiperiodic macrostructure of dissociating alloys) cannot occupy the same spatial 

+ 
position r. This allows the representation of the ordering process as a redistribution of 
fermions over the states r. The corresponding Green's function formalism is identical in form 
to the techniques of Gor'kov in the theory of superconductivity, and has been discussed in [i]. 

In the second approach, the ordering process is thought of as a redistribution of the Bose 
density of the ordered structure over values of the wavevector ~. The condition that this 
method be applicable is that the Bose amplitudes C k be statistically independent for different 
values of ~ [3]. However it can easily be shown that if the total number of structural units 
is conserved, the C k satisfy the relation* 

"~ < lC~l  ~ >=const, (i) 
K 

*The proof of (i) is carried out in similar fashion to the case of an ordered solid solution 
[4], where const = C(I -- C)N, C is the concentration, and N is the total number of atoms. 
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where the angular brackets denote a Gibbs average. In practice, this condition is not impor- 
tant for temperatures much higher than the critical temperature T c. But the C k are strongly 
coupled close to T c and even more strongly coupled for T < T c. This can be seen in the well- 
known experimental fact that spatial ordering is always accompanied by the appearance of delta- 
function singularities (reflections) in the x-ray, electron, and thermal neutron scattering 
patterns. Since the intensity is proportional to < ICk 12 > we have a "condensation" of the 
Bose density at the points k = ~scorresponding to reflections from the ordered structure. 
However a marked condensation of the Bose density for a given value of ~ must be accompanied 
by a decrease in the Bose density for other values of ~, as follows from (i) and thus the Ck 
are not independent. Ignoring the fact that the C k are coupled can lead to nonsensical re- 
suits of the type < [Ck la > < 0 [2] for T < T c [2]. 

The condition (i) will be satisfied in a natural way if we consider the Bose density of 
ordered units as quasiparticles whose number is conserved [2]. This approach allows the use 
of the methods of quantum statistics where the behavior of the delta-function singularities 
for T ~ T c is represented as a Bose--Einstein condensation of quasiparticles corresponding to 
the Bose density. In order to avoid misunderstanding, we point out that the use of operator 
methods here does not in any sense imply direct quantization of the dynamical variables such 
as energy, momentum, and so on. Indeed, the problem is purely classical. But it is conve- 
nient to use here the machinery of second quantization or Green's functions in the interme- 
diate steps of the calculation. The methods of second quantization have been discussed in 
the previous paper [2]; here we consider the Green's function formalism, which in addition to 
its simplicity and rigor allows one to obtain some significant new results, particularly the 
effect of ordering on the behavior of other quasiparticles in the system, such as electrons 
or phonons. In the present paper we consider a uniform system in which the Green's function 
will depend only on the coordinate differences. Then it will be convenient to use the spatial 
Fourier transform representation. This approach can be generalized easily to the nonuniform 
case, such as the case of an external field. In Sec. 2 we write out the basic relations; in 
Sec. 3 the case of zero temperature is considered, while in Sec. 4 we consider nonzero temper- 
atures. Finally the results are discussed in Sec. 5. 

2. We consider a solid solution where the ordering process occurs via a redistribution 
of the concentration 6C(~) = C(~) -- C, where C(~) = I; 0 is the occupation number of site 
by atoms of a given kind, and C is the concentration of these atoms. Following the methods 
of second quantization, we replace the classical quantity ~C(~) in the configurational Hamil- 
tonian 

! 
1-1 = Y r,r' ~/~ ~' (r -- r ' )  ~C (r)  oC (r ' ) ,  ( 2 )  

where W(~- 5') is the energy [4], by the Hermitian operator 

A 1 A $~ ~C(r) = - ~ V C ( 1  -- C) [+(r) + (r)]. (3) 

The n o r m a l i z a t i o n  i s  chosen such t h a t  the  average of the  q u a s i p a r t i c l e  number ope ra to r  ~(~) = 
A §  
~ + ( r ) ? ( r )  w i l l  s a t i s f y  the  usua l  c o n d i t i o n  

A 

~ N ( r )  -- E ( *+ (r)'~ (,) > =A;, (4a) 
r r 

where N i s  the  t o t a l  number of  atoms. The presence  of Bose--Einstein condensa t ion  impl ies  t h a t  
A + 

the f i e l d  o p e r a t o r s  ~+( r ) ,  $(~)* are  Bose o p e r a t o r s .  The f i e l d  o p e r a t o r s  are  w r i t t e n  in the 
form 

A A A ~ , A +  
(r) = ~ +~ (r)  a~, = ~+(r) ~.~,~(r)a~, (5) 

*The exclusion principle with respect to the arrangement of atoms over sites r referred to in 
the introduction rigorously leads to the Pauli permutability relation [2]. However in the ap- 
proximate method of second quantization used here [5] these operators can be considered to be 
quasi-Bose operators. 
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where Sk(~) is the wavefunction; in the expansion of 5C(~) it is given by the plane wave N -I/2 

e x p ( i i ~ r ) ;  t h e  o p e r a t o r s  , a k a r e  t h e  q u a s i - B o s e  c r e a t i o n  and  a n n i h i l a t i o n  o p e r a t o r s  o f  c o n -  

c e n t r a t i o n  w a v e s  s u c h  t h a t  t h e y  i n c r e a s e  o r  d e c r e a s e  t h e  o c c u p a t i o n  n u m b e r  i n  t h e  s t a t e  ~ b y  
A A A 

§ s a t i s f i e s  t h e  c o n d i t i o n  u n i t y .  The c o n c e n t r a t i o n  wave  number  o p e r a t o r  N k = a k a  k 

A ,  A 

and this reduces to (i) when the concentration wave amplitude C~ =N-1;~C(r)e• is 
r 

A A 

r e p l a c e d  b y  t h e  o p e r a t o r  C ~ =  l / C ( l - - C ) a , ~  . 

A A 

U s i n g  (2 )  and  ( 3 )  we c a n  w r i t e  t h e  H a m i l t o n i a n / ~ > =  H - - p N  . i n  t h e  f o r m  [ 2 ] :  

A A A j .  A A A 
H ' =  1 ~ U ( r - - r ' ) [ ' ~ + ( r ) ~ ( r ' ) + ~ ( r ) ' % + ( r ' )  ~ + ( r ) + ( r ' ) +  

2 ' u 

A A A A 

+ ~+ (r)  #+  (r')] - ~ ++ (r)  ~ ( r ) ,  (6 )  
r 

where V(~-- ~') = C(I -- C)W(~-- ~')/4, and V < 0 is the chemical potential of the concentra- 
tion wave  d e t e r m i n e d  b y  ( 4 a ) .  The a b o v e  f o r m a l i s m  r e d u c e s  t h e  p r o b l e m  o f  o r d e r i n g  o f  a s o l i d  
solution to a degenerate Bose gas whose number ef particles is conserved. 

3. F i r s t  we c o n s i d e r  t h e  c a s e  T = 0 .  We d e c o m p o s e  t h e  ~ - o p e r a t o r s  i n t o  p a r t s  f o r  t h e  
A A 

condensate ~ and supercondensate ~' (see Sec. 26 of [6]): 

A A A A A A ' 2 t . 
+ = z + ~ ' ,  ~ + = - ~ + T ~  +, 

A A A A A j_ A 

"~ (?') = N -L'2 a ~ / %  (~), = + (r) = N -~2 ai%e-%('); 

A __ A �9 __ - % ( ' )  ( 7 )  
2 (r) = < '~ (r) > I /Nse i% ('), E ~ (r) = < ++ (r)  > = VN~e , 

where N s is the number of concentration waves in the condensate with wavevector k s and ~s = 

s r is the phase of the concentration wave. Then the Green's functions G and F, F + are given 

by* A A 
i G ( X , ,  X2) - i O ( X , - X J =  < N I T ~ ' ( X , ) ~ " '  ( X , ) I N  ; 

A A 

i F ( X , ,  X j  = i F ( X ,  - -  X.,_) = < N - -  2 1 T  %"' (X , ) 'F"  (Xz) IN > ; 
A A ( 8 )  

il=+ (X, ,  x~)  = iF+ (X, -- X~) = < N + 2 17"F '+ (X,) tF'" (X2) I N , 

where we use the standard notation of 
fy the equations (see Sec. 41 of [6]) 

[~ - ( u  ( m  - ~)] c (~, K) - u ( m  F+ (~, ~) = 1; 
(9 )  

[~ + ( u  (~) -- ~)] F+(~,, ~) + V (~) 6 (~, ~) = 0. 

From t h e s e  e q u a t i o n s  and  t h e  b o u n d a r y  c o n d i t i o n s  i t  f o l l o w s  t h a t  ( s e e  S e c .  33 o f  [ 6 ] ) :  

~, + % (~) 
6 60; ~ ) =  ; - ' -~a (~ )+  io '  (10) 

[6]. The Fourier transforms G(~, ~) and F+(m, ~) satis- 

*Here we use the same notation as for fermions [I] though in the latter case the single-parti- 
cle boson functions (8) appear as two-particle functions. 
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- -  U ( g )  ( 1 1 )  F+ (m, g)  = 
~ -- ~ (g) -§ iO 

Go(g) = U ( g ) - - > ;  (12)  

a ( g )  = 1/ ' I ,  ~ - -  C (1 - -  C )  w ( g ) / 2 .  ( 1 3 )  

According to (I0), the Bose branch of the spectrum of elementary excitations is given by (13) 
The number of elementary excitatlons for k # k s is given by the distribution 

N~ ~ < a y a ~  > = iG (t = - -  O, to) --  4!~s (g)  (14)  

Equation (9) can be written in terms of diagrams: 

where the following graphical notation is introduced 

i 0 ( %  to) iGo(t,, , g)  iF(co, g-c) i F + @ ,  re) - - i U ( t r  

_Gr( iL ,  ~) -6r,,(i;s, g) - -F  (t~s, g) --Fr(i"--~, g) - -d(~r  

Here the upper row corresponds to T = 0 and the lower row to T r 0 (see Sec. 
unperturbed Green's function is 

ao @ ,  g )  = (o, - to ( g )  + i o ) - ~ .  

(15) 

(16)  

(17) 

4 below). The 

Thus the quasiparticles are described by the dispersion law (12), and as can be seen from the 
Hamiltonian (6) in the k-representatlon, correspond to traveling concentration waves with 
wavefunction ~k(~) = N-I/2exp (i~r). The elementary excitations ~iven by dispersion law (13) 
correspond to standing concentration waves with wavevectors ~ # k s. This follows from the 
fact that the standing waves are linear combinations of the traveling wave operators. 

A A A u~ 1 (~ (g)  ~ p.)~ 
b,,: = a,,a,t~+,, - -  v,~a+_,,,  - (18)  

v~3 4..a~ (g )  ' 

which diagonalize the Hamiltonian (6) (see [2]). 

4. The transition to nonzero temperature is carried out by using either retarded and ad- 
vanced Green's functions or Matsubara Green's functions (see Chap. 4 of [6]). We use the first 
approach here. When T # 0, the imaginary part of the retarded Green's function GR(m, ~) is 
analytic in the upper half of the ~-plane and is given by the imaginary part of (i0). Hence 

Im G (% ~)  = cth '-J-~ Im G R (m, g)  = - -  = (1 + 211~) (,o + % (g))  8 (o~ 2 - -  sz (g)) ,  
2T 

where n k = [exp(e(k)/T) -- 1] -I is the Bose distribution function of the elementary excitations. 
Thus for T r 0 we have 

6 (,,,, g )  = '" + Go ( g )  ~- 2~in,, (,o + ~o ( g ) )  a (,o~ - ~-' ( g ) ) .  (19a) 
,~-~ - s ~ ( g )  + i0 

Similarly we obtain for the F + function 

F + ( %  t r  - - U ( g )  @ 2 , ~ i U ( g )  r z ~ ( o ~ 2 ~ ( g ) ) "  (19b)  
oF" - -  =-~ ( g )  + iO 

The number distribution of concentration waves with respect to states [ r ~s is given by 

,7.V,r iG (t  - - -  O, g )  (s (g)  ~_~)2 G~ (g)  q_ ~2 
4~s  ( g )  2 ~  ( g )  ( 2 0 )  
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The temperature dependent Green's functions are given by the relations* 

A A 

Gr(~, R~; ~.~, Ru)- -Or(~-~ ,  R~ --  R ~ ) =  - < T?I~"M (~,, R ~ ) ~  '~ (~ ,  R~) ~ ; 

A A 
FT("~I, R1; ~2, R2) :=  FT('~I - -  "r R1 -- R2) ...... / T-~(F'M (~1, RI )  IF M ('~2, R2) ; 

A A 
I "yT (~ ,  R~; %, R,.,) = f T  (z ,  - -  %, R ,  - -  R O  = - -  ( T~-~ "M ( ~ ,  R , )  ~-:'"~ (~o., R~) >,  

(21) 

where the notation of [6] is used. An analytical form of the equations for G T, ~T can be ob- 
tained from the equations for G and F + by replacing (it) with T (in the Fourier representa- 
tion we replaced ~ by i~ s = 2~iTs, where s = 0, • • ...). The graphical representation 
of these equations is given by (15), as in the case T = 0 where the diagram elements (16) are 
now interpreted using the lower row, The solution of these equations 

GT(% ~)=  i=~0(~) Fr(% ~)_  w(~) 
~A_s~(g)  ' c ~ @ ~ ( g )  (22) 

describes the ordering process over all temperatures. The dispersion law is given in the form 
(13) as for T = 0, but the chemical potential is now a function of temperature whose form is 
determined by (4). 

The definition of the concentration wave distribution function 

- -  ~ n r ~ .  ~ ) e - ! ~  ~ N ~ =  - - O  T(x = - -0 ,  g) = - - T l i m  ~ u  V~s, (23) 

leads to (20) which diverges for T ~ T c at the point k = k s corresponding to the Bose conden- 
sate. In comparison with the earlier definition, N k as given by (23) has the advantage that 
not only can the concentration wave distribution (20) be determined, but also the explicit 
Bose distribution of the standing concentration waves n k. 

5. The basic features of our results are the appearance of a band gap 

A == ] / 1 # - -  :~C (1 -- C) w (Ks)'2 (24) 

in the Bose branch of the spectrum of elementary excitations (where w(~) is the Fourier trans- 
form of the displacement energy) and a divergence in the concentration wave distribution func- 
tion. These features are analyzed in detail in [2]; here we discuss only the basic results. 

At high temperatures e( g ) ~ s0(K). A:~a,~(gsl, N~:~ ~ ! and standing and traveling concentra- 

tion waves are equivalent, being distributed nearly uniformly over the Brillouin zone. This 
corresponds to the total absence of order. As the temperature is lowered, the gap width de- 
creases, going to zero at the phase transition point 

T o =  0,5069C(1--C)[w(K~) I. (25) 

The concentration wave distribution function increases near k § = k s (since the total number of 

concentration waves is conserved, it must decrease for values of ~ far from k s ) and has the 

singular form Nk ~ (~-- ks) -2 for ~ + k s . The dispersion law for T < rc, k + k s has the form 

s ( ~ )  ~ I~-ksl. 
In  t e rms  of  the  G o l d s t o n e  a p p r o a c h ,  the  a c o u s t i c  ( g a p l e s s )  d i s p e r s i o n  law c o r r e s p o n d s  to  

l o n g - l i v e d  hyd r odynam ic  modes which r e s t o r e  the  symmetry o f  the  d i s o r d e r e d  p h a s e .  I t  can t h e n  
be shown t h a t  t he  B o s e - - E i n s t e i n  c o n d e n s a t i o n  l e a d s  to  a b r e a k i n g  of  the  symmetry o f  t he  s y s -  
tem, w i t h  the  a p p e a r a n c e  o f  l o n g - r a n g e  o r d e r  in  t he  c o n c e n t r a t i o n  wave phase  d i s t r i b u t i o n ,  t he  
phase playing the role of a restoring variable (the broken symmetry variable is the concentra- 
tion wave amplitude). This picture was used here and earlier in [2] a posteriori. Study of 
this theorem and the correlation function formalism associated with it will require a separate 
publication. 

*We point out the negative sign in front of the F functions (compare with (42.1) of [6]). 
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RESONANCE EFFECTS WITH THE PHOTOPRODUCTION OF ELECTRON--POSITRON 

PAIRS IN THE FIELD OF A PLANE ELECTROMAGNETIC WAVE 

S. P. Roshchupkin UDC 530.145:539.12 

The differential cross section is obtained for the formation of electron--positron 
pairs by a photon at a Coulomb center in the field of a plane electromagnetic wave 
whose intensity ~ = eA'/m<< 1 and frequency ~'/m<< i. Expressions are given for 
the resonance frequencies of the photon for which the emission of a virtual elec- 
tron (positron) at a mass shell occurs. It is shown that resonance occurs only 
for electron or positron energies E ~ m=/m ' The resonance differential cross 
section under interference conditions is obtained. It is shown that the reso- 
nance cross section can exceed by several orders of magnitude the ordinary cross 
section for the photoproduction of pairs without a field. 

The resonance photoproduction of pairs at nuclei and electrons in an external electromag- 
netic field was examined in work [i] in the ultrarelativistic case for large-angle scattering 
of the electron and positron. The single-photon approximation was used for the external field, 
and it was assumed that the incident photon and the excitation-wave photon are moving counter 
to each other~ 

We shall examine the photoproduction of pairs at a Coulomb center in the field of a plane 
electromagnetic wave in the general relativistic case, which permits the most complete analy- 
sis of the resonance region, related to the emission of a virtual electron (positron) at a 
mass shell. The Feynmann diagrams for this process are presented in Fig. i. The solid outer 
lines denote the wave functions of the electron and positron, whose 4-momenta are respective- 
ly p- and p+, in the external electromagnetic field [2], the inner line denotes the ' Green 
function for the electron (positron) in the plane-wave field [3, 4], k = mn = ~(I, n) is the 
4-momentum of the incident photon, q is the transferred momentum, and k' = ~'n' = ~'(i, n') 
is the 4-momentum of the excitation-wave photon. 

a b 

Fig. i 
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