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A class of solutions is obtained for the Einstein equations for liquid spheres with 
finite values of the energy density and pressure at the center. The fourth Tolman 
solution and the Adler solution belong to this class. A new solution is presented 
for which a merger is made with external empty space. Configuration parameters are 
calculated for an ultrarelatlvistic equation of state at the center. 

i. All exact static spherically-symmetric solutions of the Einstein equations, known 
at the present time in the presence of a substance, are obtained without preliminary assign- 
ment of the equation of state. In this case the system of Einstein equations consists of 
three equations 

e - x  ( < r  + 1 )  - -  1 = r~P (r), e - X ( 1  - rX')  - 1 = - r2 ,  ( r ) ,  

~' = - 2 P ' / ( P  + ~), 

where e x and e ~ are metric coefficients of the desired metric 

(1) 

ds~ = e~c~dt~--eXdr2--r2(d02 + sin~Od~2), (2) 

c and P are the energy density and the pressure (we include 8~y c -~ in ~ and P). The equa- 
tion of state should be the fourth equation. However, as a rule the system of equations can 
only be solved approximately. Consequently, a certain additional condition which permits 
obtaining exact solutions is chosen as the fourth equation. Thus, all static solutions known 
at the present time are obtained (for instance, [1-5], with the exception of the solutions 
with the equations of state ~=--P; c= --3P; ~=const). The disadvantage of such a method is 
that the equation of state can even be not physical in the solutions obtained. Hence, the 
question of selecting such an additional condition as will be known to result in an equation 
of state with definite properties, is important. It is shown in this paper what selection 
of the additional condition will result in finite values of the energy density and pressure 
at the center. New exact solutions are obtained for the Einstein equations which satisfy 
this condition. The possibility is investigated of an ultraralativistlc equation of state 
at the center of the configuration. 

2. The metric coefficients can be eliminated from the system (I), and one equation can 

be obtained 

P '  r v  -1 ( v - -  1 ) ( v  - 1/2) + P ( r v '  - -  v - -  2 v  ~ + 1 ) + r -~  ( r v '  "4- v - -  2v ~) = O, (3) 

where 

v = P'r (P + ~)-k ( 4 )  

If (4) is selected as the initial condition, then (3) is a linear differential equation 
in P, i.e., by giving v, we have P, and therefore, the energy density v and the metric coef- 
ficients. Let us analyze the behavior of the function v near the center under the condition 

that 

P(O)=Po=const, e(O)=eo=const (5) 
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(P and e are continuous and differentiable functions). To do this, we take account of (4) 
and convert (3) to the form: 

~ / P =  ( v  - -  I ) - '  ( v  - -  1 /2 ) - '  [ P - '  r -2  ( 2 v  2 - -  v - -  r v ' )  + v + 2 v " - -  1 - - r v ' ]  - -  I .  (6) 

It follows from (6) that as r § 0 and (5) is taken into account, the function v should be- 
have as 

.v o ( r )  = - -  K r  ~, ( 7 ) 

where K is some positive constant. The negative sign of v assures the decrease in pressure 
with the growth of r. From (6) and (7) we obtain an equation of state at the center of the 
configuration in the form 

~o = 3(2 K--Po). (8) 

To satisfy the ultrarelativistlc equation of state Co =3Po at zero, it is necessary to set 
K = Po. If the desired functions are differentiable arbitrarily often in the neighborhood 
of zero, then a solution in the form of a series can be obtained. We present the first three 
terms of the expansion for the pressure 

P. = Po (l--2Po~ + 2Po V'3-ffor3). 

3. Let us select v so that P (from (3)) could be expressed in terms of the power-law 
function 

v = - - X Y ~ (  l + y 2 ) - ' '  (9) 

where y = rro -t, and ro is a constant with a dimensionality of a length; ~ is a dimensionless 
constant (A = Kr~). 

From (3) we obtain the following expression for P 

P = r -2 [--  I - -  1/2 y~ (1 + y2). -x (1 + (1 + ~) y~)-2,,.+~) (1 + (1 + 2X) y2) (10) 
X (C + 4~ (1 + y~)~-' (1 + (1 + ~) y2)U-~)m+~) y-3dy. 

which is a solution of the Einstein equation, expressed in quadratures, for liquid spheres 
under the conditions Po = const, co = const. The case of integrabillty of the integral in 
(i0) is: i) A is an integer, and 2) (i-- A)/(I + A) is an integer. In the second case, how- 
ever, A is always negative, which does not correspond to a physical equation of state. In 
the first case (A > 0) ~ = 1 is the fourth Tolman solution [I], while A = 2 is the Adler solu- 
tion [2]. The new solutions are for ~>/3. Let us present the solutlon for A = 3. 

P (r) = (I/2 ro ~) ( I + y~)-2 [9 (I -- y~) -- C ( 1 -}- 7y z) ( 1 + 4y2) --'/21, 
(r )  = (3/2r~o) (1 + y~)-2 [3 + y'~ + C (1 + 3y 2) (i + 4y')-312], 

e" = B (1 + y.~)3; e-X = 1 --  I/2y 2 (1 + y~)- '  [3 + C (1 + 4y~)-'/~], 

(11) 

where B is an arbitrary constant. For an ultrarelativlstic equations of state at the center 
of the configuration C = 3. The equation of state will be physical if 

3 ~ c < 9  

(Po = 0 f o r  c = 9) .  

4. In order to merge the solution obtained with the external Schwarzchild solution 

(12) 

ds  ~ = (1 -- rg / r )  d d t "  - -  ( 1 - -  r~/r)  --1 dr"- - -  r 2 i dY" + sin" ed~ 2) 

i t  i s  n e c e s s a r y  t h a t  t h e  f o l l o w i n g  c o n d i t i o n s  be  s a t i s f i e d  

(13) 

P (rboun) = 0; ei~ (r bout ) : eo, t (rboun); (14) 
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e% (r boun,) ~ . . . .  (ei~ (rboun)) = (eout (rboun)) , -= eout (rboun);  
three of which are independent. The condition P(rb0un) = 0 yields the equation 

(i4) 

(1 -~ 4z) lie = (c/'9) (I q- 7z) (1 - -  z) - l ,  
2 - - 2  w h e r e  z = r b o u n r o  The r e m a i n i n g  m e r g e r  c o n d i t i o n s  y i e l d  

(15) 

re/rbouw= 6z/(1 -b 7z) (16) 

and 

B (1 - 1  = - -  r Jboun)  (1 -}- z) -a. (17)  

It follows from (16) and (15) that the ratio r~/rbo, n is determined uniquely by the equation 
of state at the center of the configuration. ~rom ~15) we have for the ultrarelativistic 
equation of state at the center (C = 3) 

z = 0 , 3 0 1 7 ,  rg/rboun=O.582. (18) 

This is the maximum value of the ratio between the gravitational radius and the radius of 
the configuration. The greater the C (C < 9), i.e., the more the equation of state at the 
center differs from the ultrarelativistic, the smaller the ratio of rg to rboun. From (17) 
we determine the constant B. Therefore, only the dimensional constant ro, which can be ex- 
pressed in terms of the value of the energy density at the center, remains undetermined. 
For instance, for the ultrarelativistic equation of state ro = 3e~ :/=. Therefore, giving 
the energy density at the center determines all the parameters of the configuration. 

If the radius of the configuration is selected equal to i0 km, then the gravitational 
radius equals 6 km, i.e., the mass of the configuration equals two solar masses. The central 
density equals 10:5 g/cm 3, therefore, the configuration parameters are close to the parame- 
ters of neutron stars. 
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